00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00030 #include <stddef.h>
00031
00032 #include "avcodec.h"
00033 #include "internal.h"
00034 #include "get_bits.h"
00035
00036 #include "qcelpdata.h"
00037
00038 #include "celp_math.h"
00039 #include "celp_filters.h"
00040 #include "acelp_filters.h"
00041 #include "acelp_vectors.h"
00042 #include "lsp.h"
00043
00044 #undef NDEBUG
00045 #include <assert.h>
00046
00047 typedef enum
00048 {
00049 I_F_Q = -1,
00050 SILENCE,
00051 RATE_OCTAVE,
00052 RATE_QUARTER,
00053 RATE_HALF,
00054 RATE_FULL
00055 } qcelp_packet_rate;
00056
00057 typedef struct
00058 {
00059 GetBitContext gb;
00060 qcelp_packet_rate bitrate;
00061 QCELPFrame frame;
00063 uint8_t erasure_count;
00064 uint8_t octave_count;
00065 float prev_lspf[10];
00066 float predictor_lspf[10];
00067 float pitch_synthesis_filter_mem[303];
00068 float pitch_pre_filter_mem[303];
00069 float rnd_fir_filter_mem[180];
00070 float formant_mem[170];
00071 float last_codebook_gain;
00072 int prev_g1[2];
00073 int prev_bitrate;
00074 float pitch_gain[4];
00075 uint8_t pitch_lag[4];
00076 uint16_t first16bits;
00077 uint8_t warned_buf_mismatch_bitrate;
00078
00079
00080 float postfilter_synth_mem[10];
00081 float postfilter_agc_mem;
00082 float postfilter_tilt_mem;
00083 } QCELPContext;
00084
00090 static av_cold int qcelp_decode_init(AVCodecContext *avctx)
00091 {
00092 QCELPContext *q = avctx->priv_data;
00093 int i;
00094
00095 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00096
00097 for(i=0; i<10; i++)
00098 q->prev_lspf[i] = (i+1)/11.;
00099
00100 return 0;
00101 }
00102
00114 static int decode_lspf(QCELPContext *q, float *lspf)
00115 {
00116 int i;
00117 float tmp_lspf, smooth, erasure_coeff;
00118 const float *predictors;
00119
00120 if(q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q)
00121 {
00122 predictors = (q->prev_bitrate != RATE_OCTAVE &&
00123 q->prev_bitrate != I_F_Q ?
00124 q->prev_lspf : q->predictor_lspf);
00125
00126 if(q->bitrate == RATE_OCTAVE)
00127 {
00128 q->octave_count++;
00129
00130 for(i=0; i<10; i++)
00131 {
00132 q->predictor_lspf[i] =
00133 lspf[i] = (q->frame.lspv[i] ? QCELP_LSP_SPREAD_FACTOR
00134 : -QCELP_LSP_SPREAD_FACTOR)
00135 + predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR
00136 + (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11);
00137 }
00138 smooth = (q->octave_count < 10 ? .875 : 0.1);
00139 }else
00140 {
00141 erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
00142
00143 assert(q->bitrate == I_F_Q);
00144
00145 if(q->erasure_count > 1)
00146 erasure_coeff *= (q->erasure_count < 4 ? 0.9 : 0.7);
00147
00148 for(i=0; i<10; i++)
00149 {
00150 q->predictor_lspf[i] =
00151 lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11
00152 + erasure_coeff * predictors[i];
00153 }
00154 smooth = 0.125;
00155 }
00156
00157
00158 lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
00159 for(i=1; i<10; i++)
00160 lspf[i] = FFMAX(lspf[i], (lspf[i-1] + QCELP_LSP_SPREAD_FACTOR));
00161
00162 lspf[9] = FFMIN(lspf[9], (1.0 - QCELP_LSP_SPREAD_FACTOR));
00163 for(i=9; i>0; i--)
00164 lspf[i-1] = FFMIN(lspf[i-1], (lspf[i] - QCELP_LSP_SPREAD_FACTOR));
00165
00166
00167 ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0-smooth, 10);
00168 }else
00169 {
00170 q->octave_count = 0;
00171
00172 tmp_lspf = 0.;
00173 for(i=0; i<5 ; i++)
00174 {
00175 lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
00176 lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
00177 }
00178
00179
00180 if(q->bitrate == RATE_QUARTER)
00181 {
00182 if(lspf[9] <= .70 || lspf[9] >= .97)
00183 return -1;
00184 for(i=3; i<10; i++)
00185 if(fabs(lspf[i] - lspf[i-2]) < .08)
00186 return -1;
00187 }else
00188 {
00189 if(lspf[9] <= .66 || lspf[9] >= .985)
00190 return -1;
00191 for(i=4; i<10; i++)
00192 if (fabs(lspf[i] - lspf[i-4]) < .0931)
00193 return -1;
00194 }
00195 }
00196 return 0;
00197 }
00198
00207 static void decode_gain_and_index(QCELPContext *q,
00208 float *gain) {
00209 int i, subframes_count, g1[16];
00210 float slope;
00211
00212 if(q->bitrate >= RATE_QUARTER)
00213 {
00214 switch(q->bitrate)
00215 {
00216 case RATE_FULL: subframes_count = 16; break;
00217 case RATE_HALF: subframes_count = 4; break;
00218 default: subframes_count = 5;
00219 }
00220 for(i=0; i<subframes_count; i++)
00221 {
00222 g1[i] = 4 * q->frame.cbgain[i];
00223 if(q->bitrate == RATE_FULL && !((i+1) & 3))
00224 {
00225 g1[i] += av_clip((g1[i-1] + g1[i-2] + g1[i-3]) / 3 - 6, 0, 32);
00226 }
00227
00228 gain[i] = qcelp_g12ga[g1[i]];
00229
00230 if(q->frame.cbsign[i])
00231 {
00232 gain[i] = -gain[i];
00233 q->frame.cindex[i] = (q->frame.cindex[i]-89) & 127;
00234 }
00235 }
00236
00237 q->prev_g1[0] = g1[i-2];
00238 q->prev_g1[1] = g1[i-1];
00239 q->last_codebook_gain = qcelp_g12ga[g1[i-1]];
00240
00241 if(q->bitrate == RATE_QUARTER)
00242 {
00243
00244 gain[7] = gain[4];
00245 gain[6] = 0.4*gain[3] + 0.6*gain[4];
00246 gain[5] = gain[3];
00247 gain[4] = 0.8*gain[2] + 0.2*gain[3];
00248 gain[3] = 0.2*gain[1] + 0.8*gain[2];
00249 gain[2] = gain[1];
00250 gain[1] = 0.6*gain[0] + 0.4*gain[1];
00251 }
00252 }else if (q->bitrate != SILENCE)
00253 {
00254 if(q->bitrate == RATE_OCTAVE)
00255 {
00256 g1[0] = 2 * q->frame.cbgain[0]
00257 + av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
00258 subframes_count = 8;
00259 }else
00260 {
00261 assert(q->bitrate == I_F_Q);
00262
00263 g1[0] = q->prev_g1[1];
00264 switch(q->erasure_count)
00265 {
00266 case 1 : break;
00267 case 2 : g1[0] -= 1; break;
00268 case 3 : g1[0] -= 2; break;
00269 default: g1[0] -= 6;
00270 }
00271 if(g1[0] < 0)
00272 g1[0] = 0;
00273 subframes_count = 4;
00274 }
00275
00276 slope = 0.5*(qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
00277 for(i=1; i<=subframes_count; i++)
00278 gain[i-1] = q->last_codebook_gain + slope * i;
00279
00280 q->last_codebook_gain = gain[i-2];
00281 q->prev_g1[0] = q->prev_g1[1];
00282 q->prev_g1[1] = g1[0];
00283 }
00284 }
00285
00295 static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
00296 {
00297 int i, diff, prev_diff=0;
00298
00299 for(i=1; i<5; i++)
00300 {
00301 diff = cbgain[i] - cbgain[i-1];
00302 if(FFABS(diff) > 10)
00303 return -1;
00304 else if(FFABS(diff - prev_diff) > 12)
00305 return -1;
00306 prev_diff = diff;
00307 }
00308 return 0;
00309 }
00310
00332 static void compute_svector(QCELPContext *q, const float *gain,
00333 float *cdn_vector)
00334 {
00335 int i, j, k;
00336 uint16_t cbseed, cindex;
00337 float *rnd, tmp_gain, fir_filter_value;
00338
00339 switch(q->bitrate)
00340 {
00341 case RATE_FULL:
00342 for(i=0; i<16; i++)
00343 {
00344 tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
00345 cindex = -q->frame.cindex[i];
00346 for(j=0; j<10; j++)
00347 *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
00348 }
00349 break;
00350 case RATE_HALF:
00351 for(i=0; i<4; i++)
00352 {
00353 tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
00354 cindex = -q->frame.cindex[i];
00355 for (j = 0; j < 40; j++)
00356 *cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127];
00357 }
00358 break;
00359 case RATE_QUARTER:
00360 cbseed = (0x0003 & q->frame.lspv[4])<<14 |
00361 (0x003F & q->frame.lspv[3])<< 8 |
00362 (0x0060 & q->frame.lspv[2])<< 1 |
00363 (0x0007 & q->frame.lspv[1])<< 3 |
00364 (0x0038 & q->frame.lspv[0])>> 3 ;
00365 rnd = q->rnd_fir_filter_mem + 20;
00366 for(i=0; i<8; i++)
00367 {
00368 tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
00369 for(k=0; k<20; k++)
00370 {
00371 cbseed = 521 * cbseed + 259;
00372 *rnd = (int16_t)cbseed;
00373
00374
00375 fir_filter_value = 0.0;
00376 for(j=0; j<10; j++)
00377 fir_filter_value += qcelp_rnd_fir_coefs[j ]
00378 * (rnd[-j ] + rnd[-20+j]);
00379
00380 fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
00381 *cdn_vector++ = tmp_gain * fir_filter_value;
00382 rnd++;
00383 }
00384 }
00385 memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float));
00386 break;
00387 case RATE_OCTAVE:
00388 cbseed = q->first16bits;
00389 for(i=0; i<8; i++)
00390 {
00391 tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
00392 for(j=0; j<20; j++)
00393 {
00394 cbseed = 521 * cbseed + 259;
00395 *cdn_vector++ = tmp_gain * (int16_t)cbseed;
00396 }
00397 }
00398 break;
00399 case I_F_Q:
00400 cbseed = -44;
00401 for(i=0; i<4; i++)
00402 {
00403 tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
00404 for(j=0; j<40; j++)
00405 *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
00406 }
00407 break;
00408 case SILENCE:
00409 memset(cdn_vector, 0, 160 * sizeof(float));
00410 break;
00411 }
00412 }
00413
00423 static void apply_gain_ctrl(float *v_out, const float *v_ref,
00424 const float *v_in)
00425 {
00426 int i;
00427
00428 for (i = 0; i < 160; i += 40)
00429 ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i,
00430 ff_dot_productf(v_ref + i,
00431 v_ref + i, 40),
00432 40);
00433 }
00434
00452 static const float *do_pitchfilter(float memory[303], const float v_in[160],
00453 const float gain[4], const uint8_t *lag,
00454 const uint8_t pfrac[4])
00455 {
00456 int i, j;
00457 float *v_lag, *v_out;
00458 const float *v_len;
00459
00460 v_out = memory + 143;
00461
00462 for(i=0; i<4; i++)
00463 {
00464 if(gain[i])
00465 {
00466 v_lag = memory + 143 + 40 * i - lag[i];
00467 for(v_len=v_in+40; v_in<v_len; v_in++)
00468 {
00469 if(pfrac[i])
00470 {
00471 for(j=0, *v_out=0.; j<4; j++)
00472 *v_out += qcelp_hammsinc_table[j] * (v_lag[j-4] + v_lag[3-j]);
00473 }else
00474 *v_out = *v_lag;
00475
00476 *v_out = *v_in + gain[i] * *v_out;
00477
00478 v_lag++;
00479 v_out++;
00480 }
00481 }else
00482 {
00483 memcpy(v_out, v_in, 40 * sizeof(float));
00484 v_in += 40;
00485 v_out += 40;
00486 }
00487 }
00488
00489 memmove(memory, memory + 160, 143 * sizeof(float));
00490 return memory + 143;
00491 }
00492
00500 static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
00501 {
00502 int i;
00503 const float *v_synthesis_filtered, *v_pre_filtered;
00504
00505 if(q->bitrate >= RATE_HALF ||
00506 q->bitrate == SILENCE ||
00507 (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF)))
00508 {
00509
00510 if(q->bitrate >= RATE_HALF)
00511 {
00512
00513
00514 for(i=0; i<4; i++)
00515 {
00516 q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
00517
00518 q->pitch_lag[i] = q->frame.plag[i] + 16;
00519 }
00520 }else
00521 {
00522 float max_pitch_gain;
00523
00524 if (q->bitrate == I_F_Q)
00525 {
00526 if (q->erasure_count < 3)
00527 max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
00528 else
00529 max_pitch_gain = 0.0;
00530 }else
00531 {
00532 assert(q->bitrate == SILENCE);
00533 max_pitch_gain = 1.0;
00534 }
00535 for(i=0; i<4; i++)
00536 q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
00537
00538 memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
00539 }
00540
00541
00542 v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
00543 cdn_vector, q->pitch_gain,
00544 q->pitch_lag, q->frame.pfrac);
00545
00546
00547 for(i=0; i<4; i++)
00548 q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
00549
00550 v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem,
00551 v_synthesis_filtered,
00552 q->pitch_gain, q->pitch_lag,
00553 q->frame.pfrac);
00554
00555 apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
00556 }else
00557 {
00558 memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17,
00559 143 * sizeof(float));
00560 memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
00561 memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
00562 memset(q->pitch_lag, 0, sizeof(q->pitch_lag));
00563 }
00564 }
00565
00578 static void lspf2lpc(const float *lspf, float *lpc)
00579 {
00580 double lsp[10];
00581 double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
00582 int i;
00583
00584 for (i=0; i<10; i++)
00585 lsp[i] = cos(M_PI * lspf[i]);
00586
00587 ff_acelp_lspd2lpc(lsp, lpc, 5);
00588
00589 for (i=0; i<10; i++)
00590 {
00591 lpc[i] *= bandwidth_expansion_coeff;
00592 bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
00593 }
00594 }
00595
00607 static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
00608 float *lpc, const int subframe_num)
00609 {
00610 float interpolated_lspf[10];
00611 float weight;
00612
00613 if(q->bitrate >= RATE_QUARTER)
00614 weight = 0.25 * (subframe_num + 1);
00615 else if(q->bitrate == RATE_OCTAVE && !subframe_num)
00616 weight = 0.625;
00617 else
00618 weight = 1.0;
00619
00620 if(weight != 1.0)
00621 {
00622 ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
00623 weight, 1.0 - weight, 10);
00624 lspf2lpc(interpolated_lspf, lpc);
00625 }else if(q->bitrate >= RATE_QUARTER ||
00626 (q->bitrate == I_F_Q && !subframe_num))
00627 lspf2lpc(curr_lspf, lpc);
00628 else if(q->bitrate == SILENCE && !subframe_num)
00629 lspf2lpc(q->prev_lspf, lpc);
00630 }
00631
00632 static qcelp_packet_rate buf_size2bitrate(const int buf_size)
00633 {
00634 switch(buf_size)
00635 {
00636 case 35: return RATE_FULL;
00637 case 17: return RATE_HALF;
00638 case 8: return RATE_QUARTER;
00639 case 4: return RATE_OCTAVE;
00640 case 1: return SILENCE;
00641 }
00642
00643 return I_F_Q;
00644 }
00645
00658 static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx, const int buf_size,
00659 const uint8_t **buf)
00660 {
00661 qcelp_packet_rate bitrate;
00662
00663 if((bitrate = buf_size2bitrate(buf_size)) >= 0)
00664 {
00665 if(bitrate > **buf)
00666 {
00667 QCELPContext *q = avctx->priv_data;
00668 if (!q->warned_buf_mismatch_bitrate)
00669 {
00670 av_log(avctx, AV_LOG_WARNING,
00671 "Claimed bitrate and buffer size mismatch.\n");
00672 q->warned_buf_mismatch_bitrate = 1;
00673 }
00674 bitrate = **buf;
00675 }else if(bitrate < **buf)
00676 {
00677 av_log(avctx, AV_LOG_ERROR,
00678 "Buffer is too small for the claimed bitrate.\n");
00679 return I_F_Q;
00680 }
00681 (*buf)++;
00682 }else if((bitrate = buf_size2bitrate(buf_size + 1)) >= 0)
00683 {
00684 av_log(avctx, AV_LOG_WARNING,
00685 "Bitrate byte is missing, guessing the bitrate from packet size.\n");
00686 }else
00687 return I_F_Q;
00688
00689 if(bitrate == SILENCE)
00690 {
00691
00692 av_log_ask_for_sample(avctx, "'Blank frame handling is experimental.");
00693 }
00694 return bitrate;
00695 }
00696
00697 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
00698 const char *message)
00699 {
00700 av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n", avctx->frame_number,
00701 message);
00702 }
00703
00704 static void postfilter(QCELPContext *q, float *samples, float *lpc)
00705 {
00706 static const float pow_0_775[10] = {
00707 0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
00708 0.216676, 0.167924, 0.130141, 0.100859, 0.078166
00709 }, pow_0_625[10] = {
00710 0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
00711 0.059605, 0.037253, 0.023283, 0.014552, 0.009095
00712 };
00713 float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
00714 int n;
00715
00716 for (n = 0; n < 10; n++) {
00717 lpc_s[n] = lpc[n] * pow_0_625[n];
00718 lpc_p[n] = lpc[n] * pow_0_775[n];
00719 }
00720
00721 ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
00722 q->formant_mem + 10, 160, 10);
00723 memcpy(pole_out, q->postfilter_synth_mem, sizeof(float) * 10);
00724 ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
00725 memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
00726
00727 ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
00728
00729 ff_adaptive_gain_control(samples, pole_out + 10,
00730 ff_dot_productf(q->formant_mem + 10, q->formant_mem + 10, 160),
00731 160, 0.9375, &q->postfilter_agc_mem);
00732 }
00733
00734 static int qcelp_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
00735 AVPacket *avpkt)
00736 {
00737 const uint8_t *buf = avpkt->data;
00738 int buf_size = avpkt->size;
00739 QCELPContext *q = avctx->priv_data;
00740 float *outbuffer = data;
00741 int i, out_size;
00742 float quantized_lspf[10], lpc[10];
00743 float gain[16];
00744 float *formant_mem;
00745
00746 out_size = 160 * av_get_bytes_per_sample(avctx->sample_fmt);
00747 if (*data_size < out_size) {
00748 av_log(avctx, AV_LOG_ERROR, "Output buffer is too small\n");
00749 return AVERROR(EINVAL);
00750 }
00751
00752 if((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q)
00753 {
00754 warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
00755 goto erasure;
00756 }
00757
00758 if(q->bitrate == RATE_OCTAVE &&
00759 (q->first16bits = AV_RB16(buf)) == 0xFFFF)
00760 {
00761 warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
00762 goto erasure;
00763 }
00764
00765 if(q->bitrate > SILENCE)
00766 {
00767 const QCELPBitmap *bitmaps = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
00768 const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate]
00769 + qcelp_unpacking_bitmaps_lengths[q->bitrate];
00770 uint8_t *unpacked_data = (uint8_t *)&q->frame;
00771
00772 init_get_bits(&q->gb, buf, 8*buf_size);
00773
00774 memset(&q->frame, 0, sizeof(QCELPFrame));
00775
00776 for(; bitmaps < bitmaps_end; bitmaps++)
00777 unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
00778
00779
00780 if(q->frame.reserved)
00781 {
00782 warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
00783 goto erasure;
00784 }
00785 if(q->bitrate == RATE_QUARTER &&
00786 codebook_sanity_check_for_rate_quarter(q->frame.cbgain))
00787 {
00788 warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
00789 goto erasure;
00790 }
00791
00792 if(q->bitrate >= RATE_HALF)
00793 {
00794 for(i=0; i<4; i++)
00795 {
00796 if(q->frame.pfrac[i] && q->frame.plag[i] >= 124)
00797 {
00798 warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
00799 goto erasure;
00800 }
00801 }
00802 }
00803 }
00804
00805 decode_gain_and_index(q, gain);
00806 compute_svector(q, gain, outbuffer);
00807
00808 if(decode_lspf(q, quantized_lspf) < 0)
00809 {
00810 warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
00811 goto erasure;
00812 }
00813
00814
00815 apply_pitch_filters(q, outbuffer);
00816
00817 if(q->bitrate == I_F_Q)
00818 {
00819 erasure:
00820 q->bitrate = I_F_Q;
00821 q->erasure_count++;
00822 decode_gain_and_index(q, gain);
00823 compute_svector(q, gain, outbuffer);
00824 decode_lspf(q, quantized_lspf);
00825 apply_pitch_filters(q, outbuffer);
00826 }else
00827 q->erasure_count = 0;
00828
00829 formant_mem = q->formant_mem + 10;
00830 for(i=0; i<4; i++)
00831 {
00832 interpolate_lpc(q, quantized_lspf, lpc, i);
00833 ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40,
00834 10);
00835 formant_mem += 40;
00836 }
00837
00838
00839 postfilter(q, outbuffer, lpc);
00840
00841 memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
00842
00843 memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
00844 q->prev_bitrate = q->bitrate;
00845
00846 *data_size = out_size;
00847
00848 return buf_size;
00849 }
00850
00851 AVCodec ff_qcelp_decoder =
00852 {
00853 .name = "qcelp",
00854 .type = AVMEDIA_TYPE_AUDIO,
00855 .id = CODEC_ID_QCELP,
00856 .init = qcelp_decode_init,
00857 .decode = qcelp_decode_frame,
00858 .priv_data_size = sizeof(QCELPContext),
00859 .long_name = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
00860 };