FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
acelp_vectors.c
Go to the documentation of this file.
1 /*
2  * adaptive and fixed codebook vector operations for ACELP-based codecs
3  *
4  * Copyright (c) 2008 Vladimir Voroshilov
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <inttypes.h>
24 
25 #include "libavutil/common.h"
26 #include "avcodec.h"
27 #include "dsputil.h"
28 #include "acelp_vectors.h"
29 
31 {
32  1, 3,
33  6, 8,
34  11, 13,
35  16, 18,
36  21, 23,
37  26, 28,
38  31, 33,
39  36, 38
40 };
42 {
43  1, 3,
44  8, 6,
45  18, 16,
46  11, 13,
47  38, 36,
48  31, 33,
49  21, 23,
50  28, 26,
51 };
52 
54 {
55  0, 2,
56  5, 4,
57  12, 10,
58  7, 9,
59  25, 24,
60  20, 22,
61  14, 15,
62  19, 17,
63  36, 31,
64  21, 26,
65  1, 6,
66  16, 11,
67  27, 29,
68  32, 30,
69  39, 37,
70  34, 35,
71 };
72 
74 {
75  0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
76 };
77 
79 {
80  3, 4,
81  8, 9,
82  13, 14,
83  18, 19,
84  23, 24,
85  28, 29,
86  33, 34,
87  38, 39,
88  43, 44,
89  48, 49,
90  53, 54,
91  58, 59,
92  63, 64,
93  68, 69,
94  73, 74,
95  78, 79,
96 };
97 
98 const float ff_pow_0_7[10] = {
99  0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
100  0.117649, 0.082354, 0.057648, 0.040354, 0.028248
101 };
102 
103 const float ff_pow_0_75[10] = {
104  0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
105  0.177979, 0.133484, 0.100113, 0.075085, 0.056314
106 };
107 
108 const float ff_pow_0_55[10] = {
109  0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
110  0.027681, 0.015224, 0.008373, 0.004605, 0.002533
111 };
112 
113 const float ff_b60_sinc[61] = {
114  0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 ,
115  0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 ,
116 -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 ,
117  0.0689392 , 0.0357056 , 0. , -0.0305481 , -0.0504150 , -0.0570068 ,
118 -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 ,
119  0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 ,
120 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0. , 0.00582886 ,
121  0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 ,
122 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
123  0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 ,
124  0.
125 };
126 
128  int16_t* fc_v,
129  const uint8_t *tab1,
130  const uint8_t *tab2,
131  int pulse_indexes,
132  int pulse_signs,
133  int pulse_count,
134  int bits)
135 {
136  int mask = (1 << bits) - 1;
137  int i;
138 
139  for(i=0; i<pulse_count; i++)
140  {
141  fc_v[i + tab1[pulse_indexes & mask]] +=
142  (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
143 
144  pulse_indexes >>= bits;
145  pulse_signs >>= 1;
146  }
147 
148  fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
149 }
150 
151 void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
152  AMRFixed *fixed_sparse,
153  const uint8_t *gray_decode,
154  int half_pulse_count, int bits)
155 {
156  int i;
157  int mask = (1 << bits) - 1;
158 
159  fixed_sparse->no_repeat_mask = 0;
160  fixed_sparse->n = 2 * half_pulse_count;
161  for (i = 0; i < half_pulse_count; i++) {
162  const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i;
163  const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i;
164  const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
165  fixed_sparse->x[2*i+1] = pos1;
166  fixed_sparse->x[2*i ] = pos2;
167  fixed_sparse->y[2*i+1] = sign;
168  fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign;
169  }
170 }
171 
173  int16_t* out,
174  const int16_t *in_a,
175  const int16_t *in_b,
176  int16_t weight_coeff_a,
177  int16_t weight_coeff_b,
178  int16_t rounder,
179  int shift,
180  int length)
181 {
182  int i;
183 
184  // Clipping required here; breaks OVERFLOW test.
185  for(i=0; i<length; i++)
186  out[i] = av_clip_int16((
187  in_a[i] * weight_coeff_a +
188  in_b[i] * weight_coeff_b +
189  rounder) >> shift);
190 }
191 
192 void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
193  float weight_coeff_a, float weight_coeff_b, int length)
194 {
195  int i;
196 
197  for(i=0; i<length; i++)
198  out[i] = weight_coeff_a * in_a[i]
199  + weight_coeff_b * in_b[i];
200 }
201 
202 void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
203  int size, float alpha, float *gain_mem)
204 {
205  int i;
206  float postfilter_energ = ff_scalarproduct_float_c(in, in, size);
207  float gain_scale_factor = 1.0;
208  float mem = *gain_mem;
209 
210  if (postfilter_energ)
211  gain_scale_factor = sqrt(speech_energ / postfilter_energ);
212 
213  gain_scale_factor *= 1.0 - alpha;
214 
215  for (i = 0; i < size; i++) {
216  mem = alpha * mem + gain_scale_factor;
217  out[i] = in[i] * mem;
218  }
219 
220  *gain_mem = mem;
221 }
222 
223 void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
224  float sum_of_squares, const int n)
225 {
226  int i;
227  float scalefactor = ff_scalarproduct_float_c(in, in, n);
228  if (scalefactor)
229  scalefactor = sqrt(sum_of_squares / scalefactor);
230  for (i = 0; i < n; i++)
231  out[i] = in[i] * scalefactor;
232 }
233 
234 void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
235 {
236  int i;
237 
238  for (i=0; i < in->n; i++) {
239  int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
240  float y = in->y[i] * scale;
241 
242  if (in->pitch_lag > 0)
243  do {
244  out[x] += y;
245  y *= in->pitch_fac;
246  x += in->pitch_lag;
247  } while (x < size && repeats);
248  }
249 }
250 
251 void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
252 {
253  int i;
254 
255  for (i=0; i < in->n; i++) {
256  int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
257 
258  if (in->pitch_lag > 0)
259  do {
260  out[x] = 0.0;
261  x += in->pitch_lag;
262  } while (x < size && repeats);
263  }
264 }
265 
267 {
269 
270  if(HAVE_MIPSFPU)
272 }