00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00029 #include <stdlib.h>
00030 #include <string.h>
00031 #include "libavutil/mathematics.h"
00032 #include "fft.h"
00033
00034
00035 #if !CONFIG_HARDCODED_TABLES
00036 COSTABLE(16);
00037 COSTABLE(32);
00038 COSTABLE(64);
00039 COSTABLE(128);
00040 COSTABLE(256);
00041 COSTABLE(512);
00042 COSTABLE(1024);
00043 COSTABLE(2048);
00044 COSTABLE(4096);
00045 COSTABLE(8192);
00046 COSTABLE(16384);
00047 COSTABLE(32768);
00048 COSTABLE(65536);
00049 #endif
00050 COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
00051 NULL, NULL, NULL, NULL,
00052 ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
00053 ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
00054 };
00055
00056 static int split_radix_permutation(int i, int n, int inverse)
00057 {
00058 int m;
00059 if(n <= 2) return i&1;
00060 m = n >> 1;
00061 if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
00062 m >>= 1;
00063 if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
00064 else return split_radix_permutation(i, m, inverse)*4 - 1;
00065 }
00066
00067 av_cold void ff_init_ff_cos_tabs(int index)
00068 {
00069 #if !CONFIG_HARDCODED_TABLES
00070 int i;
00071 int m = 1<<index;
00072 double freq = 2*M_PI/m;
00073 FFTSample *tab = ff_cos_tabs[index];
00074 for(i=0; i<=m/4; i++)
00075 tab[i] = cos(i*freq);
00076 for(i=1; i<m/4; i++)
00077 tab[m/2-i] = tab[i];
00078 #endif
00079 }
00080
00081 av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
00082 {
00083 int i, j, m, n;
00084 float alpha, c1, s1, s2;
00085 int av_unused has_vectors;
00086
00087 if (nbits < 2 || nbits > 16)
00088 goto fail;
00089 s->nbits = nbits;
00090 n = 1 << nbits;
00091
00092 s->tmp_buf = NULL;
00093 s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
00094 if (!s->exptab)
00095 goto fail;
00096 s->revtab = av_malloc(n * sizeof(uint16_t));
00097 if (!s->revtab)
00098 goto fail;
00099 s->inverse = inverse;
00100
00101 s2 = inverse ? 1.0 : -1.0;
00102
00103 s->fft_permute = ff_fft_permute_c;
00104 s->fft_calc = ff_fft_calc_c;
00105 #if CONFIG_MDCT
00106 s->imdct_calc = ff_imdct_calc_c;
00107 s->imdct_half = ff_imdct_half_c;
00108 s->mdct_calc = ff_mdct_calc_c;
00109 #endif
00110 s->exptab1 = NULL;
00111 s->split_radix = 1;
00112
00113 if (ARCH_ARM) ff_fft_init_arm(s);
00114 if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
00115 if (HAVE_MMX) ff_fft_init_mmx(s);
00116
00117 if (s->split_radix) {
00118 for(j=4; j<=nbits; j++) {
00119 ff_init_ff_cos_tabs(j);
00120 }
00121 for(i=0; i<n; i++)
00122 s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
00123 s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
00124 } else {
00125 int np, nblocks, np2, l;
00126 FFTComplex *q;
00127
00128 for(i=0; i<(n/2); i++) {
00129 alpha = 2 * M_PI * (float)i / (float)n;
00130 c1 = cos(alpha);
00131 s1 = sin(alpha) * s2;
00132 s->exptab[i].re = c1;
00133 s->exptab[i].im = s1;
00134 }
00135
00136 np = 1 << nbits;
00137 nblocks = np >> 3;
00138 np2 = np >> 1;
00139 s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
00140 if (!s->exptab1)
00141 goto fail;
00142 q = s->exptab1;
00143 do {
00144 for(l = 0; l < np2; l += 2 * nblocks) {
00145 *q++ = s->exptab[l];
00146 *q++ = s->exptab[l + nblocks];
00147
00148 q->re = -s->exptab[l].im;
00149 q->im = s->exptab[l].re;
00150 q++;
00151 q->re = -s->exptab[l + nblocks].im;
00152 q->im = s->exptab[l + nblocks].re;
00153 q++;
00154 }
00155 nblocks = nblocks >> 1;
00156 } while (nblocks != 0);
00157 av_freep(&s->exptab);
00158
00159
00160 for(i=0;i<n;i++) {
00161 m=0;
00162 for(j=0;j<nbits;j++) {
00163 m |= ((i >> j) & 1) << (nbits-j-1);
00164 }
00165 s->revtab[i]=m;
00166 }
00167 }
00168
00169 return 0;
00170 fail:
00171 av_freep(&s->revtab);
00172 av_freep(&s->exptab);
00173 av_freep(&s->exptab1);
00174 av_freep(&s->tmp_buf);
00175 return -1;
00176 }
00177
00178 void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
00179 {
00180 int j, k, np;
00181 FFTComplex tmp;
00182 const uint16_t *revtab = s->revtab;
00183 np = 1 << s->nbits;
00184
00185 if (s->tmp_buf) {
00186
00187 for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
00188 memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
00189 return;
00190 }
00191
00192
00193 for(j=0;j<np;j++) {
00194 k = revtab[j];
00195 if (k < j) {
00196 tmp = z[k];
00197 z[k] = z[j];
00198 z[j] = tmp;
00199 }
00200 }
00201 }
00202
00203 av_cold void ff_fft_end(FFTContext *s)
00204 {
00205 av_freep(&s->revtab);
00206 av_freep(&s->exptab);
00207 av_freep(&s->exptab1);
00208 av_freep(&s->tmp_buf);
00209 }
00210
00211 #define sqrthalf (float)M_SQRT1_2
00212
00213 #define BF(x,y,a,b) {\
00214 x = a - b;\
00215 y = a + b;\
00216 }
00217
00218 #define BUTTERFLIES(a0,a1,a2,a3) {\
00219 BF(t3, t5, t5, t1);\
00220 BF(a2.re, a0.re, a0.re, t5);\
00221 BF(a3.im, a1.im, a1.im, t3);\
00222 BF(t4, t6, t2, t6);\
00223 BF(a3.re, a1.re, a1.re, t4);\
00224 BF(a2.im, a0.im, a0.im, t6);\
00225 }
00226
00227
00228
00229
00230 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
00231 FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
00232 BF(t3, t5, t5, t1);\
00233 BF(a2.re, a0.re, r0, t5);\
00234 BF(a3.im, a1.im, i1, t3);\
00235 BF(t4, t6, t2, t6);\
00236 BF(a3.re, a1.re, r1, t4);\
00237 BF(a2.im, a0.im, i0, t6);\
00238 }
00239
00240 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
00241 t1 = a2.re * wre + a2.im * wim;\
00242 t2 = a2.im * wre - a2.re * wim;\
00243 t5 = a3.re * wre - a3.im * wim;\
00244 t6 = a3.im * wre + a3.re * wim;\
00245 BUTTERFLIES(a0,a1,a2,a3)\
00246 }
00247
00248 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
00249 t1 = a2.re;\
00250 t2 = a2.im;\
00251 t5 = a3.re;\
00252 t6 = a3.im;\
00253 BUTTERFLIES(a0,a1,a2,a3)\
00254 }
00255
00256
00257 #define PASS(name)\
00258 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
00259 {\
00260 FFTSample t1, t2, t3, t4, t5, t6;\
00261 int o1 = 2*n;\
00262 int o2 = 4*n;\
00263 int o3 = 6*n;\
00264 const FFTSample *wim = wre+o1;\
00265 n--;\
00266 \
00267 TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
00268 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
00269 do {\
00270 z += 2;\
00271 wre += 2;\
00272 wim -= 2;\
00273 TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
00274 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
00275 } while(--n);\
00276 }
00277
00278 PASS(pass)
00279 #undef BUTTERFLIES
00280 #define BUTTERFLIES BUTTERFLIES_BIG
00281 PASS(pass_big)
00282
00283 #define DECL_FFT(n,n2,n4)\
00284 static void fft##n(FFTComplex *z)\
00285 {\
00286 fft##n2(z);\
00287 fft##n4(z+n4*2);\
00288 fft##n4(z+n4*3);\
00289 pass(z,ff_cos_##n,n4/2);\
00290 }
00291
00292 static void fft4(FFTComplex *z)
00293 {
00294 FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
00295
00296 BF(t3, t1, z[0].re, z[1].re);
00297 BF(t8, t6, z[3].re, z[2].re);
00298 BF(z[2].re, z[0].re, t1, t6);
00299 BF(t4, t2, z[0].im, z[1].im);
00300 BF(t7, t5, z[2].im, z[3].im);
00301 BF(z[3].im, z[1].im, t4, t8);
00302 BF(z[3].re, z[1].re, t3, t7);
00303 BF(z[2].im, z[0].im, t2, t5);
00304 }
00305
00306 static void fft8(FFTComplex *z)
00307 {
00308 FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
00309
00310 fft4(z);
00311
00312 BF(t1, z[5].re, z[4].re, -z[5].re);
00313 BF(t2, z[5].im, z[4].im, -z[5].im);
00314 BF(t3, z[7].re, z[6].re, -z[7].re);
00315 BF(t4, z[7].im, z[6].im, -z[7].im);
00316 BF(t8, t1, t3, t1);
00317 BF(t7, t2, t2, t4);
00318 BF(z[4].re, z[0].re, z[0].re, t1);
00319 BF(z[4].im, z[0].im, z[0].im, t2);
00320 BF(z[6].re, z[2].re, z[2].re, t7);
00321 BF(z[6].im, z[2].im, z[2].im, t8);
00322
00323 TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
00324 }
00325
00326 #if !CONFIG_SMALL
00327 static void fft16(FFTComplex *z)
00328 {
00329 FFTSample t1, t2, t3, t4, t5, t6;
00330
00331 fft8(z);
00332 fft4(z+8);
00333 fft4(z+12);
00334
00335 TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
00336 TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
00337 TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
00338 TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
00339 }
00340 #else
00341 DECL_FFT(16,8,4)
00342 #endif
00343 DECL_FFT(32,16,8)
00344 DECL_FFT(64,32,16)
00345 DECL_FFT(128,64,32)
00346 DECL_FFT(256,128,64)
00347 DECL_FFT(512,256,128)
00348 #if !CONFIG_SMALL
00349 #define pass pass_big
00350 #endif
00351 DECL_FFT(1024,512,256)
00352 DECL_FFT(2048,1024,512)
00353 DECL_FFT(4096,2048,1024)
00354 DECL_FFT(8192,4096,2048)
00355 DECL_FFT(16384,8192,4096)
00356 DECL_FFT(32768,16384,8192)
00357 DECL_FFT(65536,32768,16384)
00358
00359 static void (* const fft_dispatch[])(FFTComplex*) = {
00360 fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
00361 fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
00362 };
00363
00364 void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
00365 {
00366 fft_dispatch[s->nbits-2](z);
00367 }
00368