00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00028 #include "avassert.h"
00029
00030 #include <limits.h>
00031
00032 #include "common.h"
00033 #include "mathematics.h"
00034 #include "rational.h"
00035
00036 int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max){
00037 AVRational a0={0,1}, a1={1,0};
00038 int sign= (num<0) ^ (den<0);
00039 int64_t gcd= av_gcd(FFABS(num), FFABS(den));
00040
00041 if(gcd){
00042 num = FFABS(num)/gcd;
00043 den = FFABS(den)/gcd;
00044 }
00045 if(num<=max && den<=max){
00046 a1= (AVRational){num, den};
00047 den=0;
00048 }
00049
00050 while(den){
00051 uint64_t x = num / den;
00052 int64_t next_den= num - den*x;
00053 int64_t a2n= x*a1.num + a0.num;
00054 int64_t a2d= x*a1.den + a0.den;
00055
00056 if(a2n > max || a2d > max){
00057 if(a1.num) x= (max - a0.num) / a1.num;
00058 if(a1.den) x= FFMIN(x, (max - a0.den) / a1.den);
00059
00060 if (den*(2*x*a1.den + a0.den) > num*a1.den)
00061 a1 = (AVRational){x*a1.num + a0.num, x*a1.den + a0.den};
00062 break;
00063 }
00064
00065 a0= a1;
00066 a1= (AVRational){a2n, a2d};
00067 num= den;
00068 den= next_den;
00069 }
00070 av_assert2(av_gcd(a1.num, a1.den) <= 1U);
00071
00072 *dst_num = sign ? -a1.num : a1.num;
00073 *dst_den = a1.den;
00074
00075 return den==0;
00076 }
00077
00078 AVRational av_mul_q(AVRational b, AVRational c){
00079 av_reduce(&b.num, &b.den, b.num * (int64_t)c.num, b.den * (int64_t)c.den, INT_MAX);
00080 return b;
00081 }
00082
00083 AVRational av_div_q(AVRational b, AVRational c){
00084 return av_mul_q(b, (AVRational){c.den, c.num});
00085 }
00086
00087 AVRational av_add_q(AVRational b, AVRational c){
00088 av_reduce(&b.num, &b.den, b.num * (int64_t)c.den + c.num * (int64_t)b.den, b.den * (int64_t)c.den, INT_MAX);
00089 return b;
00090 }
00091
00092 AVRational av_sub_q(AVRational b, AVRational c){
00093 return av_add_q(b, (AVRational){-c.num, c.den});
00094 }
00095
00096 AVRational av_d2q(double d, int max){
00097 AVRational a;
00098 #define LOG2 0.69314718055994530941723212145817656807550013436025
00099 int exponent;
00100 int64_t den;
00101 if (isnan(d))
00102 return (AVRational){0,0};
00103 if (isinf(d))
00104 return (AVRational){ d<0 ? -1:1, 0 };
00105 exponent = FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0);
00106 den = 1LL << (61 - exponent);
00107 av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max);
00108
00109 return a;
00110 }
00111
00112 int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
00113 {
00114
00115 int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
00116 int64_t b = 2 * (int64_t)q1.den * q2.den;
00117
00118
00119 int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
00120
00121
00122 int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
00123
00124 return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
00125 }
00126
00127 int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
00128 {
00129 int i, nearest_q_idx = 0;
00130 for(i=0; q_list[i].den; i++)
00131 if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
00132 nearest_q_idx = i;
00133
00134 return nearest_q_idx;
00135 }
00136
00137 #ifdef TEST
00138 main(){
00139 AVRational a,b;
00140 for(a.num=-2; a.num<=2; a.num++){
00141 for(a.den=-2; a.den<=2; a.den++){
00142 for(b.num=-2; b.num<=2; b.num++){
00143 for(b.den=-2; b.den<=2; b.den++){
00144 int c= av_cmp_q(a,b);
00145 double d= av_q2d(a) == av_q2d(b) ? 0 : (av_q2d(a) - av_q2d(b));
00146 if(d>0) d=1;
00147 else if(d<0) d=-1;
00148 else if(d != d) d= INT_MIN;
00149 if(c!=d) av_log(0, AV_LOG_ERROR, "%d/%d %d/%d, %d %f\n", a.num, a.den, b.num, b.den, c,d);
00150 }
00151 }
00152 }
00153 }
00154 }
00155 #endif