00001
00022 #include "libavutil/lls.h"
00023
00024 #define LPC_USE_DOUBLE
00025 #include "lpc.h"
00026
00027
00031 static void lpc_apply_welch_window_c(const int32_t *data, int len,
00032 double *w_data)
00033 {
00034 int i, n2;
00035 double w;
00036 double c;
00037
00038 assert(!(len&1));
00039
00040
00041 n2 = (len >> 1);
00042 c = 2.0 / (len - 1.0);
00043
00044 w_data+=n2;
00045 data+=n2;
00046 for(i=0; i<n2; i++) {
00047 w = c - n2 + i;
00048 w = 1.0 - (w * w);
00049 w_data[-i-1] = data[-i-1] * w;
00050 w_data[+i ] = data[+i ] * w;
00051 }
00052 }
00053
00058 static void lpc_compute_autocorr_c(const double *data, int len, int lag,
00059 double *autoc)
00060 {
00061 int i, j;
00062
00063 for(j=0; j<lag; j+=2){
00064 double sum0 = 1.0, sum1 = 1.0;
00065 for(i=j; i<len; i++){
00066 sum0 += data[i] * data[i-j];
00067 sum1 += data[i] * data[i-j-1];
00068 }
00069 autoc[j ] = sum0;
00070 autoc[j+1] = sum1;
00071 }
00072
00073 if(j==lag){
00074 double sum = 1.0;
00075 for(i=j-1; i<len; i+=2){
00076 sum += data[i ] * data[i-j ]
00077 + data[i+1] * data[i-j+1];
00078 }
00079 autoc[j] = sum;
00080 }
00081 }
00082
00086 static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
00087 int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
00088 {
00089 int i;
00090 double cmax, error;
00091 int32_t qmax;
00092 int sh;
00093
00094
00095 qmax = (1 << (precision - 1)) - 1;
00096
00097
00098 cmax = 0.0;
00099 for(i=0; i<order; i++) {
00100 cmax= FFMAX(cmax, fabs(lpc_in[i]));
00101 }
00102
00103
00104 if(cmax * (1 << max_shift) < 1.0) {
00105 *shift = zero_shift;
00106 memset(lpc_out, 0, sizeof(int32_t) * order);
00107 return;
00108 }
00109
00110
00111 sh = max_shift;
00112 while((cmax * (1 << sh) > qmax) && (sh > 0)) {
00113 sh--;
00114 }
00115
00116
00117
00118 if(sh == 0 && cmax > qmax) {
00119 double scale = ((double)qmax) / cmax;
00120 for(i=0; i<order; i++) {
00121 lpc_in[i] *= scale;
00122 }
00123 }
00124
00125
00126 error=0;
00127 for(i=0; i<order; i++) {
00128 error -= lpc_in[i] * (1 << sh);
00129 lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
00130 error -= lpc_out[i];
00131 }
00132 *shift = sh;
00133 }
00134
00135 static int estimate_best_order(double *ref, int min_order, int max_order)
00136 {
00137 int i, est;
00138
00139 est = min_order;
00140 for(i=max_order-1; i>=min_order-1; i--) {
00141 if(ref[i] > 0.10) {
00142 est = i+1;
00143 break;
00144 }
00145 }
00146 return est;
00147 }
00148
00157 int ff_lpc_calc_coefs(LPCContext *s,
00158 const int32_t *samples, int blocksize, int min_order,
00159 int max_order, int precision,
00160 int32_t coefs[][MAX_LPC_ORDER], int *shift,
00161 enum FFLPCType lpc_type, int lpc_passes,
00162 int omethod, int max_shift, int zero_shift)
00163 {
00164 double autoc[MAX_LPC_ORDER+1];
00165 double ref[MAX_LPC_ORDER];
00166 double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
00167 int i, j, pass;
00168 int opt_order;
00169
00170 assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
00171 lpc_type > FF_LPC_TYPE_FIXED);
00172
00173
00174 if (blocksize != s->blocksize || max_order != s->max_order ||
00175 lpc_type != s->lpc_type) {
00176 ff_lpc_end(s);
00177 ff_lpc_init(s, blocksize, max_order, lpc_type);
00178 }
00179
00180 if (lpc_type == FF_LPC_TYPE_LEVINSON) {
00181 double *windowed_samples = s->windowed_samples + max_order;
00182
00183 s->lpc_apply_welch_window(samples, blocksize, windowed_samples);
00184
00185 s->lpc_compute_autocorr(windowed_samples, blocksize, max_order, autoc);
00186
00187 compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
00188
00189 for(i=0; i<max_order; i++)
00190 ref[i] = fabs(lpc[i][i]);
00191 } else if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
00192 LLSModel m[2];
00193 double var[MAX_LPC_ORDER+1], av_uninit(weight);
00194
00195 for(pass=0; pass<lpc_passes; pass++){
00196 av_init_lls(&m[pass&1], max_order);
00197
00198 weight=0;
00199 for(i=max_order; i<blocksize; i++){
00200 for(j=0; j<=max_order; j++)
00201 var[j]= samples[i-j];
00202
00203 if(pass){
00204 double eval, inv, rinv;
00205 eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
00206 eval= (512>>pass) + fabs(eval - var[0]);
00207 inv = 1/eval;
00208 rinv = sqrt(inv);
00209 for(j=0; j<=max_order; j++)
00210 var[j] *= rinv;
00211 weight += inv;
00212 }else
00213 weight++;
00214
00215 av_update_lls(&m[pass&1], var, 1.0);
00216 }
00217 av_solve_lls(&m[pass&1], 0.001, 0);
00218 }
00219
00220 for(i=0; i<max_order; i++){
00221 for(j=0; j<max_order; j++)
00222 lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
00223 ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
00224 }
00225 for(i=max_order-1; i>0; i--)
00226 ref[i] = ref[i-1] - ref[i];
00227 }
00228 opt_order = max_order;
00229
00230 if(omethod == ORDER_METHOD_EST) {
00231 opt_order = estimate_best_order(ref, min_order, max_order);
00232 i = opt_order-1;
00233 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
00234 } else {
00235 for(i=min_order-1; i<max_order; i++) {
00236 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
00237 }
00238 }
00239
00240 return opt_order;
00241 }
00242
00243 av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
00244 enum FFLPCType lpc_type)
00245 {
00246 s->blocksize = blocksize;
00247 s->max_order = max_order;
00248 s->lpc_type = lpc_type;
00249
00250 if (lpc_type == FF_LPC_TYPE_LEVINSON) {
00251 s->windowed_samples = av_mallocz((blocksize + max_order + 2) *
00252 sizeof(*s->windowed_samples));
00253 if (!s->windowed_samples)
00254 return AVERROR(ENOMEM);
00255 } else {
00256 s->windowed_samples = NULL;
00257 }
00258
00259 s->lpc_apply_welch_window = lpc_apply_welch_window_c;
00260 s->lpc_compute_autocorr = lpc_compute_autocorr_c;
00261
00262 if (HAVE_MMX)
00263 ff_lpc_init_x86(s);
00264
00265 return 0;
00266 }
00267
00268 av_cold void ff_lpc_end(LPCContext *s)
00269 {
00270 av_freep(&s->windowed_samples);
00271 }