FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lagarith.c
Go to the documentation of this file.
1 /*
2  * Lagarith lossless decoder
3  * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Lagarith lossless decoder
25  * @author Nathan Caldwell
26  */
27 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "mathops.h"
31 #include "dsputil.h"
32 #include "lagarithrac.h"
33 #include "thread.h"
34 
36  FRAME_RAW = 1, /**< uncompressed */
37  FRAME_U_RGB24 = 2, /**< unaligned RGB24 */
38  FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */
39  FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */
40  FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */
41  FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */
42  FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
43  FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */
44  FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */
45  FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */
46  FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */
47 };
48 
49 typedef struct LagarithContext {
52  int zeros; /**< number of consecutive zero bytes encountered */
53  int zeros_rem; /**< number of zero bytes remaining to output */
57 
58 /**
59  * Compute the 52bit mantissa of 1/(double)denom.
60  * This crazy format uses floats in an entropy coder and we have to match x86
61  * rounding exactly, thus ordinary floats aren't portable enough.
62  * @param denom denominator
63  * @return 52bit mantissa
64  * @see softfloat_mul
65  */
66 static uint64_t softfloat_reciprocal(uint32_t denom)
67 {
68  int shift = av_log2(denom - 1) + 1;
69  uint64_t ret = (1ULL << 52) / denom;
70  uint64_t err = (1ULL << 52) - ret * denom;
71  ret <<= shift;
72  err <<= shift;
73  err += denom / 2;
74  return ret + err / denom;
75 }
76 
77 /**
78  * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
79  * Used in combination with softfloat_reciprocal computes x/(double)denom.
80  * @param x 32bit integer factor
81  * @param mantissa mantissa of f with exponent 0
82  * @return 32bit integer value (x*f)
83  * @see softfloat_reciprocal
84  */
85 static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
86 {
87  uint64_t l = x * (mantissa & 0xffffffff);
88  uint64_t h = x * (mantissa >> 32);
89  h += l >> 32;
90  l &= 0xffffffff;
91  l += 1 << av_log2(h >> 21);
92  h += l >> 32;
93  return h >> 20;
94 }
95 
96 static uint8_t lag_calc_zero_run(int8_t x)
97 {
98  return (x << 1) ^ (x >> 7);
99 }
100 
101 static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
102 {
103  static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
104  int i;
105  int bit = 0;
106  int bits = 0;
107  int prevbit = 0;
108  unsigned val;
109 
110  for (i = 0; i < 7; i++) {
111  if (prevbit && bit)
112  break;
113  prevbit = bit;
114  bit = get_bits1(gb);
115  if (bit && !prevbit)
116  bits += series[i];
117  }
118  bits--;
119  if (bits < 0 || bits > 31) {
120  *value = 0;
121  return -1;
122  } else if (bits == 0) {
123  *value = 0;
124  return 0;
125  }
126 
127  val = get_bits_long(gb, bits);
128  val |= 1 << bits;
129 
130  *value = val - 1;
131 
132  return 0;
133 }
134 
136 {
137  int i, j, scale_factor;
138  unsigned prob, cumulative_target;
139  unsigned cumul_prob = 0;
140  unsigned scaled_cumul_prob = 0;
141 
142  rac->prob[0] = 0;
143  rac->prob[257] = UINT_MAX;
144  /* Read probabilities from bitstream */
145  for (i = 1; i < 257; i++) {
146  if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
147  av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
148  return -1;
149  }
150  if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
151  av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
152  return -1;
153  }
154  cumul_prob += rac->prob[i];
155  if (!rac->prob[i]) {
156  if (lag_decode_prob(gb, &prob)) {
157  av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
158  return -1;
159  }
160  if (prob > 256 - i)
161  prob = 256 - i;
162  for (j = 0; j < prob; j++)
163  rac->prob[++i] = 0;
164  }
165  }
166 
167  if (!cumul_prob) {
168  av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
169  return -1;
170  }
171 
172  /* Scale probabilities so cumulative probability is an even power of 2. */
173  scale_factor = av_log2(cumul_prob);
174 
175  if (cumul_prob & (cumul_prob - 1)) {
176  uint64_t mul = softfloat_reciprocal(cumul_prob);
177  for (i = 1; i <= 128; i++) {
178  rac->prob[i] = softfloat_mul(rac->prob[i], mul);
179  scaled_cumul_prob += rac->prob[i];
180  }
181  if (scaled_cumul_prob <= 0) {
182  av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
183  return AVERROR_INVALIDDATA;
184  }
185  for (; i < 257; i++) {
186  rac->prob[i] = softfloat_mul(rac->prob[i], mul);
187  scaled_cumul_prob += rac->prob[i];
188  }
189 
190  scale_factor++;
191  cumulative_target = 1 << scale_factor;
192 
193  if (scaled_cumul_prob > cumulative_target) {
194  av_log(rac->avctx, AV_LOG_ERROR,
195  "Scaled probabilities are larger than target!\n");
196  return -1;
197  }
198 
199  scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
200 
201  for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
202  if (rac->prob[i]) {
203  rac->prob[i]++;
204  scaled_cumul_prob--;
205  }
206  /* Comment from reference source:
207  * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
208  * // since the compression change is negligible and fixing it
209  * // breaks backwards compatibility
210  * b =- (signed int)b;
211  * b &= 0xFF;
212  * } else {
213  * b++;
214  * b &= 0x7f;
215  * }
216  */
217  }
218  }
219 
220  rac->scale = scale_factor;
221 
222  /* Fill probability array with cumulative probability for each symbol. */
223  for (i = 1; i < 257; i++)
224  rac->prob[i] += rac->prob[i - 1];
225 
226  return 0;
227 }
228 
229 static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
230  uint8_t *diff, int w, int *left,
231  int *left_top)
232 {
233  /* This is almost identical to add_hfyu_median_prediction in dsputil.h.
234  * However the &0xFF on the gradient predictor yealds incorrect output
235  * for lagarith.
236  */
237  int i;
238  uint8_t l, lt;
239 
240  l = *left;
241  lt = *left_top;
242 
243  for (i = 0; i < w; i++) {
244  l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
245  lt = src1[i];
246  dst[i] = l;
247  }
248 
249  *left = l;
250  *left_top = lt;
251 }
252 
254  int width, int stride, int line)
255 {
256  int L, TL;
257 
258  if (!line) {
259  /* Left prediction only for first line */
260  L = l->dsp.add_hfyu_left_prediction(buf, buf,
261  width, 0);
262  } else {
263  /* Left pixel is actually prev_row[width] */
264  L = buf[width - stride - 1];
265 
266  if (line == 1) {
267  /* Second line, left predict first pixel, the rest of the line is median predicted
268  * NOTE: In the case of RGB this pixel is top predicted */
269  TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
270  } else {
271  /* Top left is 2 rows back, last pixel */
272  TL = buf[width - (2 * stride) - 1];
273  }
274 
275  add_lag_median_prediction(buf, buf - stride, buf,
276  width, &L, &TL);
277  }
278 }
279 
281  int width, int stride, int line,
282  int is_luma)
283 {
284  int L, TL;
285 
286  if (!line) {
287  L= buf[0];
288  if (is_luma)
289  buf[0] = 0;
290  l->dsp.add_hfyu_left_prediction(buf, buf, width, 0);
291  if (is_luma)
292  buf[0] = L;
293  return;
294  }
295  if (line == 1) {
296  const int HEAD = is_luma ? 4 : 2;
297  int i;
298 
299  L = buf[width - stride - 1];
300  TL = buf[HEAD - stride - 1];
301  for (i = 0; i < HEAD; i++) {
302  L += buf[i];
303  buf[i] = L;
304  }
305  for (; i<width; i++) {
306  L = mid_pred(L&0xFF, buf[i-stride], (L + buf[i-stride] - TL)&0xFF) + buf[i];
307  TL = buf[i-stride];
308  buf[i]= L;
309  }
310  } else {
311  TL = buf[width - (2 * stride) - 1];
312  L = buf[width - stride - 1];
313  l->dsp.add_hfyu_median_prediction(buf, buf - stride, buf, width,
314  &L, &TL);
315  }
316 }
317 
319  uint8_t *dst, int width, int stride,
320  int esc_count)
321 {
322  int i = 0;
323  int ret = 0;
324 
325  if (!esc_count)
326  esc_count = -1;
327 
328  /* Output any zeros remaining from the previous run */
329 handle_zeros:
330  if (l->zeros_rem) {
331  int count = FFMIN(l->zeros_rem, width - i);
332  memset(dst + i, 0, count);
333  i += count;
334  l->zeros_rem -= count;
335  }
336 
337  while (i < width) {
338  dst[i] = lag_get_rac(rac);
339  ret++;
340 
341  if (dst[i])
342  l->zeros = 0;
343  else
344  l->zeros++;
345 
346  i++;
347  if (l->zeros == esc_count) {
348  int index = lag_get_rac(rac);
349  ret++;
350 
351  l->zeros = 0;
352 
353  l->zeros_rem = lag_calc_zero_run(index);
354  goto handle_zeros;
355  }
356  }
357  return ret;
358 }
359 
361  const uint8_t *src, const uint8_t *src_end,
362  int width, int esc_count)
363 {
364  int i = 0;
365  int count;
366  uint8_t zero_run = 0;
367  const uint8_t *src_start = src;
368  uint8_t mask1 = -(esc_count < 2);
369  uint8_t mask2 = -(esc_count < 3);
370  uint8_t *end = dst + (width - 2);
371 
372 output_zeros:
373  if (l->zeros_rem) {
374  count = FFMIN(l->zeros_rem, width - i);
375  if (end - dst < count) {
376  av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
377  return AVERROR_INVALIDDATA;
378  }
379 
380  memset(dst, 0, count);
381  l->zeros_rem -= count;
382  dst += count;
383  }
384 
385  while (dst < end) {
386  i = 0;
387  while (!zero_run && dst + i < end) {
388  i++;
389  if (i+2 >= src_end - src)
390  return AVERROR_INVALIDDATA;
391  zero_run =
392  !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
393  }
394  if (zero_run) {
395  zero_run = 0;
396  i += esc_count;
397  memcpy(dst, src, i);
398  dst += i;
399  l->zeros_rem = lag_calc_zero_run(src[i]);
400 
401  src += i + 1;
402  goto output_zeros;
403  } else {
404  memcpy(dst, src, i);
405  src += i;
406  dst += i;
407  }
408  }
409  return src - src_start;
410 }
411 
412 
413 
415  int width, int height, int stride,
416  const uint8_t *src, int src_size)
417 {
418  int i = 0;
419  int read = 0;
420  uint32_t length;
421  uint32_t offset = 1;
422  int esc_count;
423  GetBitContext gb;
424  lag_rac rac;
425  const uint8_t *src_end = src + src_size;
426 
427  rac.avctx = l->avctx;
428  l->zeros = 0;
429 
430  if(src_size < 2)
431  return AVERROR_INVALIDDATA;
432 
433  esc_count = src[0];
434  if (esc_count < 4) {
435  length = width * height;
436  if(src_size < 5)
437  return AVERROR_INVALIDDATA;
438  if (esc_count && AV_RL32(src + 1) < length) {
439  length = AV_RL32(src + 1);
440  offset += 4;
441  }
442 
443  init_get_bits(&gb, src + offset, src_size * 8);
444 
445  if (lag_read_prob_header(&rac, &gb) < 0)
446  return -1;
447 
448  ff_lag_rac_init(&rac, &gb, length - stride);
449 
450  for (i = 0; i < height; i++)
451  read += lag_decode_line(l, &rac, dst + (i * stride), width,
452  stride, esc_count);
453 
454  if (read > length)
456  "Output more bytes than length (%d of %d)\n", read,
457  length);
458  } else if (esc_count < 8) {
459  esc_count -= 4;
460  if (esc_count > 0) {
461  /* Zero run coding only, no range coding. */
462  for (i = 0; i < height; i++) {
463  int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
464  src_end, width, esc_count);
465  if (res < 0)
466  return res;
467  src += res;
468  }
469  } else {
470  if (src_size < width * height)
471  return AVERROR_INVALIDDATA; // buffer not big enough
472  /* Plane is stored uncompressed */
473  for (i = 0; i < height; i++) {
474  memcpy(dst + (i * stride), src, width);
475  src += width;
476  }
477  }
478  } else if (esc_count == 0xff) {
479  /* Plane is a solid run of given value */
480  for (i = 0; i < height; i++)
481  memset(dst + i * stride, src[1], width);
482  /* Do not apply prediction.
483  Note: memset to 0 above, setting first value to src[1]
484  and applying prediction gives the same result. */
485  return 0;
486  } else {
488  "Invalid zero run escape code! (%#x)\n", esc_count);
489  return -1;
490  }
491 
492  if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
493  for (i = 0; i < height; i++) {
494  lag_pred_line(l, dst, width, stride, i);
495  dst += stride;
496  }
497  } else {
498  for (i = 0; i < height; i++) {
499  lag_pred_line_yuy2(l, dst, width, stride, i,
500  width == l->avctx->width);
501  dst += stride;
502  }
503  }
504 
505  return 0;
506 }
507 
508 /**
509  * Decode a frame.
510  * @param avctx codec context
511  * @param data output AVFrame
512  * @param data_size size of output data or 0 if no picture is returned
513  * @param avpkt input packet
514  * @return number of consumed bytes on success or negative if decode fails
515  */
517  void *data, int *got_frame, AVPacket *avpkt)
518 {
519  const uint8_t *buf = avpkt->data;
520  unsigned int buf_size = avpkt->size;
521  LagarithContext *l = avctx->priv_data;
522  ThreadFrame frame = { .f = data };
523  AVFrame *const p = data;
524  uint8_t frametype = 0;
525  uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
526  uint32_t offs[4];
527  uint8_t *srcs[4], *dst;
528  int i, j, planes = 3;
529  int ret;
530 
531  p->key_frame = 1;
532 
533  frametype = buf[0];
534 
535  offset_gu = AV_RL32(buf + 1);
536  offset_bv = AV_RL32(buf + 5);
537 
538  switch (frametype) {
539  case FRAME_SOLID_RGBA:
540  avctx->pix_fmt = AV_PIX_FMT_RGB32;
541  case FRAME_SOLID_GRAY:
542  if (frametype == FRAME_SOLID_GRAY)
543  if (avctx->bits_per_coded_sample == 24) {
544  avctx->pix_fmt = AV_PIX_FMT_RGB24;
545  } else {
546  avctx->pix_fmt = AV_PIX_FMT_0RGB32;
547  planes = 4;
548  }
549 
550  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
551  return ret;
552 
553  dst = p->data[0];
554  if (frametype == FRAME_SOLID_RGBA) {
555  for (j = 0; j < avctx->height; j++) {
556  for (i = 0; i < avctx->width; i++)
557  AV_WN32(dst + i * 4, offset_gu);
558  dst += p->linesize[0];
559  }
560  } else {
561  for (j = 0; j < avctx->height; j++) {
562  memset(dst, buf[1], avctx->width * planes);
563  dst += p->linesize[0];
564  }
565  }
566  break;
567  case FRAME_SOLID_COLOR:
568  if (avctx->bits_per_coded_sample == 24) {
569  avctx->pix_fmt = AV_PIX_FMT_RGB24;
570  } else {
571  avctx->pix_fmt = AV_PIX_FMT_RGB32;
572  offset_gu |= 0xFFU << 24;
573  }
574 
575  if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
576  return ret;
577 
578  dst = p->data[0];
579  for (j = 0; j < avctx->height; j++) {
580  for (i = 0; i < avctx->width; i++)
581  if (avctx->bits_per_coded_sample == 24) {
582  AV_WB24(dst + i * 3, offset_gu);
583  } else {
584  AV_WN32(dst + i * 4, offset_gu);
585  }
586  dst += p->linesize[0];
587  }
588  break;
589  case FRAME_ARITH_RGBA:
590  avctx->pix_fmt = AV_PIX_FMT_RGB32;
591  planes = 4;
592  offset_ry += 4;
593  offs[3] = AV_RL32(buf + 9);
594  case FRAME_ARITH_RGB24:
595  case FRAME_U_RGB24:
596  if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
597  avctx->pix_fmt = AV_PIX_FMT_RGB24;
598 
599  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
600  return ret;
601 
602  offs[0] = offset_bv;
603  offs[1] = offset_gu;
604  offs[2] = offset_ry;
605 
606  if (!l->rgb_planes) {
607  l->rgb_stride = FFALIGN(avctx->width, 16);
608  l->rgb_planes = av_malloc(l->rgb_stride * avctx->height * 4 + 16);
609  if (!l->rgb_planes) {
610  av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
611  return AVERROR(ENOMEM);
612  }
613  }
614  for (i = 0; i < planes; i++)
615  srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
616  for (i = 0; i < planes; i++)
617  if (buf_size <= offs[i]) {
618  av_log(avctx, AV_LOG_ERROR,
619  "Invalid frame offsets\n");
620  return AVERROR_INVALIDDATA;
621  }
622 
623  for (i = 0; i < planes; i++)
624  lag_decode_arith_plane(l, srcs[i],
625  avctx->width, avctx->height,
626  -l->rgb_stride, buf + offs[i],
627  buf_size - offs[i]);
628  dst = p->data[0];
629  for (i = 0; i < planes; i++)
630  srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
631  for (j = 0; j < avctx->height; j++) {
632  for (i = 0; i < avctx->width; i++) {
633  uint8_t r, g, b, a;
634  r = srcs[0][i];
635  g = srcs[1][i];
636  b = srcs[2][i];
637  r += g;
638  b += g;
639  if (frametype == FRAME_ARITH_RGBA) {
640  a = srcs[3][i];
641  AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
642  } else {
643  dst[i * 3 + 0] = r;
644  dst[i * 3 + 1] = g;
645  dst[i * 3 + 2] = b;
646  }
647  }
648  dst += p->linesize[0];
649  for (i = 0; i < planes; i++)
650  srcs[i] += l->rgb_stride;
651  }
652  break;
653  case FRAME_ARITH_YUY2:
654  avctx->pix_fmt = AV_PIX_FMT_YUV422P;
655 
656  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
657  return ret;
658 
659  if (offset_ry >= buf_size ||
660  offset_gu >= buf_size ||
661  offset_bv >= buf_size) {
662  av_log(avctx, AV_LOG_ERROR,
663  "Invalid frame offsets\n");
664  return AVERROR_INVALIDDATA;
665  }
666 
667  lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
668  p->linesize[0], buf + offset_ry,
669  buf_size - offset_ry);
670  lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
671  avctx->height, p->linesize[1],
672  buf + offset_gu, buf_size - offset_gu);
673  lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
674  avctx->height, p->linesize[2],
675  buf + offset_bv, buf_size - offset_bv);
676  break;
677  case FRAME_ARITH_YV12:
678  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
679 
680  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
681  return ret;
682  if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) {
683  return AVERROR_INVALIDDATA;
684  }
685 
686  if (offset_ry >= buf_size ||
687  offset_gu >= buf_size ||
688  offset_bv >= buf_size) {
689  av_log(avctx, AV_LOG_ERROR,
690  "Invalid frame offsets\n");
691  return AVERROR_INVALIDDATA;
692  }
693 
694  lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
695  p->linesize[0], buf + offset_ry,
696  buf_size - offset_ry);
697  lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
698  avctx->height / 2, p->linesize[2],
699  buf + offset_gu, buf_size - offset_gu);
700  lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
701  avctx->height / 2, p->linesize[1],
702  buf + offset_bv, buf_size - offset_bv);
703  break;
704  default:
705  av_log(avctx, AV_LOG_ERROR,
706  "Unsupported Lagarith frame type: %#x\n", frametype);
707  return AVERROR_PATCHWELCOME;
708  }
709 
710  *got_frame = 1;
711 
712  return buf_size;
713 }
714 
716 {
717  LagarithContext *l = avctx->priv_data;
718  l->avctx = avctx;
719 
720  ff_dsputil_init(&l->dsp, avctx);
721 
722  return 0;
723 }
724 
726 {
727  LagarithContext *l = avctx->priv_data;
728 
729  av_freep(&l->rgb_planes);
730 
731  return 0;
732 }
733 
735  .name = "lagarith",
736  .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
737  .type = AVMEDIA_TYPE_VIDEO,
738  .id = AV_CODEC_ID_LAGARITH,
739  .priv_data_size = sizeof(LagarithContext),
743  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
744 };