FFmpeg
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rv40.c
Go to the documentation of this file.
1 /*
2  * RV40 decoder
3  * Copyright (c) 2007 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * RV40 decoder
25  */
26 
27 #include "libavutil/imgutils.h"
28 
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "golomb.h"
32 
33 #include "rv34.h"
34 #include "rv40vlc2.h"
35 #include "rv40data.h"
36 
40 
41 static const int16_t mode2_offs[] = {
42  0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
43  7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
44 };
45 
46 /**
47  * Initialize all tables.
48  */
49 static av_cold void rv40_init_tables(void)
50 {
51  int i;
52  static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
53  static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
54  static VLC_TYPE aic_mode2_table[11814][2];
55  static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
56  static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
57 
58  aic_top_vlc.table = aic_table;
59  aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
60  init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
63  for(i = 0; i < AIC_MODE1_NUM; i++){
64  // Every tenth VLC table is empty
65  if((i % 10) == 9) continue;
66  aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
67  aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
68  init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
69  aic_mode1_vlc_bits[i], 1, 1,
71  }
72  for(i = 0; i < AIC_MODE2_NUM; i++){
73  aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
74  aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
75  init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
76  aic_mode2_vlc_bits[i], 1, 1,
78  }
79  for(i = 0; i < NUM_PTYPE_VLCS; i++){
80  ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
81  ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
83  ptype_vlc_bits[i], 1, 1,
84  ptype_vlc_codes[i], 1, 1,
86  }
87  for(i = 0; i < NUM_BTYPE_VLCS; i++){
88  btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
89  btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
91  btype_vlc_bits[i], 1, 1,
92  btype_vlc_codes[i], 1, 1,
94  }
95 }
96 
97 /**
98  * Get stored dimension from bitstream.
99  *
100  * If the width/height is the standard one then it's coded as a 3-bit index.
101  * Otherwise it is coded as escaped 8-bit portions.
102  */
103 static int get_dimension(GetBitContext *gb, const int *dim)
104 {
105  int t = get_bits(gb, 3);
106  int val = dim[t];
107  if(val < 0)
108  val = dim[get_bits1(gb) - val];
109  if(!val){
110  do{
111  t = get_bits(gb, 8);
112  val += t << 2;
113  }while(t == 0xFF);
114  }
115  return val;
116 }
117 
118 /**
119  * Get encoded picture size - usually this is called from rv40_parse_slice_header.
120  */
121 static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
122 {
125 }
126 
128 {
129  int mb_bits;
130  int w = r->s.width, h = r->s.height;
131  int mb_size;
132 
133  memset(si, 0, sizeof(SliceInfo));
134  if(get_bits1(gb))
135  return -1;
136  si->type = get_bits(gb, 2);
137  if(si->type == 1) si->type = 0;
138  si->quant = get_bits(gb, 5);
139  if(get_bits(gb, 2))
140  return -1;
141  si->vlc_set = get_bits(gb, 2);
142  skip_bits1(gb);
143  si->pts = get_bits(gb, 13);
144  if(!si->type || !get_bits1(gb))
145  rv40_parse_picture_size(gb, &w, &h);
146  if(av_image_check_size(w, h, 0, r->s.avctx) < 0)
147  return -1;
148  si->width = w;
149  si->height = h;
150  mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
151  mb_bits = ff_rv34_get_start_offset(gb, mb_size);
152  si->start = get_bits(gb, mb_bits);
153 
154  return 0;
155 }
156 
157 /**
158  * Decode 4x4 intra types array.
159  */
161 {
162  MpegEncContext *s = &r->s;
163  int i, j, k, v;
164  int A, B, C;
165  int pattern;
166  int8_t *ptr;
167 
168  for(i = 0; i < 4; i++, dst += r->intra_types_stride){
169  if(!i && s->first_slice_line){
170  pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
171  dst[0] = (pattern >> 2) & 2;
172  dst[1] = (pattern >> 1) & 2;
173  dst[2] = pattern & 2;
174  dst[3] = (pattern << 1) & 2;
175  continue;
176  }
177  ptr = dst;
178  for(j = 0; j < 4; j++){
179  /* Coefficients are read using VLC chosen by the prediction pattern
180  * The first one (used for retrieving a pair of coefficients) is
181  * constructed from the top, top right and left coefficients
182  * The second one (used for retrieving only one coefficient) is
183  * top + 10 * left.
184  */
185  A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
186  B = ptr[-r->intra_types_stride];
187  C = ptr[-1];
188  pattern = A + (B << 4) + (C << 8);
189  for(k = 0; k < MODE2_PATTERNS_NUM; k++)
190  if(pattern == rv40_aic_table_index[k])
191  break;
192  if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
193  v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
194  *ptr++ = v/9;
195  *ptr++ = v%9;
196  j++;
197  }else{
198  if(B != -1 && C != -1)
199  v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
200  else{ // tricky decoding
201  v = 0;
202  switch(C){
203  case -1: // code 0 -> 1, 1 -> 0
204  if(B < 2)
205  v = get_bits1(gb) ^ 1;
206  break;
207  case 0:
208  case 2: // code 0 -> 2, 1 -> 0
209  v = (get_bits1(gb) ^ 1) << 1;
210  break;
211  }
212  }
213  *ptr++ = v;
214  }
215  }
216  }
217  return 0;
218 }
219 
220 /**
221  * Decode macroblock information.
222  */
224 {
225  MpegEncContext *s = &r->s;
226  GetBitContext *gb = &s->gb;
227  int q, i;
228  int prev_type = 0;
229  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
230 
231  if(!r->s.mb_skip_run) {
232  r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
233  if(r->s.mb_skip_run > (unsigned)s->mb_num)
234  return -1;
235  }
236 
237  if(--r->s.mb_skip_run)
238  return RV34_MB_SKIP;
239 
240  if(r->avail_cache[6-4]){
241  int blocks[RV34_MB_TYPES] = {0};
242  int count = 0;
243  if(r->avail_cache[6-1])
244  blocks[r->mb_type[mb_pos - 1]]++;
245  blocks[r->mb_type[mb_pos - s->mb_stride]]++;
246  if(r->avail_cache[6-2])
247  blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
248  if(r->avail_cache[6-5])
249  blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
250  for(i = 0; i < RV34_MB_TYPES; i++){
251  if(blocks[i] > count){
252  count = blocks[i];
253  prev_type = i;
254  if(count>1)
255  break;
256  }
257  }
258  } else if (r->avail_cache[6-1])
259  prev_type = r->mb_type[mb_pos - 1];
260 
261  if(s->pict_type == AV_PICTURE_TYPE_P){
262  prev_type = block_num_to_ptype_vlc_num[prev_type];
263  q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
264  if(q < PBTYPE_ESCAPE)
265  return q;
266  q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
267  av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
268  }else{
269  prev_type = block_num_to_btype_vlc_num[prev_type];
270  q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
271  if(q < PBTYPE_ESCAPE)
272  return q;
273  q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
274  av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
275  }
276  return 0;
277 }
278 
284 };
285 
286 #define MASK_CUR 0x0001
287 #define MASK_RIGHT 0x0008
288 #define MASK_BOTTOM 0x0010
289 #define MASK_TOP 0x1000
290 #define MASK_Y_TOP_ROW 0x000F
291 #define MASK_Y_LAST_ROW 0xF000
292 #define MASK_Y_LEFT_COL 0x1111
293 #define MASK_Y_RIGHT_COL 0x8888
294 #define MASK_C_TOP_ROW 0x0003
295 #define MASK_C_LAST_ROW 0x000C
296 #define MASK_C_LEFT_COL 0x0005
297 #define MASK_C_RIGHT_COL 0x000A
298 
299 static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
300 static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
301 
303  uint8_t *src, int stride, int dmode,
304  int lim_q1, int lim_p1,
305  int alpha, int beta, int beta2,
306  int chroma, int edge, int dir)
307 {
308  int filter_p1, filter_q1;
309  int strong;
310  int lims;
311 
312  strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
313  edge, &filter_p1, &filter_q1);
314 
315  lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
316 
317  if (strong) {
318  rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
319  lims, dmode, chroma);
320  } else if (filter_p1 & filter_q1) {
321  rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
322  lims, lim_q1, lim_p1);
323  } else if (filter_p1 | filter_q1) {
324  rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
325  alpha, beta, lims >> 1, lim_q1 >> 1,
326  lim_p1 >> 1);
327  }
328 }
329 
330 /**
331  * RV40 loop filtering function
332  */
333 static void rv40_loop_filter(RV34DecContext *r, int row)
334 {
335  MpegEncContext *s = &r->s;
336  int mb_pos, mb_x;
337  int i, j, k;
338  uint8_t *Y, *C;
339  int alpha, beta, betaY, betaC;
340  int q;
341  int mbtype[4]; ///< current macroblock and its neighbours types
342  /**
343  * flags indicating that macroblock can be filtered with strong filter
344  * it is set only for intra coded MB and MB with DCs coded separately
345  */
346  int mb_strong[4];
347  int clip[4]; ///< MB filter clipping value calculated from filtering strength
348  /**
349  * coded block patterns for luma part of current macroblock and its neighbours
350  * Format:
351  * LSB corresponds to the top left block,
352  * each nibble represents one row of subblocks.
353  */
354  int cbp[4];
355  /**
356  * coded block patterns for chroma part of current macroblock and its neighbours
357  * Format is the same as for luma with two subblocks in a row.
358  */
359  int uvcbp[4][2];
360  /**
361  * This mask represents the pattern of luma subblocks that should be filtered
362  * in addition to the coded ones because because they lie at the edge of
363  * 8x8 block with different enough motion vectors
364  */
365  unsigned mvmasks[4];
366 
367  mb_pos = row * s->mb_stride;
368  for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
369  int mbtype = s->current_picture_ptr->f.mb_type[mb_pos];
370  if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
371  r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
372  if(IS_INTRA(mbtype))
373  r->cbp_chroma[mb_pos] = 0xFF;
374  }
375  mb_pos = row * s->mb_stride;
376  for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
377  int y_h_deblock, y_v_deblock;
378  int c_v_deblock[2], c_h_deblock[2];
379  int clip_left;
380  int avail[4];
381  unsigned y_to_deblock;
382  int c_to_deblock[2];
383 
384  q = s->current_picture_ptr->f.qscale_table[mb_pos];
385  alpha = rv40_alpha_tab[q];
386  beta = rv40_beta_tab [q];
387  betaY = betaC = beta * 3;
388  if(s->width * s->height <= 176*144)
389  betaY += beta;
390 
391  avail[0] = 1;
392  avail[1] = row;
393  avail[2] = mb_x;
394  avail[3] = row < s->mb_height - 1;
395  for(i = 0; i < 4; i++){
396  if(avail[i]){
397  int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
398  mvmasks[i] = r->deblock_coefs[pos];
399  mbtype [i] = s->current_picture_ptr->f.mb_type[pos];
400  cbp [i] = r->cbp_luma[pos];
401  uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
402  uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
403  }else{
404  mvmasks[i] = 0;
405  mbtype [i] = mbtype[0];
406  cbp [i] = 0;
407  uvcbp[i][0] = uvcbp[i][1] = 0;
408  }
409  mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
410  clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
411  }
412  y_to_deblock = mvmasks[POS_CUR]
413  | (mvmasks[POS_BOTTOM] << 16);
414  /* This pattern contains bits signalling that horizontal edges of
415  * the current block can be filtered.
416  * That happens when either of adjacent subblocks is coded or lies on
417  * the edge of 8x8 blocks with motion vectors differing by more than
418  * 3/4 pel in any component (any edge orientation for some reason).
419  */
420  y_h_deblock = y_to_deblock
421  | ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
422  | ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
423  /* This pattern contains bits signalling that vertical edges of
424  * the current block can be filtered.
425  * That happens when either of adjacent subblocks is coded or lies on
426  * the edge of 8x8 blocks with motion vectors differing by more than
427  * 3/4 pel in any component (any edge orientation for some reason).
428  */
429  y_v_deblock = y_to_deblock
430  | ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
431  | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
432  if(!mb_x)
433  y_v_deblock &= ~MASK_Y_LEFT_COL;
434  if(!row)
435  y_h_deblock &= ~MASK_Y_TOP_ROW;
436  if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
437  y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
438  /* Calculating chroma patterns is similar and easier since there is
439  * no motion vector pattern for them.
440  */
441  for(i = 0; i < 2; i++){
442  c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
443  c_v_deblock[i] = c_to_deblock[i]
444  | ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
445  | ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
446  c_h_deblock[i] = c_to_deblock[i]
447  | ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
448  | (uvcbp[POS_CUR][i] << 2);
449  if(!mb_x)
450  c_v_deblock[i] &= ~MASK_C_LEFT_COL;
451  if(!row)
452  c_h_deblock[i] &= ~MASK_C_TOP_ROW;
453  if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
454  c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
455  }
456 
457  for(j = 0; j < 16; j += 4){
458  Y = s->current_picture_ptr->f.data[0] + mb_x*16 + (row*16 + j) * s->linesize;
459  for(i = 0; i < 4; i++, Y += 4){
460  int ij = i + j;
461  int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
462  int dither = j ? ij : i*4;
463 
464  // if bottom block is coded then we can filter its top edge
465  // (or bottom edge of this block, which is the same)
466  if(y_h_deblock & (MASK_BOTTOM << ij)){
468  s->linesize, dither,
469  y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
470  clip_cur, alpha, beta, betaY,
471  0, 0, 0);
472  }
473  // filter left block edge in ordinary mode (with low filtering strength)
474  if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
475  if(!i)
476  clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
477  else
478  clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
479  rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
480  clip_cur,
481  clip_left,
482  alpha, beta, betaY, 0, 0, 1);
483  }
484  // filter top edge of the current macroblock when filtering strength is high
485  if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
486  rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
487  clip_cur,
488  mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
489  alpha, beta, betaY, 0, 1, 0);
490  }
491  // filter left block edge in edge mode (with high filtering strength)
492  if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
493  clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
494  rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
495  clip_cur,
496  clip_left,
497  alpha, beta, betaY, 0, 1, 1);
498  }
499  }
500  }
501  for(k = 0; k < 2; k++){
502  for(j = 0; j < 2; j++){
503  C = s->current_picture_ptr->f.data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
504  for(i = 0; i < 2; i++, C += 4){
505  int ij = i + j*2;
506  int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
507  if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
508  int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
510  clip_bot,
511  clip_cur,
512  alpha, beta, betaC, 1, 0, 0);
513  }
514  if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
515  if(!i)
516  clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
517  else
518  clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
519  rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
520  clip_cur,
521  clip_left,
522  alpha, beta, betaC, 1, 0, 1);
523  }
524  if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
525  int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
526  rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
527  clip_cur,
528  clip_top,
529  alpha, beta, betaC, 1, 1, 0);
530  }
531  if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
532  clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
533  rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
534  clip_cur,
535  clip_left,
536  alpha, beta, betaC, 1, 1, 1);
537  }
538  }
539  }
540  }
541  }
542 }
543 
544 /**
545  * Initialize decoder.
546  */
548 {
549  RV34DecContext *r = avctx->priv_data;
550 
551  r->rv30 = 0;
552  ff_rv34_decode_init(avctx);
553  if(!aic_top_vlc.bits)
561  return 0;
562 }
563 
565  .name = "rv40",
566  .type = AVMEDIA_TYPE_VIDEO,
567  .id = AV_CODEC_ID_RV40,
568  .priv_data_size = sizeof(RV34DecContext),
572  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
574  .flush = ff_mpeg_flush,
575  .long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
576  .pix_fmts = ff_pixfmt_list_420,
579 };