00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021 #include "libavutil/intmath.h"
00022 #include "libavutil/log.h"
00023 #include "libavutil/opt.h"
00024 #include "avcodec.h"
00025 #include "dsputil.h"
00026 #include "dwt.h"
00027 #include "snow.h"
00028
00029 #include "rangecoder.h"
00030 #include "mathops.h"
00031
00032 #include "mpegvideo.h"
00033 #include "h263.h"
00034
00035 #undef NDEBUG
00036 #include <assert.h>
00037
00038 #define QUANTIZE2 0
00039
00040 #if QUANTIZE2==1
00041 #define Q2_STEP 8
00042
00043 static void find_sse(SnowContext *s, Plane *p, int *score, int score_stride, IDWTELEM *r0, IDWTELEM *r1, int level, int orientation){
00044 SubBand *b= &p->band[level][orientation];
00045 int x, y;
00046 int xo=0;
00047 int yo=0;
00048 int step= 1 << (s->spatial_decomposition_count - level);
00049
00050 if(orientation&1)
00051 xo= step>>1;
00052 if(orientation&2)
00053 yo= step>>1;
00054
00055
00056
00057 memset(score, 0, sizeof(*score)*score_stride*((p->height + Q2_STEP-1)/Q2_STEP));
00058 for(y=0; y<p->height; y++){
00059 for(x=0; x<p->width; x++){
00060 int sx= (x-xo + step/2) / step / Q2_STEP;
00061 int sy= (y-yo + step/2) / step / Q2_STEP;
00062 int v= r0[x + y*p->width] - r1[x + y*p->width];
00063 assert(sx>=0 && sy>=0 && sx < score_stride);
00064 v= ((v+8)>>4)<<4;
00065 score[sx + sy*score_stride] += v*v;
00066 assert(score[sx + sy*score_stride] >= 0);
00067 }
00068 }
00069 }
00070
00071 static void dequantize_all(SnowContext *s, Plane *p, IDWTELEM *buffer, int width, int height){
00072 int level, orientation;
00073
00074 for(level=0; level<s->spatial_decomposition_count; level++){
00075 for(orientation=level ? 1 : 0; orientation<4; orientation++){
00076 SubBand *b= &p->band[level][orientation];
00077 IDWTELEM *dst= buffer + (b->ibuf - s->spatial_idwt_buffer);
00078
00079 dequantize(s, b, dst, b->stride);
00080 }
00081 }
00082 }
00083
00084 static void dwt_quantize(SnowContext *s, Plane *p, DWTELEM *buffer, int width, int height, int stride, int type){
00085 int level, orientation, ys, xs, x, y, pass;
00086 IDWTELEM best_dequant[height * stride];
00087 IDWTELEM idwt2_buffer[height * stride];
00088 const int score_stride= (width + 10)/Q2_STEP;
00089 int best_score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP];
00090 int score[(width + 10)/Q2_STEP * (height + 10)/Q2_STEP];
00091 int threshold= (s->m.lambda * s->m.lambda) >> 6;
00092
00093
00094
00095
00096 ff_spatial_dwt(buffer, width, height, stride, type, s->spatial_decomposition_count);
00097
00098 for(level=0; level<s->spatial_decomposition_count; level++){
00099 for(orientation=level ? 1 : 0; orientation<4; orientation++){
00100 SubBand *b= &p->band[level][orientation];
00101 IDWTELEM *dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
00102 DWTELEM *src= buffer + (b-> buf - s->spatial_dwt_buffer);
00103 assert(src == b->buf);
00104
00105 quantize(s, b, dst, src, b->stride, s->qbias);
00106 }
00107 }
00108 for(pass=0; pass<1; pass++){
00109 if(s->qbias == 0)
00110 continue;
00111 for(level=0; level<s->spatial_decomposition_count; level++){
00112 for(orientation=level ? 1 : 0; orientation<4; orientation++){
00113 SubBand *b= &p->band[level][orientation];
00114 IDWTELEM *dst= idwt2_buffer + (b->ibuf - s->spatial_idwt_buffer);
00115 IDWTELEM *best_dst= best_dequant + (b->ibuf - s->spatial_idwt_buffer);
00116
00117 for(ys= 0; ys<Q2_STEP; ys++){
00118 for(xs= 0; xs<Q2_STEP; xs++){
00119 memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
00120 dequantize_all(s, p, idwt2_buffer, width, height);
00121 ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count);
00122 find_sse(s, p, best_score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
00123 memcpy(idwt2_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
00124 for(y=ys; y<b->height; y+= Q2_STEP){
00125 for(x=xs; x<b->width; x+= Q2_STEP){
00126 if(dst[x + y*b->stride]<0) dst[x + y*b->stride]++;
00127 if(dst[x + y*b->stride]>0) dst[x + y*b->stride]--;
00128
00129 }
00130 }
00131 dequantize_all(s, p, idwt2_buffer, width, height);
00132 ff_spatial_idwt(idwt2_buffer, width, height, stride, type, s->spatial_decomposition_count);
00133 find_sse(s, p, score, score_stride, idwt2_buffer, s->spatial_idwt_buffer, level, orientation);
00134 for(y=ys; y<b->height; y+= Q2_STEP){
00135 for(x=xs; x<b->width; x+= Q2_STEP){
00136 int score_idx= x/Q2_STEP + (y/Q2_STEP)*score_stride;
00137 if(score[score_idx] <= best_score[score_idx] + threshold){
00138 best_score[score_idx]= score[score_idx];
00139 if(best_dst[x + y*b->stride]<0) best_dst[x + y*b->stride]++;
00140 if(best_dst[x + y*b->stride]>0) best_dst[x + y*b->stride]--;
00141
00142 }
00143 }
00144 }
00145 }
00146 }
00147 }
00148 }
00149 }
00150 memcpy(s->spatial_idwt_buffer, best_dequant, height * stride * sizeof(IDWTELEM));
00151 }
00152
00153 #endif
00154
00155 #if CONFIG_SNOW_ENCODER
00156 static av_cold int encode_init(AVCodecContext *avctx)
00157 {
00158 SnowContext *s = avctx->priv_data;
00159 int plane_index;
00160
00161 if(avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL){
00162 av_log(avctx, AV_LOG_ERROR, "This codec is under development, files encoded with it may not be decodable with future versions!!!\n"
00163 "Use vstrict=-2 / -strict -2 to use it anyway.\n");
00164 return -1;
00165 }
00166
00167 if(avctx->prediction_method == DWT_97
00168 && (avctx->flags & CODEC_FLAG_QSCALE)
00169 && avctx->global_quality == 0){
00170 av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
00171 return -1;
00172 }
00173
00174 s->spatial_decomposition_type= avctx->prediction_method;
00175
00176 s->mv_scale = (avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
00177 s->block_max_depth= (avctx->flags & CODEC_FLAG_4MV ) ? 1 : 0;
00178
00179 for(plane_index=0; plane_index<3; plane_index++){
00180 s->plane[plane_index].diag_mc= 1;
00181 s->plane[plane_index].htaps= 6;
00182 s->plane[plane_index].hcoeff[0]= 40;
00183 s->plane[plane_index].hcoeff[1]= -10;
00184 s->plane[plane_index].hcoeff[2]= 2;
00185 s->plane[plane_index].fast_mc= 1;
00186 }
00187
00188 ff_snow_common_init(avctx);
00189 ff_snow_alloc_blocks(s);
00190
00191 s->version=0;
00192
00193 s->m.avctx = avctx;
00194 s->m.flags = avctx->flags;
00195 s->m.bit_rate= avctx->bit_rate;
00196
00197 s->m.me.temp =
00198 s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
00199 s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
00200 s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
00201 s->m.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
00202 h263_encode_init(&s->m);
00203
00204 s->max_ref_frames = FFMAX(FFMIN(avctx->refs, MAX_REF_FRAMES), 1);
00205
00206 if(avctx->flags&CODEC_FLAG_PASS1){
00207 if(!avctx->stats_out)
00208 avctx->stats_out = av_mallocz(256);
00209 }
00210 if((avctx->flags&CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
00211 if(ff_rate_control_init(&s->m) < 0)
00212 return -1;
00213 }
00214 s->pass1_rc= !(avctx->flags & (CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
00215
00216 avctx->coded_frame= &s->current_picture;
00217 switch(avctx->pix_fmt){
00218
00219
00220 case PIX_FMT_YUV420P:
00221 case PIX_FMT_GRAY8:
00222
00223
00224 s->colorspace_type= 0;
00225 break;
00226
00227
00228
00229 default:
00230 av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
00231 return -1;
00232 }
00233
00234 s->chroma_h_shift= 1;
00235 s->chroma_v_shift= 1;
00236
00237 ff_set_cmp(&s->dsp, s->dsp.me_cmp, s->avctx->me_cmp);
00238 ff_set_cmp(&s->dsp, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
00239
00240 s->avctx->get_buffer(s->avctx, &s->input_picture);
00241
00242 if(s->avctx->me_method == ME_ITER){
00243 int i;
00244 int size= s->b_width * s->b_height << 2*s->block_max_depth;
00245 for(i=0; i<s->max_ref_frames; i++){
00246 s->ref_mvs[i]= av_mallocz(size*sizeof(int16_t[2]));
00247 s->ref_scores[i]= av_mallocz(size*sizeof(uint32_t));
00248 }
00249 }
00250
00251 return 0;
00252 }
00253
00254
00255 static int pix_sum(uint8_t * pix, int line_size, int w)
00256 {
00257 int s, i, j;
00258
00259 s = 0;
00260 for (i = 0; i < w; i++) {
00261 for (j = 0; j < w; j++) {
00262 s += pix[0];
00263 pix ++;
00264 }
00265 pix += line_size - w;
00266 }
00267 return s;
00268 }
00269
00270
00271 static int pix_norm1(uint8_t * pix, int line_size, int w)
00272 {
00273 int s, i, j;
00274 uint32_t *sq = ff_squareTbl + 256;
00275
00276 s = 0;
00277 for (i = 0; i < w; i++) {
00278 for (j = 0; j < w; j ++) {
00279 s += sq[pix[0]];
00280 pix ++;
00281 }
00282 pix += line_size - w;
00283 }
00284 return s;
00285 }
00286
00287
00288 #define P_LEFT P[1]
00289 #define P_TOP P[2]
00290 #define P_TOPRIGHT P[3]
00291 #define P_MEDIAN P[4]
00292 #define P_MV1 P[9]
00293 #define FLAG_QPEL 1 //must be 1
00294
00295 static int encode_q_branch(SnowContext *s, int level, int x, int y){
00296 uint8_t p_buffer[1024];
00297 uint8_t i_buffer[1024];
00298 uint8_t p_state[sizeof(s->block_state)];
00299 uint8_t i_state[sizeof(s->block_state)];
00300 RangeCoder pc, ic;
00301 uint8_t *pbbak= s->c.bytestream;
00302 uint8_t *pbbak_start= s->c.bytestream_start;
00303 int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
00304 const int w= s->b_width << s->block_max_depth;
00305 const int h= s->b_height << s->block_max_depth;
00306 const int rem_depth= s->block_max_depth - level;
00307 const int index= (x + y*w) << rem_depth;
00308 const int block_w= 1<<(LOG2_MB_SIZE - level);
00309 int trx= (x+1)<<rem_depth;
00310 int try= (y+1)<<rem_depth;
00311 const BlockNode *left = x ? &s->block[index-1] : &null_block;
00312 const BlockNode *top = y ? &s->block[index-w] : &null_block;
00313 const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
00314 const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
00315 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
00316 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl;
00317 int pl = left->color[0];
00318 int pcb= left->color[1];
00319 int pcr= left->color[2];
00320 int pmx, pmy;
00321 int mx=0, my=0;
00322 int l,cr,cb;
00323 const int stride= s->current_picture.linesize[0];
00324 const int uvstride= s->current_picture.linesize[1];
00325 uint8_t *current_data[3]= { s->input_picture.data[0] + (x + y* stride)*block_w,
00326 s->input_picture.data[1] + (x + y*uvstride)*block_w/2,
00327 s->input_picture.data[2] + (x + y*uvstride)*block_w/2};
00328 int P[10][2];
00329 int16_t last_mv[3][2];
00330 int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL);
00331 const int shift= 1+qpel;
00332 MotionEstContext *c= &s->m.me;
00333 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
00334 int mx_context= av_log2(2*FFABS(left->mx - top->mx));
00335 int my_context= av_log2(2*FFABS(left->my - top->my));
00336 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
00337 int ref, best_ref, ref_score, ref_mx, ref_my;
00338
00339 assert(sizeof(s->block_state) >= 256);
00340 if(s->keyframe){
00341 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
00342 return 0;
00343 }
00344
00345
00346
00347 P_LEFT[0]= left->mx;
00348 P_LEFT[1]= left->my;
00349 P_TOP [0]= top->mx;
00350 P_TOP [1]= top->my;
00351 P_TOPRIGHT[0]= tr->mx;
00352 P_TOPRIGHT[1]= tr->my;
00353
00354 last_mv[0][0]= s->block[index].mx;
00355 last_mv[0][1]= s->block[index].my;
00356 last_mv[1][0]= right->mx;
00357 last_mv[1][1]= right->my;
00358 last_mv[2][0]= bottom->mx;
00359 last_mv[2][1]= bottom->my;
00360
00361 s->m.mb_stride=2;
00362 s->m.mb_x=
00363 s->m.mb_y= 0;
00364 c->skip= 0;
00365
00366 assert(c-> stride == stride);
00367 assert(c->uvstride == uvstride);
00368
00369 c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
00370 c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
00371 c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
00372 c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
00373
00374 c->xmin = - x*block_w - 16+3;
00375 c->ymin = - y*block_w - 16+3;
00376 c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
00377 c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
00378
00379 if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
00380 if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
00381 if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
00382 if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
00383 if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
00384 if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift);
00385 if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
00386
00387 P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
00388 P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
00389
00390 if (!y) {
00391 c->pred_x= P_LEFT[0];
00392 c->pred_y= P_LEFT[1];
00393 } else {
00394 c->pred_x = P_MEDIAN[0];
00395 c->pred_y = P_MEDIAN[1];
00396 }
00397
00398 score= INT_MAX;
00399 best_ref= 0;
00400 for(ref=0; ref<s->ref_frames; ref++){
00401 init_ref(c, current_data, s->last_picture[ref].data, NULL, block_w*x, block_w*y, 0);
00402
00403 ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, 0, last_mv,
00404 (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
00405
00406 assert(ref_mx >= c->xmin);
00407 assert(ref_mx <= c->xmax);
00408 assert(ref_my >= c->ymin);
00409 assert(ref_my <= c->ymax);
00410
00411 ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
00412 ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
00413 ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
00414 if(s->ref_mvs[ref]){
00415 s->ref_mvs[ref][index][0]= ref_mx;
00416 s->ref_mvs[ref][index][1]= ref_my;
00417 s->ref_scores[ref][index]= ref_score;
00418 }
00419 if(score > ref_score){
00420 score= ref_score;
00421 best_ref= ref;
00422 mx= ref_mx;
00423 my= ref_my;
00424 }
00425 }
00426
00427
00428
00429 base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
00430 pc= s->c;
00431 pc.bytestream_start=
00432 pc.bytestream= p_buffer;
00433 memcpy(p_state, s->block_state, sizeof(s->block_state));
00434
00435 if(level!=s->block_max_depth)
00436 put_rac(&pc, &p_state[4 + s_context], 1);
00437 put_rac(&pc, &p_state[1 + left->type + top->type], 0);
00438 if(s->ref_frames > 1)
00439 put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
00440 pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
00441 put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
00442 put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
00443 p_len= pc.bytestream - pc.bytestream_start;
00444 score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
00445
00446 block_s= block_w*block_w;
00447 sum = pix_sum(current_data[0], stride, block_w);
00448 l= (sum + block_s/2)/block_s;
00449 iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
00450
00451 block_s= block_w*block_w>>2;
00452 sum = pix_sum(current_data[1], uvstride, block_w>>1);
00453 cb= (sum + block_s/2)/block_s;
00454
00455 sum = pix_sum(current_data[2], uvstride, block_w>>1);
00456 cr= (sum + block_s/2)/block_s;
00457
00458
00459 ic= s->c;
00460 ic.bytestream_start=
00461 ic.bytestream= i_buffer;
00462 memcpy(i_state, s->block_state, sizeof(s->block_state));
00463 if(level!=s->block_max_depth)
00464 put_rac(&ic, &i_state[4 + s_context], 1);
00465 put_rac(&ic, &i_state[1 + left->type + top->type], 1);
00466 put_symbol(&ic, &i_state[32], l-pl , 1);
00467 put_symbol(&ic, &i_state[64], cb-pcb, 1);
00468 put_symbol(&ic, &i_state[96], cr-pcr, 1);
00469 i_len= ic.bytestream - ic.bytestream_start;
00470 iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
00471
00472
00473 assert(iscore < 255*255*256 + s->lambda2*10);
00474 assert(iscore >= 0);
00475 assert(l>=0 && l<=255);
00476 assert(pl>=0 && pl<=255);
00477
00478 if(level==0){
00479 int varc= iscore >> 8;
00480 int vard= score >> 8;
00481 if (vard <= 64 || vard < varc)
00482 c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
00483 else
00484 c->scene_change_score+= s->m.qscale;
00485 }
00486
00487 if(level!=s->block_max_depth){
00488 put_rac(&s->c, &s->block_state[4 + s_context], 0);
00489 score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
00490 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
00491 score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
00492 score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
00493 score2+= s->lambda2>>FF_LAMBDA_SHIFT;
00494
00495 if(score2 < score && score2 < iscore)
00496 return score2;
00497 }
00498
00499 if(iscore < score){
00500 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
00501 memcpy(pbbak, i_buffer, i_len);
00502 s->c= ic;
00503 s->c.bytestream_start= pbbak_start;
00504 s->c.bytestream= pbbak + i_len;
00505 set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
00506 memcpy(s->block_state, i_state, sizeof(s->block_state));
00507 return iscore;
00508 }else{
00509 memcpy(pbbak, p_buffer, p_len);
00510 s->c= pc;
00511 s->c.bytestream_start= pbbak_start;
00512 s->c.bytestream= pbbak + p_len;
00513 set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
00514 memcpy(s->block_state, p_state, sizeof(s->block_state));
00515 return score;
00516 }
00517 }
00518
00519 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
00520 const int w= s->b_width << s->block_max_depth;
00521 const int rem_depth= s->block_max_depth - level;
00522 const int index= (x + y*w) << rem_depth;
00523 int trx= (x+1)<<rem_depth;
00524 BlockNode *b= &s->block[index];
00525 const BlockNode *left = x ? &s->block[index-1] : &null_block;
00526 const BlockNode *top = y ? &s->block[index-w] : &null_block;
00527 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
00528 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl;
00529 int pl = left->color[0];
00530 int pcb= left->color[1];
00531 int pcr= left->color[2];
00532 int pmx, pmy;
00533 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
00534 int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
00535 int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
00536 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
00537
00538 if(s->keyframe){
00539 set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
00540 return;
00541 }
00542
00543 if(level!=s->block_max_depth){
00544 if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
00545 put_rac(&s->c, &s->block_state[4 + s_context], 1);
00546 }else{
00547 put_rac(&s->c, &s->block_state[4 + s_context], 0);
00548 encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
00549 encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
00550 encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
00551 encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
00552 return;
00553 }
00554 }
00555 if(b->type & BLOCK_INTRA){
00556 pred_mv(s, &pmx, &pmy, 0, left, top, tr);
00557 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
00558 put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
00559 put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
00560 put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
00561 set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
00562 }else{
00563 pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
00564 put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
00565 if(s->ref_frames > 1)
00566 put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
00567 put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
00568 put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
00569 set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
00570 }
00571 }
00572
00573 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
00574 int i, x2, y2;
00575 Plane *p= &s->plane[plane_index];
00576 const int block_size = MB_SIZE >> s->block_max_depth;
00577 const int block_w = plane_index ? block_size/2 : block_size;
00578 const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
00579 const int obmc_stride= plane_index ? block_size : 2*block_size;
00580 const int ref_stride= s->current_picture.linesize[plane_index];
00581 uint8_t *src= s-> input_picture.data[plane_index];
00582 IDWTELEM *dst= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
00583 const int b_stride = s->b_width << s->block_max_depth;
00584 const int w= p->width;
00585 const int h= p->height;
00586 int index= mb_x + mb_y*b_stride;
00587 BlockNode *b= &s->block[index];
00588 BlockNode backup= *b;
00589 int ab=0;
00590 int aa=0;
00591
00592 b->type|= BLOCK_INTRA;
00593 b->color[plane_index]= 0;
00594 memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
00595
00596 for(i=0; i<4; i++){
00597 int mb_x2= mb_x + (i &1) - 1;
00598 int mb_y2= mb_y + (i>>1) - 1;
00599 int x= block_w*mb_x2 + block_w/2;
00600 int y= block_w*mb_y2 + block_w/2;
00601
00602 add_yblock(s, 0, NULL, dst + ((i&1)+(i>>1)*obmc_stride)*block_w, NULL, obmc,
00603 x, y, block_w, block_w, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
00604
00605 for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_w); y2++){
00606 for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
00607 int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_w*mb_y - block_w/2))*obmc_stride;
00608 int obmc_v= obmc[index];
00609 int d;
00610 if(y<0) obmc_v += obmc[index + block_w*obmc_stride];
00611 if(x<0) obmc_v += obmc[index + block_w];
00612 if(y+block_w>h) obmc_v += obmc[index - block_w*obmc_stride];
00613 if(x+block_w>w) obmc_v += obmc[index - block_w];
00614
00615
00616 d = -dst[index] + (1<<(FRAC_BITS-1));
00617 dst[index] = d;
00618 ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
00619 aa += obmc_v * obmc_v;
00620 }
00621 }
00622 }
00623 *b= backup;
00624
00625 return av_clip(((ab<<LOG2_OBMC_MAX) + aa/2)/aa, 0, 255);
00626 }
00627
00628 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
00629 const int b_stride = s->b_width << s->block_max_depth;
00630 const int b_height = s->b_height<< s->block_max_depth;
00631 int index= x + y*b_stride;
00632 const BlockNode *b = &s->block[index];
00633 const BlockNode *left = x ? &s->block[index-1] : &null_block;
00634 const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
00635 const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
00636 const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
00637 int dmx, dmy;
00638
00639
00640
00641 if(x<0 || x>=b_stride || y>=b_height)
00642 return 0;
00643
00644
00645
00646
00647
00648
00649
00650
00651
00652 if(b->type & BLOCK_INTRA){
00653 return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
00654 + av_log2(2*FFABS(left->color[1] - b->color[1]))
00655 + av_log2(2*FFABS(left->color[2] - b->color[2])));
00656 }else{
00657 pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
00658 dmx-= b->mx;
00659 dmy-= b->my;
00660 return 2*(1 + av_log2(2*FFABS(dmx))
00661 + av_log2(2*FFABS(dmy))
00662 + av_log2(2*b->ref));
00663 }
00664 }
00665
00666 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, const uint8_t *obmc_edged){
00667 Plane *p= &s->plane[plane_index];
00668 const int block_size = MB_SIZE >> s->block_max_depth;
00669 const int block_w = plane_index ? block_size/2 : block_size;
00670 const int obmc_stride= plane_index ? block_size : 2*block_size;
00671 const int ref_stride= s->current_picture.linesize[plane_index];
00672 uint8_t *dst= s->current_picture.data[plane_index];
00673 uint8_t *src= s-> input_picture.data[plane_index];
00674 IDWTELEM *pred= (IDWTELEM*)s->m.obmc_scratchpad + plane_index*block_size*block_size*4;
00675 uint8_t *cur = s->scratchbuf;
00676 uint8_t tmp[ref_stride*(2*MB_SIZE+HTAPS_MAX-1)];
00677 const int b_stride = s->b_width << s->block_max_depth;
00678 const int b_height = s->b_height<< s->block_max_depth;
00679 const int w= p->width;
00680 const int h= p->height;
00681 int distortion;
00682 int rate= 0;
00683 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
00684 int sx= block_w*mb_x - block_w/2;
00685 int sy= block_w*mb_y - block_w/2;
00686 int x0= FFMAX(0,-sx);
00687 int y0= FFMAX(0,-sy);
00688 int x1= FFMIN(block_w*2, w-sx);
00689 int y1= FFMIN(block_w*2, h-sy);
00690 int i,x,y;
00691
00692 ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_w*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
00693
00694 for(y=y0; y<y1; y++){
00695 const uint8_t *obmc1= obmc_edged + y*obmc_stride;
00696 const IDWTELEM *pred1 = pred + y*obmc_stride;
00697 uint8_t *cur1 = cur + y*ref_stride;
00698 uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
00699 for(x=x0; x<x1; x++){
00700 #if FRAC_BITS >= LOG2_OBMC_MAX
00701 int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
00702 #else
00703 int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
00704 #endif
00705 v = (v + pred1[x]) >> FRAC_BITS;
00706 if(v&(~255)) v= ~(v>>31);
00707 dst1[x] = v;
00708 }
00709 }
00710
00711
00712 if(LOG2_OBMC_MAX == 8
00713 && (mb_x == 0 || mb_x == b_stride-1)
00714 && (mb_y == 0 || mb_y == b_height-1)){
00715 if(mb_x == 0)
00716 x1 = block_w;
00717 else
00718 x0 = block_w;
00719 if(mb_y == 0)
00720 y1 = block_w;
00721 else
00722 y0 = block_w;
00723 for(y=y0; y<y1; y++)
00724 memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
00725 }
00726
00727 if(block_w==16){
00728
00729
00730
00731
00732
00733
00734 if(s->avctx->me_cmp == FF_CMP_W97)
00735 distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
00736 else if(s->avctx->me_cmp == FF_CMP_W53)
00737 distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
00738 else{
00739 distortion = 0;
00740 for(i=0; i<4; i++){
00741 int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
00742 distortion += s->dsp.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
00743 }
00744 }
00745 }else{
00746 assert(block_w==8);
00747 distortion = s->dsp.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
00748 }
00749
00750 if(plane_index==0){
00751 for(i=0; i<4; i++){
00752
00753
00754
00755
00756 rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
00757 }
00758 if(mb_x == b_stride-2)
00759 rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
00760 }
00761 return distortion + rate*penalty_factor;
00762 }
00763
00764 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
00765 int i, y2;
00766 Plane *p= &s->plane[plane_index];
00767 const int block_size = MB_SIZE >> s->block_max_depth;
00768 const int block_w = plane_index ? block_size/2 : block_size;
00769 const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
00770 const int obmc_stride= plane_index ? block_size : 2*block_size;
00771 const int ref_stride= s->current_picture.linesize[plane_index];
00772 uint8_t *dst= s->current_picture.data[plane_index];
00773 uint8_t *src= s-> input_picture.data[plane_index];
00774
00775
00776 static IDWTELEM zero_dst[4096];
00777 const int b_stride = s->b_width << s->block_max_depth;
00778 const int w= p->width;
00779 const int h= p->height;
00780 int distortion= 0;
00781 int rate= 0;
00782 const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
00783
00784 for(i=0; i<9; i++){
00785 int mb_x2= mb_x + (i%3) - 1;
00786 int mb_y2= mb_y + (i/3) - 1;
00787 int x= block_w*mb_x2 + block_w/2;
00788 int y= block_w*mb_y2 + block_w/2;
00789
00790 add_yblock(s, 0, NULL, zero_dst, dst, obmc,
00791 x, y, block_w, block_w, w, h, 0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
00792
00793
00794 for(y2= y; y2<0; y2++)
00795 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
00796 for(y2= h; y2<y+block_w; y2++)
00797 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
00798 if(x<0){
00799 for(y2= y; y2<y+block_w; y2++)
00800 memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
00801 }
00802 if(x+block_w > w){
00803 for(y2= y; y2<y+block_w; y2++)
00804 memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
00805 }
00806
00807 assert(block_w== 8 || block_w==16);
00808 distortion += s->dsp.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_w);
00809 }
00810
00811 if(plane_index==0){
00812 BlockNode *b= &s->block[mb_x+mb_y*b_stride];
00813 int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
00814
00815
00816
00817
00818
00819
00820 if(merged)
00821 rate = get_block_bits(s, mb_x, mb_y, 2);
00822 for(i=merged?4:0; i<9; i++){
00823 static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
00824 rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
00825 }
00826 }
00827 return distortion + rate*penalty_factor;
00828 }
00829
00830 static int encode_subband_c0run(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
00831 const int w= b->width;
00832 const int h= b->height;
00833 int x, y;
00834
00835 if(1){
00836 int run=0;
00837 int runs[w*h];
00838 int run_index=0;
00839 int max_index;
00840
00841 for(y=0; y<h; y++){
00842 for(x=0; x<w; x++){
00843 int v, p=0;
00844 int l=0, lt=0, t=0, rt=0;
00845 v= src[x + y*stride];
00846
00847 if(y){
00848 t= src[x + (y-1)*stride];
00849 if(x){
00850 lt= src[x - 1 + (y-1)*stride];
00851 }
00852 if(x + 1 < w){
00853 rt= src[x + 1 + (y-1)*stride];
00854 }
00855 }
00856 if(x){
00857 l= src[x - 1 + y*stride];
00858
00859
00860
00861
00862 }
00863 if(parent){
00864 int px= x>>1;
00865 int py= y>>1;
00866 if(px<b->parent->width && py<b->parent->height)
00867 p= parent[px + py*2*stride];
00868 }
00869 if(!(l|lt|t|rt|p)){
00870 if(v){
00871 runs[run_index++]= run;
00872 run=0;
00873 }else{
00874 run++;
00875 }
00876 }
00877 }
00878 }
00879 max_index= run_index;
00880 runs[run_index++]= run;
00881 run_index=0;
00882 run= runs[run_index++];
00883
00884 put_symbol2(&s->c, b->state[30], max_index, 0);
00885 if(run_index <= max_index)
00886 put_symbol2(&s->c, b->state[1], run, 3);
00887
00888 for(y=0; y<h; y++){
00889 if(s->c.bytestream_end - s->c.bytestream < w*40){
00890 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
00891 return -1;
00892 }
00893 for(x=0; x<w; x++){
00894 int v, p=0;
00895 int l=0, lt=0, t=0, rt=0;
00896 v= src[x + y*stride];
00897
00898 if(y){
00899 t= src[x + (y-1)*stride];
00900 if(x){
00901 lt= src[x - 1 + (y-1)*stride];
00902 }
00903 if(x + 1 < w){
00904 rt= src[x + 1 + (y-1)*stride];
00905 }
00906 }
00907 if(x){
00908 l= src[x - 1 + y*stride];
00909
00910
00911
00912
00913 }
00914 if(parent){
00915 int px= x>>1;
00916 int py= y>>1;
00917 if(px<b->parent->width && py<b->parent->height)
00918 p= parent[px + py*2*stride];
00919 }
00920 if(l|lt|t|rt|p){
00921 int context= av_log2(3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
00922
00923 put_rac(&s->c, &b->state[0][context], !!v);
00924 }else{
00925 if(!run){
00926 run= runs[run_index++];
00927
00928 if(run_index <= max_index)
00929 put_symbol2(&s->c, b->state[1], run, 3);
00930 assert(v);
00931 }else{
00932 run--;
00933 assert(!v);
00934 }
00935 }
00936 if(v){
00937 int context= av_log2(3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
00938 int l2= 2*FFABS(l) + (l<0);
00939 int t2= 2*FFABS(t) + (t<0);
00940
00941 put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
00942 put_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3bA[l2&0xFF] + 3*quant3bA[t2&0xFF]], v<0);
00943 }
00944 }
00945 }
00946 }
00947 return 0;
00948 }
00949
00950 static int encode_subband(SnowContext *s, SubBand *b, IDWTELEM *src, IDWTELEM *parent, int stride, int orientation){
00951
00952
00953 return encode_subband_c0run(s, b, src, parent, stride, orientation);
00954
00955 }
00956
00957 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, const uint8_t *obmc_edged, int *best_rd){
00958 const int b_stride= s->b_width << s->block_max_depth;
00959 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
00960 BlockNode backup= *block;
00961 unsigned value;
00962 int rd, index;
00963
00964 assert(mb_x>=0 && mb_y>=0);
00965 assert(mb_x<b_stride);
00966
00967 if(intra){
00968 block->color[0] = p[0];
00969 block->color[1] = p[1];
00970 block->color[2] = p[2];
00971 block->type |= BLOCK_INTRA;
00972 }else{
00973 index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
00974 value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
00975 if(s->me_cache[index] == value)
00976 return 0;
00977 s->me_cache[index]= value;
00978
00979 block->mx= p[0];
00980 block->my= p[1];
00981 block->type &= ~BLOCK_INTRA;
00982 }
00983
00984 rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged);
00985
00986
00987 if(rd < *best_rd){
00988 *best_rd= rd;
00989 return 1;
00990 }else{
00991 *block= backup;
00992 return 0;
00993 }
00994 }
00995
00996
00997
00998 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, const uint8_t *obmc_edged, int *best_rd){
00999 int p[2] = {p0, p1};
01000 return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
01001 }
01002
01003 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
01004 const int b_stride= s->b_width << s->block_max_depth;
01005 BlockNode *block= &s->block[mb_x + mb_y * b_stride];
01006 BlockNode backup[4]= {block[0], block[1], block[b_stride], block[b_stride+1]};
01007 unsigned value;
01008 int rd, index;
01009
01010 assert(mb_x>=0 && mb_y>=0);
01011 assert(mb_x<b_stride);
01012 assert(((mb_x|mb_y)&1) == 0);
01013
01014 index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
01015 value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
01016 if(s->me_cache[index] == value)
01017 return 0;
01018 s->me_cache[index]= value;
01019
01020 block->mx= p0;
01021 block->my= p1;
01022 block->ref= ref;
01023 block->type &= ~BLOCK_INTRA;
01024 block[1]= block[b_stride]= block[b_stride+1]= *block;
01025
01026 rd= get_4block_rd(s, mb_x, mb_y, 0);
01027
01028
01029 if(rd < *best_rd){
01030 *best_rd= rd;
01031 return 1;
01032 }else{
01033 block[0]= backup[0];
01034 block[1]= backup[1];
01035 block[b_stride]= backup[2];
01036 block[b_stride+1]= backup[3];
01037 return 0;
01038 }
01039 }
01040
01041 static void iterative_me(SnowContext *s){
01042 int pass, mb_x, mb_y;
01043 const int b_width = s->b_width << s->block_max_depth;
01044 const int b_height= s->b_height << s->block_max_depth;
01045 const int b_stride= b_width;
01046 int color[3];
01047
01048 {
01049 RangeCoder r = s->c;
01050 uint8_t state[sizeof(s->block_state)];
01051 memcpy(state, s->block_state, sizeof(s->block_state));
01052 for(mb_y= 0; mb_y<s->b_height; mb_y++)
01053 for(mb_x= 0; mb_x<s->b_width; mb_x++)
01054 encode_q_branch(s, 0, mb_x, mb_y);
01055 s->c = r;
01056 memcpy(s->block_state, state, sizeof(s->block_state));
01057 }
01058
01059 for(pass=0; pass<25; pass++){
01060 int change= 0;
01061
01062 for(mb_y= 0; mb_y<b_height; mb_y++){
01063 for(mb_x= 0; mb_x<b_width; mb_x++){
01064 int dia_change, i, j, ref;
01065 int best_rd= INT_MAX, ref_rd;
01066 BlockNode backup, ref_b;
01067 const int index= mb_x + mb_y * b_stride;
01068 BlockNode *block= &s->block[index];
01069 BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
01070 BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
01071 BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
01072 BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
01073 BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
01074 BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
01075 BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
01076 BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
01077 const int b_w= (MB_SIZE >> s->block_max_depth);
01078 uint8_t obmc_edged[b_w*2][b_w*2];
01079
01080 if(pass && (block->type & BLOCK_OPT))
01081 continue;
01082 block->type |= BLOCK_OPT;
01083
01084 backup= *block;
01085
01086 if(!s->me_cache_generation)
01087 memset(s->me_cache, 0, sizeof(s->me_cache));
01088 s->me_cache_generation += 1<<22;
01089
01090
01091 {
01092 int x, y;
01093 memcpy(obmc_edged, obmc_tab[s->block_max_depth], b_w*b_w*4);
01094 if(mb_x==0)
01095 for(y=0; y<b_w*2; y++)
01096 memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
01097 if(mb_x==b_stride-1)
01098 for(y=0; y<b_w*2; y++)
01099 memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
01100 if(mb_y==0){
01101 for(x=0; x<b_w*2; x++)
01102 obmc_edged[0][x] += obmc_edged[b_w-1][x];
01103 for(y=1; y<b_w; y++)
01104 memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
01105 }
01106 if(mb_y==b_height-1){
01107 for(x=0; x<b_w*2; x++)
01108 obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
01109 for(y=b_w; y<b_w*2-1; y++)
01110 memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
01111 }
01112 }
01113
01114
01115 if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
01116 uint8_t *src= s-> input_picture.data[0];
01117 uint8_t *dst= s->current_picture.data[0];
01118 const int stride= s->current_picture.linesize[0];
01119 const int block_w= MB_SIZE >> s->block_max_depth;
01120 const int sx= block_w*mb_x - block_w/2;
01121 const int sy= block_w*mb_y - block_w/2;
01122 const int w= s->plane[0].width;
01123 const int h= s->plane[0].height;
01124 int y;
01125
01126 for(y=sy; y<0; y++)
01127 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
01128 for(y=h; y<sy+block_w*2; y++)
01129 memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
01130 if(sx<0){
01131 for(y=sy; y<sy+block_w*2; y++)
01132 memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
01133 }
01134 if(sx+block_w*2 > w){
01135 for(y=sy; y<sy+block_w*2; y++)
01136 memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
01137 }
01138 }
01139
01140
01141 for(i=0; i<3; i++)
01142 color[i]= get_dc(s, mb_x, mb_y, i);
01143
01144
01145 if(pass > 0 && (block->type&BLOCK_INTRA)){
01146 int color0[3]= {block->color[0], block->color[1], block->color[2]};
01147 check_block(s, mb_x, mb_y, color0, 1, *obmc_edged, &best_rd);
01148 }else
01149 check_block_inter(s, mb_x, mb_y, block->mx, block->my, *obmc_edged, &best_rd);
01150
01151 ref_b= *block;
01152 ref_rd= best_rd;
01153 for(ref=0; ref < s->ref_frames; ref++){
01154 int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
01155 if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2)
01156 continue;
01157 block->ref= ref;
01158 best_rd= INT_MAX;
01159
01160 check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], *obmc_edged, &best_rd);
01161 check_block_inter(s, mb_x, mb_y, 0, 0, *obmc_edged, &best_rd);
01162 if(tb)
01163 check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], *obmc_edged, &best_rd);
01164 if(lb)
01165 check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], *obmc_edged, &best_rd);
01166 if(rb)
01167 check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], *obmc_edged, &best_rd);
01168 if(bb)
01169 check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], *obmc_edged, &best_rd);
01170
01171
01172
01173 do{
01174 dia_change=0;
01175 for(i=0; i<FFMAX(s->avctx->dia_size, 1); i++){
01176 for(j=0; j<i; j++){
01177 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
01178 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
01179 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+4*(i-j), block->my-(4*j), *obmc_edged, &best_rd);
01180 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx-4*(i-j), block->my+(4*j), *obmc_edged, &best_rd);
01181 }
01182 }
01183 }while(dia_change);
01184
01185 do{
01186 static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
01187 dia_change=0;
01188 for(i=0; i<8; i++)
01189 dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], *obmc_edged, &best_rd);
01190 }while(dia_change);
01191
01192
01193 mvr[0][0]= block->mx;
01194 mvr[0][1]= block->my;
01195 if(ref_rd > best_rd){
01196 ref_rd= best_rd;
01197 ref_b= *block;
01198 }
01199 }
01200 best_rd= ref_rd;
01201 *block= ref_b;
01202 check_block(s, mb_x, mb_y, color, 1, *obmc_edged, &best_rd);
01203
01204 if(!same_block(block, &backup)){
01205 if(tb ) tb ->type &= ~BLOCK_OPT;
01206 if(lb ) lb ->type &= ~BLOCK_OPT;
01207 if(rb ) rb ->type &= ~BLOCK_OPT;
01208 if(bb ) bb ->type &= ~BLOCK_OPT;
01209 if(tlb) tlb->type &= ~BLOCK_OPT;
01210 if(trb) trb->type &= ~BLOCK_OPT;
01211 if(blb) blb->type &= ~BLOCK_OPT;
01212 if(brb) brb->type &= ~BLOCK_OPT;
01213 change ++;
01214 }
01215 }
01216 }
01217 av_log(s->avctx, AV_LOG_ERROR, "pass:%d changed:%d\n", pass, change);
01218 if(!change)
01219 break;
01220 }
01221
01222 if(s->block_max_depth == 1){
01223 int change= 0;
01224 for(mb_y= 0; mb_y<b_height; mb_y+=2){
01225 for(mb_x= 0; mb_x<b_width; mb_x+=2){
01226 int i;
01227 int best_rd, init_rd;
01228 const int index= mb_x + mb_y * b_stride;
01229 BlockNode *b[4];
01230
01231 b[0]= &s->block[index];
01232 b[1]= b[0]+1;
01233 b[2]= b[0]+b_stride;
01234 b[3]= b[2]+1;
01235 if(same_block(b[0], b[1]) &&
01236 same_block(b[0], b[2]) &&
01237 same_block(b[0], b[3]))
01238 continue;
01239
01240 if(!s->me_cache_generation)
01241 memset(s->me_cache, 0, sizeof(s->me_cache));
01242 s->me_cache_generation += 1<<22;
01243
01244 init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
01245
01246
01247 check_4block_inter(s, mb_x, mb_y,
01248 (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
01249 (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
01250
01251 for(i=0; i<4; i++)
01252 if(!(b[i]->type&BLOCK_INTRA))
01253 check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
01254
01255 if(init_rd != best_rd)
01256 change++;
01257 }
01258 }
01259 av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
01260 }
01261 }
01262
01263 static void encode_blocks(SnowContext *s, int search){
01264 int x, y;
01265 int w= s->b_width;
01266 int h= s->b_height;
01267
01268 if(s->avctx->me_method == ME_ITER && !s->keyframe && search)
01269 iterative_me(s);
01270
01271 for(y=0; y<h; y++){
01272 if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){
01273 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
01274 return;
01275 }
01276 for(x=0; x<w; x++){
01277 if(s->avctx->me_method == ME_ITER || !search)
01278 encode_q_branch2(s, 0, x, y);
01279 else
01280 encode_q_branch (s, 0, x, y);
01281 }
01282 }
01283 }
01284
01285 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
01286 const int w= b->width;
01287 const int h= b->height;
01288 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
01289 const int qmul= qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
01290 int x,y, thres1, thres2;
01291
01292 if(s->qlog == LOSSLESS_QLOG){
01293 for(y=0; y<h; y++)
01294 for(x=0; x<w; x++)
01295 dst[x + y*stride]= src[x + y*stride];
01296 return;
01297 }
01298
01299 bias= bias ? 0 : (3*qmul)>>3;
01300 thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
01301 thres2= 2*thres1;
01302
01303 if(!bias){
01304 for(y=0; y<h; y++){
01305 for(x=0; x<w; x++){
01306 int i= src[x + y*stride];
01307
01308 if((unsigned)(i+thres1) > thres2){
01309 if(i>=0){
01310 i<<= QEXPSHIFT;
01311 i/= qmul;
01312 dst[x + y*stride]= i;
01313 }else{
01314 i= -i;
01315 i<<= QEXPSHIFT;
01316 i/= qmul;
01317 dst[x + y*stride]= -i;
01318 }
01319 }else
01320 dst[x + y*stride]= 0;
01321 }
01322 }
01323 }else{
01324 for(y=0; y<h; y++){
01325 for(x=0; x<w; x++){
01326 int i= src[x + y*stride];
01327
01328 if((unsigned)(i+thres1) > thres2){
01329 if(i>=0){
01330 i<<= QEXPSHIFT;
01331 i= (i + bias) / qmul;
01332 dst[x + y*stride]= i;
01333 }else{
01334 i= -i;
01335 i<<= QEXPSHIFT;
01336 i= (i + bias) / qmul;
01337 dst[x + y*stride]= -i;
01338 }
01339 }else
01340 dst[x + y*stride]= 0;
01341 }
01342 }
01343 }
01344 }
01345
01346 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
01347 const int w= b->width;
01348 const int h= b->height;
01349 const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
01350 const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
01351 const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
01352 int x,y;
01353
01354 if(s->qlog == LOSSLESS_QLOG) return;
01355
01356 for(y=0; y<h; y++){
01357 for(x=0; x<w; x++){
01358 int i= src[x + y*stride];
01359 if(i<0){
01360 src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT));
01361 }else if(i>0){
01362 src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
01363 }
01364 }
01365 }
01366 }
01367
01368 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
01369 const int w= b->width;
01370 const int h= b->height;
01371 int x,y;
01372
01373 for(y=h-1; y>=0; y--){
01374 for(x=w-1; x>=0; x--){
01375 int i= x + y*stride;
01376
01377 if(x){
01378 if(use_median){
01379 if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
01380 else src[i] -= src[i - 1];
01381 }else{
01382 if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
01383 else src[i] -= src[i - 1];
01384 }
01385 }else{
01386 if(y) src[i] -= src[i - stride];
01387 }
01388 }
01389 }
01390 }
01391
01392 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
01393 const int w= b->width;
01394 const int h= b->height;
01395 int x,y;
01396
01397 for(y=0; y<h; y++){
01398 for(x=0; x<w; x++){
01399 int i= x + y*stride;
01400
01401 if(x){
01402 if(use_median){
01403 if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
01404 else src[i] += src[i - 1];
01405 }else{
01406 if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
01407 else src[i] += src[i - 1];
01408 }
01409 }else{
01410 if(y) src[i] += src[i - stride];
01411 }
01412 }
01413 }
01414 }
01415
01416 static void encode_qlogs(SnowContext *s){
01417 int plane_index, level, orientation;
01418
01419 for(plane_index=0; plane_index<2; plane_index++){
01420 for(level=0; level<s->spatial_decomposition_count; level++){
01421 for(orientation=level ? 1:0; orientation<4; orientation++){
01422 if(orientation==2) continue;
01423 put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
01424 }
01425 }
01426 }
01427 }
01428
01429 static void encode_header(SnowContext *s){
01430 int plane_index, i;
01431 uint8_t kstate[32];
01432
01433 memset(kstate, MID_STATE, sizeof(kstate));
01434
01435 put_rac(&s->c, kstate, s->keyframe);
01436 if(s->keyframe || s->always_reset){
01437 ff_snow_reset_contexts(s);
01438 s->last_spatial_decomposition_type=
01439 s->last_qlog=
01440 s->last_qbias=
01441 s->last_mv_scale=
01442 s->last_block_max_depth= 0;
01443 for(plane_index=0; plane_index<2; plane_index++){
01444 Plane *p= &s->plane[plane_index];
01445 p->last_htaps=0;
01446 p->last_diag_mc=0;
01447 memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
01448 }
01449 }
01450 if(s->keyframe){
01451 put_symbol(&s->c, s->header_state, s->version, 0);
01452 put_rac(&s->c, s->header_state, s->always_reset);
01453 put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
01454 put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
01455 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
01456 put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
01457 put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
01458 put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
01459 put_rac(&s->c, s->header_state, s->spatial_scalability);
01460
01461 put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
01462
01463 encode_qlogs(s);
01464 }
01465
01466 if(!s->keyframe){
01467 int update_mc=0;
01468 for(plane_index=0; plane_index<2; plane_index++){
01469 Plane *p= &s->plane[plane_index];
01470 update_mc |= p->last_htaps != p->htaps;
01471 update_mc |= p->last_diag_mc != p->diag_mc;
01472 update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
01473 }
01474 put_rac(&s->c, s->header_state, update_mc);
01475 if(update_mc){
01476 for(plane_index=0; plane_index<2; plane_index++){
01477 Plane *p= &s->plane[plane_index];
01478 put_rac(&s->c, s->header_state, p->diag_mc);
01479 put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
01480 for(i= p->htaps/2; i; i--)
01481 put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
01482 }
01483 }
01484 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
01485 put_rac(&s->c, s->header_state, 1);
01486 put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
01487 encode_qlogs(s);
01488 }else
01489 put_rac(&s->c, s->header_state, 0);
01490 }
01491
01492 put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
01493 put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
01494 put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
01495 put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
01496 put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
01497
01498 }
01499
01500 static void update_last_header_values(SnowContext *s){
01501 int plane_index;
01502
01503 if(!s->keyframe){
01504 for(plane_index=0; plane_index<2; plane_index++){
01505 Plane *p= &s->plane[plane_index];
01506 p->last_diag_mc= p->diag_mc;
01507 p->last_htaps = p->htaps;
01508 memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
01509 }
01510 }
01511
01512 s->last_spatial_decomposition_type = s->spatial_decomposition_type;
01513 s->last_qlog = s->qlog;
01514 s->last_qbias = s->qbias;
01515 s->last_mv_scale = s->mv_scale;
01516 s->last_block_max_depth = s->block_max_depth;
01517 s->last_spatial_decomposition_count = s->spatial_decomposition_count;
01518 }
01519
01520 static int qscale2qlog(int qscale){
01521 return rint(QROOT*log(qscale / (float)FF_QP2LAMBDA)/log(2))
01522 + 61*QROOT/8;
01523 }
01524
01525 static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
01526 {
01527
01528
01529
01530 uint32_t coef_sum= 0;
01531 int level, orientation, delta_qlog;
01532
01533 for(level=0; level<s->spatial_decomposition_count; level++){
01534 for(orientation=level ? 1 : 0; orientation<4; orientation++){
01535 SubBand *b= &s->plane[0].band[level][orientation];
01536 IDWTELEM *buf= b->ibuf;
01537 const int w= b->width;
01538 const int h= b->height;
01539 const int stride= b->stride;
01540 const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
01541 const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
01542 const int qdiv= (1<<16)/qmul;
01543 int x, y;
01544
01545 for(y=0; y<h; y++)
01546 for(x=0; x<w; x++)
01547 buf[x+y*stride]= b->buf[x+y*stride];
01548 if(orientation==0)
01549 decorrelate(s, b, buf, stride, 1, 0);
01550 for(y=0; y<h; y++)
01551 for(x=0; x<w; x++)
01552 coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
01553 }
01554 }
01555
01556
01557 coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
01558 assert(coef_sum < INT_MAX);
01559
01560 if(pict->pict_type == AV_PICTURE_TYPE_I){
01561 s->m.current_picture.mb_var_sum= coef_sum;
01562 s->m.current_picture.mc_mb_var_sum= 0;
01563 }else{
01564 s->m.current_picture.mc_mb_var_sum= coef_sum;
01565 s->m.current_picture.mb_var_sum= 0;
01566 }
01567
01568 pict->quality= ff_rate_estimate_qscale(&s->m, 1);
01569 if (pict->quality < 0)
01570 return INT_MIN;
01571 s->lambda= pict->quality * 3/2;
01572 delta_qlog= qscale2qlog(pict->quality) - s->qlog;
01573 s->qlog+= delta_qlog;
01574 return delta_qlog;
01575 }
01576
01577 static void calculate_visual_weight(SnowContext *s, Plane *p){
01578 int width = p->width;
01579 int height= p->height;
01580 int level, orientation, x, y;
01581
01582 for(level=0; level<s->spatial_decomposition_count; level++){
01583 for(orientation=level ? 1 : 0; orientation<4; orientation++){
01584 SubBand *b= &p->band[level][orientation];
01585 IDWTELEM *ibuf= b->ibuf;
01586 int64_t error=0;
01587
01588 memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
01589 ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
01590 ff_spatial_idwt(s->spatial_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
01591 for(y=0; y<height; y++){
01592 for(x=0; x<width; x++){
01593 int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
01594 error += d*d;
01595 }
01596 }
01597
01598 b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
01599 }
01600 }
01601 }
01602
01603 static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
01604 SnowContext *s = avctx->priv_data;
01605 RangeCoder * const c= &s->c;
01606 AVFrame *pict = data;
01607 const int width= s->avctx->width;
01608 const int height= s->avctx->height;
01609 int level, orientation, plane_index, i, y;
01610 uint8_t rc_header_bak[sizeof(s->header_state)];
01611 uint8_t rc_block_bak[sizeof(s->block_state)];
01612
01613 ff_init_range_encoder(c, buf, buf_size);
01614 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
01615
01616 for(i=0; i<3; i++){
01617 int shift= !!i;
01618 for(y=0; y<(height>>shift); y++)
01619 memcpy(&s->input_picture.data[i][y * s->input_picture.linesize[i]],
01620 &pict->data[i][y * pict->linesize[i]],
01621 width>>shift);
01622 }
01623 s->new_picture = *pict;
01624
01625 s->m.picture_number= avctx->frame_number;
01626 if(avctx->flags&CODEC_FLAG_PASS2){
01627 s->m.pict_type =
01628 pict->pict_type= s->m.rc_context.entry[avctx->frame_number].new_pict_type;
01629 s->keyframe= pict->pict_type==AV_PICTURE_TYPE_I;
01630 if(!(avctx->flags&CODEC_FLAG_QSCALE)) {
01631 pict->quality= ff_rate_estimate_qscale(&s->m, 0);
01632 if (pict->quality < 0)
01633 return -1;
01634 }
01635 }else{
01636 s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
01637 s->m.pict_type=
01638 pict->pict_type= s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
01639 }
01640
01641 if(s->pass1_rc && avctx->frame_number == 0)
01642 pict->quality= 2*FF_QP2LAMBDA;
01643 if(pict->quality){
01644 s->qlog= qscale2qlog(pict->quality);
01645 s->lambda = pict->quality * 3/2;
01646 }
01647 if(s->qlog < 0 || (!pict->quality && (avctx->flags & CODEC_FLAG_QSCALE))){
01648 s->qlog= LOSSLESS_QLOG;
01649 s->lambda = 0;
01650 }
01651
01652 ff_snow_frame_start(s);
01653
01654 s->m.current_picture_ptr= &s->m.current_picture;
01655 s->m.last_picture.f.pts = s->m.current_picture.f.pts;
01656 s->m.current_picture.f.pts = pict->pts;
01657 if(pict->pict_type == AV_PICTURE_TYPE_P){
01658 int block_width = (width +15)>>4;
01659 int block_height= (height+15)>>4;
01660 int stride= s->current_picture.linesize[0];
01661
01662 assert(s->current_picture.data[0]);
01663 assert(s->last_picture[0].data[0]);
01664
01665 s->m.avctx= s->avctx;
01666 s->m.current_picture.f.data[0] = s->current_picture.data[0];
01667 s->m. last_picture.f.data[0] = s->last_picture[0].data[0];
01668 s->m. new_picture.f.data[0] = s-> input_picture.data[0];
01669 s->m. last_picture_ptr= &s->m. last_picture;
01670 s->m.linesize=
01671 s->m. last_picture.f.linesize[0] =
01672 s->m. new_picture.f.linesize[0] =
01673 s->m.current_picture.f.linesize[0] = stride;
01674 s->m.uvlinesize= s->current_picture.linesize[1];
01675 s->m.width = width;
01676 s->m.height= height;
01677 s->m.mb_width = block_width;
01678 s->m.mb_height= block_height;
01679 s->m.mb_stride= s->m.mb_width+1;
01680 s->m.b8_stride= 2*s->m.mb_width+1;
01681 s->m.f_code=1;
01682 s->m.pict_type= pict->pict_type;
01683 s->m.me_method= s->avctx->me_method;
01684 s->m.me.scene_change_score=0;
01685 s->m.flags= s->avctx->flags;
01686 s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
01687 s->m.out_format= FMT_H263;
01688 s->m.unrestricted_mv= 1;
01689
01690 s->m.lambda = s->lambda;
01691 s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
01692 s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
01693
01694 s->m.dsp= s->dsp;
01695 ff_init_me(&s->m);
01696 s->dsp= s->m.dsp;
01697 }
01698
01699 if(s->pass1_rc){
01700 memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
01701 memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
01702 }
01703
01704 redo_frame:
01705
01706 if(pict->pict_type == AV_PICTURE_TYPE_I)
01707 s->spatial_decomposition_count= 5;
01708 else
01709 s->spatial_decomposition_count= 5;
01710
01711 s->m.pict_type = pict->pict_type;
01712 s->qbias= pict->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
01713
01714 ff_snow_common_init_after_header(avctx);
01715
01716 if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
01717 for(plane_index=0; plane_index<3; plane_index++){
01718 calculate_visual_weight(s, &s->plane[plane_index]);
01719 }
01720 }
01721
01722 encode_header(s);
01723 s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
01724 encode_blocks(s, 1);
01725 s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
01726
01727 for(plane_index=0; plane_index<3; plane_index++){
01728 Plane *p= &s->plane[plane_index];
01729 int w= p->width;
01730 int h= p->height;
01731 int x, y;
01732
01733
01734 if (!s->memc_only) {
01735
01736 if(pict->data[plane_index])
01737 for(y=0; y<h; y++){
01738 for(x=0; x<w; x++){
01739 s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
01740 }
01741 }
01742 predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
01743
01744 if( plane_index==0
01745 && pict->pict_type == AV_PICTURE_TYPE_P
01746 && !(avctx->flags&CODEC_FLAG_PASS2)
01747 && s->m.me.scene_change_score > s->avctx->scenechange_threshold){
01748 ff_init_range_encoder(c, buf, buf_size);
01749 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
01750 pict->pict_type= AV_PICTURE_TYPE_I;
01751 s->keyframe=1;
01752 s->current_picture.key_frame=1;
01753 goto redo_frame;
01754 }
01755
01756 if(s->qlog == LOSSLESS_QLOG){
01757 for(y=0; y<h; y++){
01758 for(x=0; x<w; x++){
01759 s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
01760 }
01761 }
01762 }else{
01763 for(y=0; y<h; y++){
01764 for(x=0; x<w; x++){
01765 s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
01766 }
01767 }
01768 }
01769
01770
01771
01772
01773 ff_spatial_dwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
01774
01775 if(s->pass1_rc && plane_index==0){
01776 int delta_qlog = ratecontrol_1pass(s, pict);
01777 if (delta_qlog <= INT_MIN)
01778 return -1;
01779 if(delta_qlog){
01780
01781 ff_init_range_encoder(c, buf, buf_size);
01782 memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
01783 memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
01784 encode_header(s);
01785 encode_blocks(s, 0);
01786 }
01787 }
01788
01789 for(level=0; level<s->spatial_decomposition_count; level++){
01790 for(orientation=level ? 1 : 0; orientation<4; orientation++){
01791 SubBand *b= &p->band[level][orientation];
01792
01793 if(!QUANTIZE2)
01794 quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
01795 if(orientation==0)
01796 decorrelate(s, b, b->ibuf, b->stride, pict->pict_type == AV_PICTURE_TYPE_P, 0);
01797 encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
01798 assert(b->parent==NULL || b->parent->stride == b->stride*2);
01799 if(orientation==0)
01800 correlate(s, b, b->ibuf, b->stride, 1, 0);
01801 }
01802 }
01803
01804 for(level=0; level<s->spatial_decomposition_count; level++){
01805 for(orientation=level ? 1 : 0; orientation<4; orientation++){
01806 SubBand *b= &p->band[level][orientation];
01807
01808 dequantize(s, b, b->ibuf, b->stride);
01809 }
01810 }
01811
01812 ff_spatial_idwt(s->spatial_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
01813 if(s->qlog == LOSSLESS_QLOG){
01814 for(y=0; y<h; y++){
01815 for(x=0; x<w; x++){
01816 s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
01817 }
01818 }
01819 }
01820 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
01821 }else{
01822
01823 if(pict->pict_type == AV_PICTURE_TYPE_I){
01824 for(y=0; y<h; y++){
01825 for(x=0; x<w; x++){
01826 s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x]=
01827 pict->data[plane_index][y*pict->linesize[plane_index] + x];
01828 }
01829 }
01830 }else{
01831 memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
01832 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
01833 }
01834 }
01835 if(s->avctx->flags&CODEC_FLAG_PSNR){
01836 int64_t error= 0;
01837
01838 if(pict->data[plane_index])
01839 for(y=0; y<h; y++){
01840 for(x=0; x<w; x++){
01841 int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
01842 error += d*d;
01843 }
01844 }
01845 s->avctx->error[plane_index] += error;
01846 s->current_picture.error[plane_index] = error;
01847 }
01848
01849 }
01850
01851 update_last_header_values(s);
01852
01853 ff_snow_release_buffer(avctx);
01854
01855 s->current_picture.coded_picture_number = avctx->frame_number;
01856 s->current_picture.pict_type = pict->pict_type;
01857 s->current_picture.quality = pict->quality;
01858 s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
01859 s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
01860 s->m.current_picture.f.display_picture_number =
01861 s->m.current_picture.f.coded_picture_number = avctx->frame_number;
01862 s->m.current_picture.f.quality = pict->quality;
01863 s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
01864 if(s->pass1_rc)
01865 if (ff_rate_estimate_qscale(&s->m, 0) < 0)
01866 return -1;
01867 if(avctx->flags&CODEC_FLAG_PASS1)
01868 ff_write_pass1_stats(&s->m);
01869 s->m.last_pict_type = s->m.pict_type;
01870 avctx->frame_bits = s->m.frame_bits;
01871 avctx->mv_bits = s->m.mv_bits;
01872 avctx->misc_bits = s->m.misc_bits;
01873 avctx->p_tex_bits = s->m.p_tex_bits;
01874
01875 emms_c();
01876
01877 return ff_rac_terminate(c);
01878 }
01879
01880 static av_cold int encode_end(AVCodecContext *avctx)
01881 {
01882 SnowContext *s = avctx->priv_data;
01883
01884 ff_snow_common_end(s);
01885 if (s->input_picture.data[0])
01886 avctx->release_buffer(avctx, &s->input_picture);
01887 av_free(avctx->stats_out);
01888
01889 return 0;
01890 }
01891
01892 #define OFFSET(x) offsetof(SnowContext, x)
01893 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
01894 static const AVOption options[] = {
01895 { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { 0 }, 0, 1, VE },
01896 { NULL },
01897 };
01898
01899 static const AVClass snowenc_class = {
01900 .class_name = "snow encoder",
01901 .item_name = av_default_item_name,
01902 .option = options,
01903 .version = LIBAVUTIL_VERSION_INT,
01904 };
01905
01906 AVCodec ff_snow_encoder = {
01907 .name = "snow",
01908 .type = AVMEDIA_TYPE_VIDEO,
01909 .id = CODEC_ID_SNOW,
01910 .priv_data_size = sizeof(SnowContext),
01911 .init = encode_init,
01912 .encode = encode_frame,
01913 .close = encode_end,
01914 .long_name = NULL_IF_CONFIG_SMALL("Snow"),
01915 .priv_class = &snowenc_class,
01916 };
01917 #endif
01918
01919
01920 #ifdef TEST
01921 #undef malloc
01922 #undef free
01923 #undef printf
01924
01925 #include "libavutil/lfg.h"
01926 #include "libavutil/mathematics.h"
01927
01928 int main(void){
01929 int width=256;
01930 int height=256;
01931 int buffer[2][width*height];
01932 SnowContext s;
01933 int i;
01934 AVLFG prng;
01935 s.spatial_decomposition_count=6;
01936 s.spatial_decomposition_type=1;
01937
01938 av_lfg_init(&prng, 1);
01939
01940 printf("testing 5/3 DWT\n");
01941 for(i=0; i<width*height; i++)
01942 buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
01943
01944 ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
01945 ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
01946
01947 for(i=0; i<width*height; i++)
01948 if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
01949
01950 printf("testing 9/7 DWT\n");
01951 s.spatial_decomposition_type=0;
01952 for(i=0; i<width*height; i++)
01953 buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
01954
01955 ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
01956 ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
01957
01958 for(i=0; i<width*height; i++)
01959 if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
01960
01961 {
01962 int level, orientation, x, y;
01963 int64_t errors[8][4];
01964 int64_t g=0;
01965
01966 memset(errors, 0, sizeof(errors));
01967 s.spatial_decomposition_count=3;
01968 s.spatial_decomposition_type=0;
01969 for(level=0; level<s.spatial_decomposition_count; level++){
01970 for(orientation=level ? 1 : 0; orientation<4; orientation++){
01971 int w= width >> (s.spatial_decomposition_count-level);
01972 int h= height >> (s.spatial_decomposition_count-level);
01973 int stride= width << (s.spatial_decomposition_count-level);
01974 DWTELEM *buf= buffer[0];
01975 int64_t error=0;
01976
01977 if(orientation&1) buf+=w;
01978 if(orientation>1) buf+=stride>>1;
01979
01980 memset(buffer[0], 0, sizeof(int)*width*height);
01981 buf[w/2 + h/2*stride]= 256*256;
01982 ff_spatial_idwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
01983 for(y=0; y<height; y++){
01984 for(x=0; x<width; x++){
01985 int64_t d= buffer[0][x + y*width];
01986 error += d*d;
01987 if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
01988 }
01989 if(FFABS(height/2-y)<9 && level==2) printf("\n");
01990 }
01991 error= (int)(sqrt(error)+0.5);
01992 errors[level][orientation]= error;
01993 if(g) g=av_gcd(g, error);
01994 else g= error;
01995 }
01996 }
01997 printf("static int const visual_weight[][4]={\n");
01998 for(level=0; level<s.spatial_decomposition_count; level++){
01999 printf(" {");
02000 for(orientation=0; orientation<4; orientation++){
02001 printf("%8"PRId64",", errors[level][orientation]/g);
02002 }
02003 printf("},\n");
02004 }
02005 printf("};\n");
02006 {
02007 int level=2;
02008 int w= width >> (s.spatial_decomposition_count-level);
02009
02010 int stride= width << (s.spatial_decomposition_count-level);
02011 DWTELEM *buf= buffer[0];
02012 int64_t error=0;
02013
02014 buf+=w;
02015 buf+=stride>>1;
02016
02017 memset(buffer[0], 0, sizeof(int)*width*height);
02018 for(y=0; y<height; y++){
02019 for(x=0; x<width; x++){
02020 int tab[4]={0,2,3,1};
02021 buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
02022 }
02023 }
02024 ff_spatial_dwt(buffer[0], width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
02025 for(y=0; y<height; y++){
02026 for(x=0; x<width; x++){
02027 int64_t d= buffer[0][x + y*width];
02028 error += d*d;
02029 if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
02030 }
02031 if(FFABS(height/2-y)<9) printf("\n");
02032 }
02033 }
02034
02035 }
02036 return 0;
02037 }
02038 #endif