00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00030 #include <stddef.h>
00031
00032 #include "avcodec.h"
00033 #include "internal.h"
00034 #include "bitstream.h"
00035
00036 #include "qcelpdata.h"
00037
00038 #include "celp_math.h"
00039 #include "celp_filters.h"
00040
00041 #undef NDEBUG
00042 #include <assert.h>
00043
00044 typedef enum
00045 {
00046 I_F_Q = -1,
00047 SILENCE,
00048 RATE_OCTAVE,
00049 RATE_QUARTER,
00050 RATE_HALF,
00051 RATE_FULL
00052 } qcelp_packet_rate;
00053
00054 typedef struct
00055 {
00056 GetBitContext gb;
00057 qcelp_packet_rate bitrate;
00058 QCELPFrame frame;
00060 uint8_t erasure_count;
00061 uint8_t octave_count;
00062 float prev_lspf[10];
00063 float predictor_lspf[10];
00064 float pitch_synthesis_filter_mem[303];
00065 float pitch_pre_filter_mem[303];
00066 float rnd_fir_filter_mem[180];
00067 float formant_mem[170];
00068 float last_codebook_gain;
00069 int prev_g1[2];
00070 int prev_bitrate;
00071 float pitch_gain[4];
00072 uint8_t pitch_lag[4];
00073 uint16_t first16bits;
00074 uint8_t warned_buf_mismatch_bitrate;
00075 } QCELPContext;
00076
00082 void ff_qcelp_lspf2lpc(const float *lspf, float *lpc);
00083
00084 static void weighted_vector_sumf(float *out, const float *in_a,
00085 const float *in_b, float weight_coeff_a,
00086 float weight_coeff_b, int length)
00087 {
00088 int i;
00089
00090 for(i=0; i<length; i++)
00091 out[i] = weight_coeff_a * in_a[i]
00092 + weight_coeff_b * in_b[i];
00093 }
00094
00100 static av_cold int qcelp_decode_init(AVCodecContext *avctx)
00101 {
00102 QCELPContext *q = avctx->priv_data;
00103 int i;
00104
00105 avctx->sample_fmt = SAMPLE_FMT_FLT;
00106
00107 for(i=0; i<10; i++)
00108 q->prev_lspf[i] = (i+1)/11.;
00109
00110 return 0;
00111 }
00112
00124 static int decode_lspf(QCELPContext *q, float *lspf)
00125 {
00126 int i;
00127 float tmp_lspf, smooth, erasure_coeff;
00128 const float *predictors;
00129
00130 if(q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q)
00131 {
00132 predictors = (q->prev_bitrate != RATE_OCTAVE &&
00133 q->prev_bitrate != I_F_Q ?
00134 q->prev_lspf : q->predictor_lspf);
00135
00136 if(q->bitrate == RATE_OCTAVE)
00137 {
00138 q->octave_count++;
00139
00140 for(i=0; i<10; i++)
00141 {
00142 q->predictor_lspf[i] =
00143 lspf[i] = (q->frame.lspv[i] ? QCELP_LSP_SPREAD_FACTOR
00144 : -QCELP_LSP_SPREAD_FACTOR)
00145 + predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR
00146 + (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11);
00147 }
00148 smooth = (q->octave_count < 10 ? .875 : 0.1);
00149 }else
00150 {
00151 erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
00152
00153 assert(q->bitrate == I_F_Q);
00154
00155 if(q->erasure_count > 1)
00156 erasure_coeff *= (q->erasure_count < 4 ? 0.9 : 0.7);
00157
00158 for(i=0; i<10; i++)
00159 {
00160 q->predictor_lspf[i] =
00161 lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11
00162 + erasure_coeff * predictors[i];
00163 }
00164 smooth = 0.125;
00165 }
00166
00167
00168 lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
00169 for(i=1; i<10; i++)
00170 lspf[i] = FFMAX(lspf[i], (lspf[i-1] + QCELP_LSP_SPREAD_FACTOR));
00171
00172 lspf[9] = FFMIN(lspf[9], (1.0 - QCELP_LSP_SPREAD_FACTOR));
00173 for(i=9; i>0; i--)
00174 lspf[i-1] = FFMIN(lspf[i-1], (lspf[i] - QCELP_LSP_SPREAD_FACTOR));
00175
00176
00177 weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0-smooth, 10);
00178 }else
00179 {
00180 q->octave_count = 0;
00181
00182 tmp_lspf = 0.;
00183 for(i=0; i<5 ; i++)
00184 {
00185 lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
00186 lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
00187 }
00188
00189
00190 if(q->bitrate == RATE_QUARTER)
00191 {
00192 if(lspf[9] <= .70 || lspf[9] >= .97)
00193 return -1;
00194 for(i=3; i<10; i++)
00195 if(fabs(lspf[i] - lspf[i-2]) < .08)
00196 return -1;
00197 }else
00198 {
00199 if(lspf[9] <= .66 || lspf[9] >= .985)
00200 return -1;
00201 for(i=4; i<10; i++)
00202 if (fabs(lspf[i] - lspf[i-4]) < .0931)
00203 return -1;
00204 }
00205 }
00206 return 0;
00207 }
00208
00217 static void decode_gain_and_index(QCELPContext *q,
00218 float *gain) {
00219 int i, subframes_count, g1[16];
00220 float slope;
00221
00222 if(q->bitrate >= RATE_QUARTER)
00223 {
00224 switch(q->bitrate)
00225 {
00226 case RATE_FULL: subframes_count = 16; break;
00227 case RATE_HALF: subframes_count = 4; break;
00228 default: subframes_count = 5;
00229 }
00230 for(i=0; i<subframes_count; i++)
00231 {
00232 g1[i] = 4 * q->frame.cbgain[i];
00233 if(q->bitrate == RATE_FULL && !((i+1) & 3))
00234 {
00235 g1[i] += av_clip((g1[i-1] + g1[i-2] + g1[i-3]) / 3 - 6, 0, 32);
00236 }
00237
00238 gain[i] = qcelp_g12ga[g1[i]];
00239
00240 if(q->frame.cbsign[i])
00241 {
00242 gain[i] = -gain[i];
00243 q->frame.cindex[i] = (q->frame.cindex[i]-89) & 127;
00244 }
00245 }
00246
00247 q->prev_g1[0] = g1[i-2];
00248 q->prev_g1[1] = g1[i-1];
00249 q->last_codebook_gain = qcelp_g12ga[g1[i-1]];
00250
00251 if(q->bitrate == RATE_QUARTER)
00252 {
00253
00254 gain[7] = gain[4];
00255 gain[6] = 0.4*gain[3] + 0.6*gain[4];
00256 gain[5] = gain[3];
00257 gain[4] = 0.8*gain[2] + 0.2*gain[3];
00258 gain[3] = 0.2*gain[1] + 0.8*gain[2];
00259 gain[2] = gain[1];
00260 gain[1] = 0.6*gain[0] + 0.4*gain[1];
00261 }
00262 }else
00263 {
00264 if(q->bitrate == RATE_OCTAVE)
00265 {
00266 g1[0] = 2 * q->frame.cbgain[0]
00267 + av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
00268 subframes_count = 8;
00269 }else
00270 {
00271 assert(q->bitrate == I_F_Q);
00272
00273 g1[0] = q->prev_g1[1];
00274 switch(q->erasure_count)
00275 {
00276 case 1 : break;
00277 case 2 : g1[0] -= 1; break;
00278 case 3 : g1[0] -= 2; break;
00279 default: g1[0] -= 6;
00280 }
00281 if(g1[0] < 0)
00282 g1[0] = 0;
00283 subframes_count = 4;
00284 }
00285
00286 slope = 0.5*(qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
00287 for(i=1; i<=subframes_count; i++)
00288 gain[i-1] = q->last_codebook_gain + slope * i;
00289
00290 q->last_codebook_gain = gain[i-2];
00291 q->prev_g1[0] = q->prev_g1[1];
00292 q->prev_g1[1] = g1[0];
00293 }
00294 }
00295
00305 static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
00306 {
00307 int i, diff, prev_diff=0;
00308
00309 for(i=1; i<5; i++)
00310 {
00311 diff = cbgain[i] - cbgain[i-1];
00312 if(FFABS(diff) > 10)
00313 return -1;
00314 else if(FFABS(diff - prev_diff) > 12)
00315 return -1;
00316 prev_diff = diff;
00317 }
00318 return 0;
00319 }
00320
00342 static void compute_svector(QCELPContext *q, const float *gain,
00343 float *cdn_vector)
00344 {
00345 int i, j, k;
00346 uint16_t cbseed, cindex;
00347 float *rnd, tmp_gain, fir_filter_value;
00348
00349 switch(q->bitrate)
00350 {
00351 case RATE_FULL:
00352 for(i=0; i<16; i++)
00353 {
00354 tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
00355 cindex = -q->frame.cindex[i];
00356 for(j=0; j<10; j++)
00357 *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
00358 }
00359 break;
00360 case RATE_HALF:
00361 for(i=0; i<4; i++)
00362 {
00363 tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
00364 cindex = -q->frame.cindex[i];
00365 for (j = 0; j < 40; j++)
00366 *cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127];
00367 }
00368 break;
00369 case RATE_QUARTER:
00370 cbseed = (0x0003 & q->frame.lspv[4])<<14 |
00371 (0x003F & q->frame.lspv[3])<< 8 |
00372 (0x0060 & q->frame.lspv[2])<< 1 |
00373 (0x0007 & q->frame.lspv[1])<< 3 |
00374 (0x0038 & q->frame.lspv[0])>> 3 ;
00375 rnd = q->rnd_fir_filter_mem + 20;
00376 for(i=0; i<8; i++)
00377 {
00378 tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
00379 for(k=0; k<20; k++)
00380 {
00381 cbseed = 521 * cbseed + 259;
00382 *rnd = (int16_t)cbseed;
00383
00384
00385 fir_filter_value = 0.0;
00386 for(j=0; j<10; j++)
00387 fir_filter_value += qcelp_rnd_fir_coefs[j ]
00388 * (rnd[-j ] + rnd[-20+j]);
00389
00390 fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
00391 *cdn_vector++ = tmp_gain * fir_filter_value;
00392 rnd++;
00393 }
00394 }
00395 memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float));
00396 break;
00397 case RATE_OCTAVE:
00398 cbseed = q->first16bits;
00399 for(i=0; i<8; i++)
00400 {
00401 tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
00402 for(j=0; j<20; j++)
00403 {
00404 cbseed = 521 * cbseed + 259;
00405 *cdn_vector++ = tmp_gain * (int16_t)cbseed;
00406 }
00407 }
00408 break;
00409 case I_F_Q:
00410 cbseed = -44;
00411 for(i=0; i<4; i++)
00412 {
00413 tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
00414 for(j=0; j<40; j++)
00415 *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
00416 }
00417 break;
00418 case SILENCE:
00419 memset(cdn_vector, 0, 160 * sizeof(float));
00420 break;
00421 }
00422 }
00423
00437 static void apply_gain_ctrl(float *v_out, const float *v_ref,
00438 const float *v_in)
00439 {
00440 int i, j, len;
00441 float scalefactor;
00442
00443 for(i=0, j=0; i<4; i++)
00444 {
00445 scalefactor = ff_dot_productf(v_in + j, v_in + j, 40);
00446 if(scalefactor)
00447 scalefactor = sqrt(ff_dot_productf(v_ref + j, v_ref + j, 40)
00448 / scalefactor);
00449 else
00450 ff_log_missing_feature(NULL, "Zero energy for gain control", 1);
00451 for(len=j+40; j<len; j++)
00452 v_out[j] = scalefactor * v_in[j];
00453 }
00454 }
00455
00473 static const float *do_pitchfilter(float memory[303], const float v_in[160],
00474 const float gain[4], const uint8_t *lag,
00475 const uint8_t pfrac[4])
00476 {
00477 int i, j;
00478 float *v_lag, *v_out;
00479 const float *v_len;
00480
00481 v_out = memory + 143;
00482
00483 for(i=0; i<4; i++)
00484 {
00485 if(gain[i])
00486 {
00487 v_lag = memory + 143 + 40 * i - lag[i];
00488 for(v_len=v_in+40; v_in<v_len; v_in++)
00489 {
00490 if(pfrac[i])
00491 {
00492 for(j=0, *v_out=0.; j<4; j++)
00493 *v_out += qcelp_hammsinc_table[j] * (v_lag[j-4] + v_lag[3-j]);
00494 }else
00495 *v_out = *v_lag;
00496
00497 *v_out = *v_in + gain[i] * *v_out;
00498
00499 v_lag++;
00500 v_out++;
00501 }
00502 }else
00503 {
00504 memcpy(v_out, v_in, 40 * sizeof(float));
00505 v_in += 40;
00506 v_out += 40;
00507 }
00508 }
00509
00510 memmove(memory, memory + 160, 143 * sizeof(float));
00511 return memory + 143;
00512 }
00513
00521 static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
00522 {
00523 int i;
00524 const float *v_synthesis_filtered, *v_pre_filtered;
00525
00526 if(q->bitrate >= RATE_HALF ||
00527 q->bitrate == SILENCE ||
00528 (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF)))
00529 {
00530
00531 if(q->bitrate >= RATE_HALF)
00532 {
00533
00534
00535 for(i=0; i<4; i++)
00536 {
00537 q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
00538
00539 q->pitch_lag[i] = q->frame.plag[i] + 16;
00540 }
00541 }else
00542 {
00543 float max_pitch_gain;
00544
00545 if (q->bitrate == I_F_Q)
00546 {
00547 if (q->erasure_count < 3)
00548 max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
00549 else
00550 max_pitch_gain = 0.0;
00551 }else
00552 {
00553 assert(q->bitrate == SILENCE);
00554 max_pitch_gain = 1.0;
00555 }
00556 for(i=0; i<4; i++)
00557 q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
00558
00559 memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
00560 }
00561
00562
00563 v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
00564 cdn_vector, q->pitch_gain,
00565 q->pitch_lag, q->frame.pfrac);
00566
00567
00568 for(i=0; i<4; i++)
00569 q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
00570
00571 v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem,
00572 v_synthesis_filtered,
00573 q->pitch_gain, q->pitch_lag,
00574 q->frame.pfrac);
00575
00576 apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
00577 }else
00578 {
00579 memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17,
00580 143 * sizeof(float));
00581 memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
00582 memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
00583 memset(q->pitch_lag, 0, sizeof(q->pitch_lag));
00584 }
00585 }
00586
00598 void interpolate_lpc(QCELPContext *q, const float *curr_lspf, float *lpc,
00599 const int subframe_num)
00600 {
00601 float interpolated_lspf[10];
00602 float weight;
00603
00604 if(q->bitrate >= RATE_QUARTER)
00605 weight = 0.25 * (subframe_num + 1);
00606 else if(q->bitrate == RATE_OCTAVE && !subframe_num)
00607 weight = 0.625;
00608 else
00609 weight = 1.0;
00610
00611 if(weight != 1.0)
00612 {
00613 weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
00614 weight, 1.0 - weight, 10);
00615 ff_qcelp_lspf2lpc(interpolated_lspf, lpc);
00616 }else if(q->bitrate >= RATE_QUARTER ||
00617 (q->bitrate == I_F_Q && !subframe_num))
00618 ff_qcelp_lspf2lpc(curr_lspf, lpc);
00619 else if(q->bitrate == SILENCE && !subframe_num)
00620 ff_qcelp_lspf2lpc(q->prev_lspf, lpc);
00621 }
00622
00623 static qcelp_packet_rate buf_size2bitrate(const int buf_size)
00624 {
00625 switch(buf_size)
00626 {
00627 case 35: return RATE_FULL;
00628 case 17: return RATE_HALF;
00629 case 8: return RATE_QUARTER;
00630 case 4: return RATE_OCTAVE;
00631 case 1: return SILENCE;
00632 }
00633
00634 return I_F_Q;
00635 }
00636
00649 static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx, const int buf_size,
00650 const uint8_t **buf)
00651 {
00652 qcelp_packet_rate bitrate;
00653
00654 if((bitrate = buf_size2bitrate(buf_size)) >= 0)
00655 {
00656 if(bitrate > **buf)
00657 {
00658 QCELPContext *q = avctx->priv_data;
00659 if (!q->warned_buf_mismatch_bitrate)
00660 {
00661 av_log(avctx, AV_LOG_WARNING,
00662 "Claimed bitrate and buffer size mismatch.\n");
00663 q->warned_buf_mismatch_bitrate = 1;
00664 }
00665 bitrate = **buf;
00666 }else if(bitrate < **buf)
00667 {
00668 av_log(avctx, AV_LOG_ERROR,
00669 "Buffer is too small for the claimed bitrate.\n");
00670 return I_F_Q;
00671 }
00672 (*buf)++;
00673 }else if((bitrate = buf_size2bitrate(buf_size + 1)) >= 0)
00674 {
00675 av_log(avctx, AV_LOG_WARNING,
00676 "Bitrate byte is missing, guessing the bitrate from packet size.\n");
00677 }else
00678 return I_F_Q;
00679
00680 if(bitrate == SILENCE)
00681 {
00682
00683 ff_log_ask_for_sample(avctx, "'Blank frame handling is experimental.");
00684 }
00685 return bitrate;
00686 }
00687
00688 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
00689 const char *message)
00690 {
00691 av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n", avctx->frame_number,
00692 message);
00693 }
00694
00695 static int qcelp_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
00696 const uint8_t *buf, int buf_size)
00697 {
00698 QCELPContext *q = avctx->priv_data;
00699 float *outbuffer = data;
00700 int i;
00701 float quantized_lspf[10], lpc[10];
00702 float gain[16];
00703 float *formant_mem;
00704
00705 if((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q)
00706 {
00707 warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
00708 goto erasure;
00709 }
00710
00711 if(q->bitrate == RATE_OCTAVE &&
00712 (q->first16bits = AV_RB16(buf)) == 0xFFFF)
00713 {
00714 warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
00715 goto erasure;
00716 }
00717
00718 if(q->bitrate > SILENCE)
00719 {
00720 const QCELPBitmap *bitmaps = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
00721 const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate]
00722 + qcelp_unpacking_bitmaps_lengths[q->bitrate];
00723 uint8_t *unpacked_data = (uint8_t *)&q->frame;
00724
00725 init_get_bits(&q->gb, buf, 8*buf_size);
00726
00727 memset(&q->frame, 0, sizeof(QCELPFrame));
00728
00729 for(; bitmaps < bitmaps_end; bitmaps++)
00730 unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
00731
00732
00733 if(q->frame.reserved)
00734 {
00735 warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
00736 goto erasure;
00737 }
00738 if(q->bitrate == RATE_QUARTER &&
00739 codebook_sanity_check_for_rate_quarter(q->frame.cbgain))
00740 {
00741 warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
00742 goto erasure;
00743 }
00744
00745 if(q->bitrate >= RATE_HALF)
00746 {
00747 for(i=0; i<4; i++)
00748 {
00749 if(q->frame.pfrac[i] && q->frame.plag[i] >= 124)
00750 {
00751 warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
00752 goto erasure;
00753 }
00754 }
00755 }
00756 }
00757
00758 decode_gain_and_index(q, gain);
00759 compute_svector(q, gain, outbuffer);
00760
00761 if(decode_lspf(q, quantized_lspf) < 0)
00762 {
00763 warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
00764 goto erasure;
00765 }
00766
00767
00768 apply_pitch_filters(q, outbuffer);
00769
00770 if(q->bitrate == I_F_Q)
00771 {
00772 erasure:
00773 q->bitrate = I_F_Q;
00774 q->erasure_count++;
00775 decode_gain_and_index(q, gain);
00776 compute_svector(q, gain, outbuffer);
00777 decode_lspf(q, quantized_lspf);
00778 apply_pitch_filters(q, outbuffer);
00779 }else
00780 q->erasure_count = 0;
00781
00782 formant_mem = q->formant_mem + 10;
00783 for(i=0; i<4; i++)
00784 {
00785 interpolate_lpc(q, quantized_lspf, lpc, i);
00786 ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40,
00787 10);
00788 formant_mem += 40;
00789 }
00790 memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
00791
00792
00793
00794
00795 formant_mem = q->formant_mem + 10;
00796 for(i=0; i<160; i++)
00797 *outbuffer++ = av_clipf(*formant_mem++, QCELP_CLIP_LOWER_BOUND,
00798 QCELP_CLIP_UPPER_BOUND);
00799
00800 memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
00801 q->prev_bitrate = q->bitrate;
00802
00803 *data_size = 160 * sizeof(*outbuffer);
00804
00805 return buf_size;
00806 }
00807
00808 AVCodec qcelp_decoder =
00809 {
00810 .name = "qcelp",
00811 .type = CODEC_TYPE_AUDIO,
00812 .id = CODEC_ID_QCELP,
00813 .init = qcelp_decode_init,
00814 .decode = qcelp_decode_frame,
00815 .priv_data_size = sizeof(QCELPContext),
00816 .long_name = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
00817 };