45 #define BACKSTEP_SIZE 512
47 #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
92 # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
93 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
94 # define FIXR(x) ((float)(x))
95 # define FIXHR(x) ((float)(x))
96 # define MULH3(x, y, s) ((s)*(y)*(x))
97 # define MULLx(x, y, s) ((y)*(x))
98 # define RENAME(a) a ## _float
99 # define OUT_FMT AV_SAMPLE_FMT_FLT
100 # define OUT_FMT_P AV_SAMPLE_FMT_FLTP
102 # define SHR(a,b) ((a)>>(b))
104 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
105 # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
106 # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
107 # define MULH3(x, y, s) MULH((s)*(x), y)
108 # define MULLx(x, y, s) MULL(x,y,s)
109 # define RENAME(a) a ## _fixed
110 # define OUT_FMT AV_SAMPLE_FMT_S16
111 # define OUT_FMT_P AV_SAMPLE_FMT_S16P
116 #define HEADER_SIZE 4
124 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
125 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
128 0, 128, 128, 128, 130, 128, 154, 166,
129 142, 204, 190, 170, 542, 460, 662, 414
156 #define SCALE_GEN(v) \
157 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
173 for (i = 0; i < 3; i++) {
183 if (s->sample_rate_index != 8)
188 if (s->sample_rate_index <= 2)
190 else if (s->sample_rate_index != 8)
203 l =
FFMIN(ra1 + ra2 + 2, 22);
211 if(s->sample_rate_index == 8)
216 if (s->sample_rate_index <= 2)
234 static inline int l1_unscale(
int n,
int mant,
int scale_factor)
245 return (
int)((val + (1LL << (shift - 1))) >> shift);
259 val = (val + (1 << (shift - 1))) >> shift;
278 m = (m + (1 << (e - 1))) >> e;
289 for (i = 0; i < 64; i++) {
298 for (i = 0; i < 15; i++) {
301 norm = ((INT64_C(1) << n) *
FRAC_ONE) / ((1 << n) - 1);
315 for (i = 1; i < 16; i++) {
318 uint8_t tmp_bits [512] = { 0 };
319 uint16_t tmp_codes[512] = { 0 };
324 for (x = 0; x < xsize; x++) {
325 for (y = 0; y < xsize; y++) {
326 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->
bits [j ];
327 tmp_codes[(x << 5) | y | ((x&&
y)<<4)]= h->
codes[j++];
335 tmp_bits, 1, 1, tmp_codes, 2, 2,
342 for (i = 0; i < 2; i++) {
345 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
352 for (i = 0; i < 9; i++) {
354 for (j = 0; j < 22; j++) {
365 for (i = 0; i < 4; i++) {
368 int val1, val2, val3, steps;
381 for (i = 0; i < 7; i++) {
385 f = tan((
double)i *
M_PI / 12.0);
386 v =
FIXR(f / (1.0 + f));
394 for (i = 7; i < 16; i++)
397 for (i = 0; i < 16; i++) {
401 for (j = 0; j < 2; j++) {
402 e = -(j + 1) * ((i + 1) >> 1);
413 for (i = 0; i < 8; i++) {
416 cs = 1.0 / sqrt(1.0 + ci * ci);
434 static int initialized_tables = 0;
437 if (!initialized_tables) {
439 initialized_tables = 1;
460 #define C3 FIXHR(0.86602540378443864676/2)
461 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
462 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
463 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
472 in1 = in[1*3] + in[0*3];
473 in2 = in[2*3] + in[1*3];
474 in3 = in[3*3] + in[2*3];
475 in4 = in[4*3] + in[3*3];
476 in5 = in[5*3] + in[4*3];
511 int bound, i,
v, n, ch, j, mant;
516 bound = (s->mode_ext + 1) * 4;
521 for (i = 0; i < bound; i++) {
522 for (ch = 0; ch < s->nb_channels; ch++) {
526 for (i = bound; i <
SBLIMIT; i++)
530 for (i = 0; i < bound; i++) {
531 for (ch = 0; ch < s->nb_channels; ch++) {
532 if (allocation[ch][i])
536 for (i = bound; i <
SBLIMIT; i++) {
537 if (allocation[0][i]) {
544 for (j = 0; j < 12; j++) {
545 for (i = 0; i < bound; i++) {
546 for (ch = 0; ch < s->nb_channels; ch++) {
547 n = allocation[ch][i];
550 v =
l1_unscale(n, mant, scale_factors[ch][i]);
557 for (i = bound; i <
SBLIMIT; i++) {
558 n = allocation[0][i];
578 int table, bit_alloc_bits, i, j, ch, bound,
v;
586 s->sample_rate, s->lsf);
591 bound = (s->mode_ext + 1) * 4;
595 av_dlog(s->
avctx,
"bound=%d sblimit=%d\n", bound, sblimit);
603 for (i = 0; i < bound; i++) {
604 bit_alloc_bits = alloc_table[j];
605 for (ch = 0; ch < s->nb_channels; ch++)
606 bit_alloc[ch][i] =
get_bits(&s->
gb, bit_alloc_bits);
607 j += 1 << bit_alloc_bits;
609 for (i = bound; i < sblimit; i++) {
610 bit_alloc_bits = alloc_table[j];
614 j += 1 << bit_alloc_bits;
618 for (i = 0; i < sblimit; i++) {
619 for (ch = 0; ch < s->nb_channels; ch++) {
620 if (bit_alloc[ch][i])
626 for (i = 0; i < sblimit; i++) {
627 for (ch = 0; ch < s->nb_channels; ch++) {
628 if (bit_alloc[ch][i]) {
629 sf = scale_factors[ch][i];
630 switch (scale_code[ch][i]) {
658 for (k = 0; k < 3; k++) {
659 for (l = 0; l < 12; l += 3) {
661 for (i = 0; i < bound; i++) {
662 bit_alloc_bits = alloc_table[j];
663 for (ch = 0; ch < s->nb_channels; ch++) {
664 b = bit_alloc[ch][i];
666 scale = scale_factors[ch][i][k];
667 qindex = alloc_table[j+
b];
683 for (m = 0; m < 3; m++) {
696 j += 1 << bit_alloc_bits;
699 for (i = bound; i < sblimit; i++) {
700 bit_alloc_bits = alloc_table[j];
703 int mant, scale0, scale1;
704 scale0 = scale_factors[0][i][k];
705 scale1 = scale_factors[1][i][k];
706 qindex = alloc_table[j+
b];
729 for (m = 0; m < 3; m++) {
746 j += 1 << bit_alloc_bits;
749 for (i = sblimit; i <
SBLIMIT; i++) {
750 for (ch = 0; ch < s->nb_channels; ch++) {
761 #define SPLIT(dst,sf,n) \
763 int m = (sf * 171) >> 9; \
766 } else if (n == 4) { \
769 } else if (n == 5) { \
770 int m = (sf * 205) >> 10; \
773 } else if (n == 6) { \
774 int m = (sf * 171) >> 10; \
784 SPLIT(slen[3], sf, n3)
785 SPLIT(slen[2], sf, n2)
786 SPLIT(slen[1], sf, n1)
794 int len, i, j, k, l,
v0,
shift, gain, gains[3];
804 v0 = gain - ((g->
scale_factors[i] + pretab[i]) << shift) + 400;
806 for (j = len; j > 0; j--)
818 for (l = 0; l < 3; l++) {
820 for (j = len; j > 0; j--)
855 #define READ_FLIP_SIGN(dst,src) \
856 v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
859 #define READ_FLIP_SIGN(dst,src) \
860 v = -get_bits1(&s->gb); \
861 *(dst) = (*(src) ^ v) - v;
865 int16_t *exponents,
int end_pos2)
869 int last_pos, bits_left;
875 for (i = 0; i < 3; i++) {
876 int j, k, l, linbits;
912 exponent= exponents[s_index];
959 while (s_index <= 572) {
962 if (pos >= end_pos) {
963 if (pos > end_pos2 && last_pos) {
968 av_log(s->
avctx,
AV_LOG_INFO,
"overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
986 static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
988 int pos = s_index + idxtab[code];
989 code ^= 8 >> idxtab[code];
1025 if (s->sample_rate_index != 8)
1037 for (j = len; j > 0; j--) {
1038 *dst++ = ptr[0*
len];
1039 *dst++ = ptr[1*
len];
1040 *dst++ = ptr[2*
len];
1044 memcpy(ptr1, tmp, len * 3 *
sizeof(*ptr1));
1048 #define ISQRT2 FIXR(0.70710678118654752440)
1053 int sf_max, sf,
len, non_zero_found;
1054 INTFLOAT (*is_tab)[16], *tab0, *
tab1, tmp0, tmp1, v1, v2;
1055 int non_zero_found_short[3];
1070 non_zero_found_short[0] = 0;
1071 non_zero_found_short[1] = 0;
1072 non_zero_found_short[2] = 0;
1079 for (l = 2; l >= 0; l--) {
1082 if (!non_zero_found_short[l]) {
1084 for (j = 0; j <
len; j++) {
1086 non_zero_found_short[l] = 1;
1096 for (j = 0; j <
len; j++) {
1106 for (j = 0; j <
len; j++) {
1117 non_zero_found = non_zero_found_short[0] |
1118 non_zero_found_short[1] |
1119 non_zero_found_short[2];
1121 for (i = g1->
long_end - 1;i >= 0;i--) {
1126 if (!non_zero_found) {
1127 for (j = 0; j <
len; j++) {
1134 k = (i == 21) ? 20 : i;
1140 for (j = 0; j <
len; j++) {
1150 for (j = 0; j <
len; j++) {
1168 for (i = 0; i < 576; i++) {
1171 tab0[i] = tmp0 + tmp1;
1172 tab1[i] = tmp0 - tmp1;
1188 #ifndef compute_antialias
1190 #define AA(j) do { \
1191 float tmp0 = ptr[-1-j]; \
1192 float tmp1 = ptr[ j]; \
1193 ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
1194 ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
1197 #define AA(j) do { \
1198 int tmp0 = ptr[-1-j]; \
1199 int tmp1 = ptr[ j]; \
1200 int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
1201 ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
1202 ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
1222 for (i = n; i > 0; i--) {
1240 INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
1242 int i, j, mdct_long_end, sblimit;
1247 while (ptr >= ptr1) {
1251 if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1254 sblimit = ((ptr - g->
sb_hybrid) / 18) + 1;
1263 mdct_long_end = sblimit;
1270 buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
1271 ptr = g->
sb_hybrid + 18 * mdct_long_end;
1273 for (j = mdct_long_end; j < sblimit; j++) {
1275 win =
RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
1276 out_ptr = sb_samples + j;
1278 for (i = 0; i < 6; i++) {
1279 *out_ptr = buf[4*i];
1283 for (i = 0; i < 6; i++) {
1284 *out_ptr =
MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
1285 buf[4*(i + 6*2)] =
MULH3(out2[i + 6], win[i + 6], 1);
1289 for (i = 0; i < 6; i++) {
1290 *out_ptr =
MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
1291 buf[4*(i + 6*0)] =
MULH3(out2[i + 6], win[i + 6], 1);
1295 for (i = 0; i < 6; i++) {
1296 buf[4*(i + 6*0)] =
MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
1297 buf[4*(i + 6*1)] =
MULH3(out2[i + 6], win[i + 6], 1);
1298 buf[4*(i + 6*2)] = 0;
1301 buf += (j&3) != 3 ? 1 : (4*18-3);
1304 for (j = sblimit; j <
SBLIMIT; j++) {
1306 out_ptr = sb_samples + j;
1307 for (i = 0; i < 18; i++) {
1308 *out_ptr = buf[4*i];
1312 buf += (j&3) != 3 ? 1 : (4*18-3);
1319 int nb_granules, main_data_begin;
1320 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1322 int16_t exponents[576];
1331 if (s->nb_channels == 2)
1336 for (ch = 0; ch < s->nb_channels; ch++) {
1342 for (gr = 0; gr < nb_granules; gr++) {
1343 for (ch = 0; ch < s->nb_channels; ch++) {
1364 if (blocksplit_flag) {
1371 for (i = 0; i < 2; i++)
1373 for (i = 0; i < 3; i++)
1377 int region_address1, region_address2;
1380 for (i = 0; i < 3; i++)
1386 region_address1, region_address2);
1414 #if !UNCHECKED_BITSTREAM_READER
1418 for (gr = 0; gr < nb_granules && (s->
last_buf_size >> 3) < main_data_begin; gr++) {
1419 for (ch = 0; ch < s->nb_channels; ch++) {
1438 for (; gr < nb_granules; gr++) {
1439 for (ch = 0; ch < s->nb_channels; ch++) {
1445 int slen, slen1, slen2;
1450 av_dlog(s->
avctx,
"slen1=%d slen2=%d\n", slen1, slen2);
1455 for (i = 0; i < n; i++)
1458 for (i = 0; i < n; i++)
1462 for (i = 0; i < 18; i++)
1464 for (i = 0; i < 3; i++)
1467 for (i = 0; i < 21; i++)
1473 for (k = 0; k < 4; k++) {
1475 if ((g->
scfsi & (0x8 >> k)) == 0) {
1476 slen = (k < 2) ? slen1 : slen2;
1478 for (i = 0; i < n; i++)
1481 for (i = 0; i < n; i++)
1486 for (i = 0; i < n; i++) {
1495 int tindex, tindex2, slen[4], sl, sf;
1510 }
else if (sf < 244) {
1522 }
else if (sf < 500) {
1533 for (k = 0; k < 4; k++) {
1537 for (i = 0; i < n; i++)
1540 for (i = 0; i < n; i++)
1558 for (ch = 0; ch < s->nb_channels; ch++) {
1568 return nb_granules * 18;
1572 const uint8_t *buf,
int buf_size)
1574 int i, nb_frames, ch, ret;
1580 if (s->error_protection)
1619 av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
1639 for (ch = 0; ch < s->nb_channels; ch++) {
1642 samples_ptr = samples[ch];
1645 samples_ptr = samples[0] + ch;
1646 sample_stride = s->nb_channels;
1648 for (i = 0; i < nb_frames; i++) {
1651 RENAME(ff_mpa_synth_window),
1654 samples_ptr += 32 * sample_stride;
1658 return nb_frames * 32 *
sizeof(
OUT_INT) * s->nb_channels;
1665 int buf_size = avpkt->
size;
1670 while(buf_size && !*buf){
1679 if (header>>8 ==
AV_RB32(
"TAG")>>8) {
1699 if (s->frame_size <= 0 || s->frame_size > buf_size) {
1702 }
else if (s->frame_size < buf_size) {
1704 buf_size= s->frame_size;
1741 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
1743 int *got_frame_ptr,
AVPacket *avpkt)
1746 int buf_size = avpkt->
size;
1765 header =
AV_RB32(buf) | 0xffe00000;
1779 s->frame_size =
len;
1795 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
1800 typedef struct MP3On4DecodeContext {
1805 } MP3On4DecodeContext;
1812 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
1815 static const uint8_t chan_offset[8][5] = {
1827 static const int16_t chan_layout[8] = {
1840 MP3On4DecodeContext *s = avctx->
priv_data;
1843 for (i = 0; i < s->frames; i++)
1852 MP3On4DecodeContext *s = avctx->
priv_data;
1873 s->syncword = 0xffe00000;
1875 s->syncword = 0xfff00000;
1884 if (!s->mp3decctx[0])
1891 s->mp3decctx[0]->adu_mode = 1;
1896 for (i = 1; i < s->frames; i++) {
1898 if (!s->mp3decctx[i])
1900 s->mp3decctx[i]->adu_mode = 1;
1901 s->mp3decctx[i]->avctx = avctx;
1902 s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
1907 decode_close_mp3on4(avctx);
1915 MP3On4DecodeContext *s = avctx->
priv_data;
1917 for (i = 0; i < s->frames; i++)
1922 static int decode_frame_mp3on4(
AVCodecContext *avctx,
void *data,
1923 int *got_frame_ptr,
AVPacket *avpkt)
1927 int buf_size = avpkt->
size;
1928 MP3On4DecodeContext *s = avctx->
priv_data;
1930 int fsize, len = buf_size, out_size = 0;
1951 for (fr = 0; fr < s->frames; fr++) {
1954 m = s->mp3decctx[fr];
1961 header = (
AV_RB32(buf) & 0x000fffff) | s->syncword;
1968 if (ch + m->nb_channels > avctx->
channels || s->coff[fr] + m->nb_channels > avctx->
channels) {
1973 ch += m->nb_channels;
1975 outptr[0] = out_samples[s->coff[fr]];
1976 if (m->nb_channels > 1)
1977 outptr[1] = out_samples[s->coff[fr] + 1];
1990 avctx->
sample_rate = s->mp3decctx[0]->sample_rate;
2000 #if CONFIG_MP1_DECODER
2016 #if CONFIG_MP2_DECODER
2032 #if CONFIG_MP3_DECODER
2048 #if CONFIG_MP3ADU_DECODER
2055 .
decode = decode_frame_adu,
2064 #if CONFIG_MP3ON4_DECODER
2069 .priv_data_size =
sizeof(MP3On4DecodeContext),
2070 .
init = decode_init_mp3on4,
2071 .
close = decode_close_mp3on4,
2072 .
decode = decode_frame_mp3on4,
2074 .
flush = flush_mp3on4,