FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aacdec.c
Go to the documentation of this file.
1 /*
2  * AAC decoder
3  * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4  * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
5  * Copyright (c) 2008-2013 Alex Converse <alex.converse@gmail.com>
6  *
7  * AAC LATM decoder
8  * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
9  * Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net>
10  *
11  * This file is part of FFmpeg.
12  *
13  * FFmpeg is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2.1 of the License, or (at your option) any later version.
17  *
18  * FFmpeg is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with FFmpeg; if not, write to the Free Software
25  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26  */
27 
28 /**
29  * @file
30  * AAC decoder
31  * @author Oded Shimon ( ods15 ods15 dyndns org )
32  * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
33  */
34 
35 /*
36  * supported tools
37  *
38  * Support? Name
39  * N (code in SoC repo) gain control
40  * Y block switching
41  * Y window shapes - standard
42  * N window shapes - Low Delay
43  * Y filterbank - standard
44  * N (code in SoC repo) filterbank - Scalable Sample Rate
45  * Y Temporal Noise Shaping
46  * Y Long Term Prediction
47  * Y intensity stereo
48  * Y channel coupling
49  * Y frequency domain prediction
50  * Y Perceptual Noise Substitution
51  * Y Mid/Side stereo
52  * N Scalable Inverse AAC Quantization
53  * N Frequency Selective Switch
54  * N upsampling filter
55  * Y quantization & coding - AAC
56  * N quantization & coding - TwinVQ
57  * N quantization & coding - BSAC
58  * N AAC Error Resilience tools
59  * N Error Resilience payload syntax
60  * N Error Protection tool
61  * N CELP
62  * N Silence Compression
63  * N HVXC
64  * N HVXC 4kbits/s VR
65  * N Structured Audio tools
66  * N Structured Audio Sample Bank Format
67  * N MIDI
68  * N Harmonic and Individual Lines plus Noise
69  * N Text-To-Speech Interface
70  * Y Spectral Band Replication
71  * Y (not in this code) Layer-1
72  * Y (not in this code) Layer-2
73  * Y (not in this code) Layer-3
74  * N SinuSoidal Coding (Transient, Sinusoid, Noise)
75  * Y Parametric Stereo
76  * N Direct Stream Transfer
77  *
78  * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
79  * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
80  Parametric Stereo.
81  */
82 
83 #include "libavutil/float_dsp.h"
84 #include "libavutil/opt.h"
85 #include "avcodec.h"
86 #include "internal.h"
87 #include "get_bits.h"
88 #include "fft.h"
89 #include "fmtconvert.h"
90 #include "lpc.h"
91 #include "kbdwin.h"
92 #include "sinewin.h"
93 
94 #include "aac.h"
95 #include "aactab.h"
96 #include "aacdectab.h"
97 #include "cbrt_tablegen.h"
98 #include "sbr.h"
99 #include "aacsbr.h"
100 #include "mpeg4audio.h"
101 #include "aacadtsdec.h"
102 #include "libavutil/intfloat.h"
103 
104 #include <assert.h>
105 #include <errno.h>
106 #include <math.h>
107 #include <string.h>
108 
109 #if ARCH_ARM
110 # include "arm/aac.h"
111 #elif ARCH_MIPS
112 # include "mips/aacdec_mips.h"
113 #endif
114 
116 static VLC vlc_spectral[11];
117 
118 static int output_configure(AACContext *ac,
119  uint8_t layout_map[MAX_ELEM_ID*4][3], int tags,
120  enum OCStatus oc_type, int get_new_frame);
121 
122 #define overread_err "Input buffer exhausted before END element found\n"
123 
124 static int count_channels(uint8_t (*layout)[3], int tags)
125 {
126  int i, sum = 0;
127  for (i = 0; i < tags; i++) {
128  int syn_ele = layout[i][0];
129  int pos = layout[i][2];
130  sum += (1 + (syn_ele == TYPE_CPE)) *
131  (pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC);
132  }
133  return sum;
134 }
135 
136 /**
137  * Check for the channel element in the current channel position configuration.
138  * If it exists, make sure the appropriate element is allocated and map the
139  * channel order to match the internal FFmpeg channel layout.
140  *
141  * @param che_pos current channel position configuration
142  * @param type channel element type
143  * @param id channel element id
144  * @param channels count of the number of channels in the configuration
145  *
146  * @return Returns error status. 0 - OK, !0 - error
147  */
149  enum ChannelPosition che_pos,
150  int type, int id, int *channels)
151 {
152  if (*channels >= MAX_CHANNELS)
153  return AVERROR_INVALIDDATA;
154  if (che_pos) {
155  if (!ac->che[type][id]) {
156  if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
157  return AVERROR(ENOMEM);
158  ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
159  }
160  if (type != TYPE_CCE) {
161  if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) {
162  av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n");
163  return AVERROR_INVALIDDATA;
164  }
165  ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0];
166  if (type == TYPE_CPE ||
167  (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) {
168  ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1];
169  }
170  }
171  } else {
172  if (ac->che[type][id])
173  ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
174  av_freep(&ac->che[type][id]);
175  }
176  return 0;
177 }
178 
180 {
181  AACContext *ac = avctx->priv_data;
182  int type, id, ch, ret;
183 
184  /* set channel pointers to internal buffers by default */
185  for (type = 0; type < 4; type++) {
186  for (id = 0; id < MAX_ELEM_ID; id++) {
187  ChannelElement *che = ac->che[type][id];
188  if (che) {
189  che->ch[0].ret = che->ch[0].ret_buf;
190  che->ch[1].ret = che->ch[1].ret_buf;
191  }
192  }
193  }
194 
195  /* get output buffer */
196  av_frame_unref(ac->frame);
197  if (!avctx->channels)
198  return 1;
199 
200  ac->frame->nb_samples = 2048;
201  if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0)
202  return ret;
203 
204  /* map output channel pointers to AVFrame data */
205  for (ch = 0; ch < avctx->channels; ch++) {
206  if (ac->output_element[ch])
207  ac->output_element[ch]->ret = (float *)ac->frame->extended_data[ch];
208  }
209 
210  return 0;
211 }
212 
214  uint64_t av_position;
218 };
219 
220 static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID],
221  uint8_t (*layout_map)[3], int offset, uint64_t left,
222  uint64_t right, int pos)
223 {
224  if (layout_map[offset][0] == TYPE_CPE) {
225  e2c_vec[offset] = (struct elem_to_channel) {
226  .av_position = left | right,
227  .syn_ele = TYPE_CPE,
228  .elem_id = layout_map[offset][1],
229  .aac_position = pos
230  };
231  return 1;
232  } else {
233  e2c_vec[offset] = (struct elem_to_channel) {
234  .av_position = left,
235  .syn_ele = TYPE_SCE,
236  .elem_id = layout_map[offset][1],
237  .aac_position = pos
238  };
239  e2c_vec[offset + 1] = (struct elem_to_channel) {
240  .av_position = right,
241  .syn_ele = TYPE_SCE,
242  .elem_id = layout_map[offset + 1][1],
243  .aac_position = pos
244  };
245  return 2;
246  }
247 }
248 
249 static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos,
250  int *current)
251 {
252  int num_pos_channels = 0;
253  int first_cpe = 0;
254  int sce_parity = 0;
255  int i;
256  for (i = *current; i < tags; i++) {
257  if (layout_map[i][2] != pos)
258  break;
259  if (layout_map[i][0] == TYPE_CPE) {
260  if (sce_parity) {
261  if (pos == AAC_CHANNEL_FRONT && !first_cpe) {
262  sce_parity = 0;
263  } else {
264  return -1;
265  }
266  }
267  num_pos_channels += 2;
268  first_cpe = 1;
269  } else {
270  num_pos_channels++;
271  sce_parity ^= 1;
272  }
273  }
274  if (sce_parity &&
275  ((pos == AAC_CHANNEL_FRONT && first_cpe) || pos == AAC_CHANNEL_SIDE))
276  return -1;
277  *current = i;
278  return num_pos_channels;
279 }
280 
281 static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags)
282 {
283  int i, n, total_non_cc_elements;
284  struct elem_to_channel e2c_vec[4 * MAX_ELEM_ID] = { { 0 } };
285  int num_front_channels, num_side_channels, num_back_channels;
286  uint64_t layout;
287 
288  if (FF_ARRAY_ELEMS(e2c_vec) < tags)
289  return 0;
290 
291  i = 0;
292  num_front_channels =
293  count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i);
294  if (num_front_channels < 0)
295  return 0;
296  num_side_channels =
297  count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i);
298  if (num_side_channels < 0)
299  return 0;
300  num_back_channels =
301  count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i);
302  if (num_back_channels < 0)
303  return 0;
304 
305  i = 0;
306  if (num_front_channels & 1) {
307  e2c_vec[i] = (struct elem_to_channel) {
309  .syn_ele = TYPE_SCE,
310  .elem_id = layout_map[i][1],
311  .aac_position = AAC_CHANNEL_FRONT
312  };
313  i++;
314  num_front_channels--;
315  }
316  if (num_front_channels >= 4) {
317  i += assign_pair(e2c_vec, layout_map, i,
321  num_front_channels -= 2;
322  }
323  if (num_front_channels >= 2) {
324  i += assign_pair(e2c_vec, layout_map, i,
328  num_front_channels -= 2;
329  }
330  while (num_front_channels >= 2) {
331  i += assign_pair(e2c_vec, layout_map, i,
332  UINT64_MAX,
333  UINT64_MAX,
335  num_front_channels -= 2;
336  }
337 
338  if (num_side_channels >= 2) {
339  i += assign_pair(e2c_vec, layout_map, i,
343  num_side_channels -= 2;
344  }
345  while (num_side_channels >= 2) {
346  i += assign_pair(e2c_vec, layout_map, i,
347  UINT64_MAX,
348  UINT64_MAX,
350  num_side_channels -= 2;
351  }
352 
353  while (num_back_channels >= 4) {
354  i += assign_pair(e2c_vec, layout_map, i,
355  UINT64_MAX,
356  UINT64_MAX,
358  num_back_channels -= 2;
359  }
360  if (num_back_channels >= 2) {
361  i += assign_pair(e2c_vec, layout_map, i,
365  num_back_channels -= 2;
366  }
367  if (num_back_channels) {
368  e2c_vec[i] = (struct elem_to_channel) {
370  .syn_ele = TYPE_SCE,
371  .elem_id = layout_map[i][1],
372  .aac_position = AAC_CHANNEL_BACK
373  };
374  i++;
375  num_back_channels--;
376  }
377 
378  if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
379  e2c_vec[i] = (struct elem_to_channel) {
381  .syn_ele = TYPE_LFE,
382  .elem_id = layout_map[i][1],
383  .aac_position = AAC_CHANNEL_LFE
384  };
385  i++;
386  }
387  while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
388  e2c_vec[i] = (struct elem_to_channel) {
389  .av_position = UINT64_MAX,
390  .syn_ele = TYPE_LFE,
391  .elem_id = layout_map[i][1],
392  .aac_position = AAC_CHANNEL_LFE
393  };
394  i++;
395  }
396 
397  // Must choose a stable sort
398  total_non_cc_elements = n = i;
399  do {
400  int next_n = 0;
401  for (i = 1; i < n; i++)
402  if (e2c_vec[i - 1].av_position > e2c_vec[i].av_position) {
403  FFSWAP(struct elem_to_channel, e2c_vec[i - 1], e2c_vec[i]);
404  next_n = i;
405  }
406  n = next_n;
407  } while (n > 0);
408 
409  layout = 0;
410  for (i = 0; i < total_non_cc_elements; i++) {
411  layout_map[i][0] = e2c_vec[i].syn_ele;
412  layout_map[i][1] = e2c_vec[i].elem_id;
413  layout_map[i][2] = e2c_vec[i].aac_position;
414  if (e2c_vec[i].av_position != UINT64_MAX) {
415  layout |= e2c_vec[i].av_position;
416  }
417  }
418 
419  return layout;
420 }
421 
422 /**
423  * Save current output configuration if and only if it has been locked.
424  */
426  if (ac->oc[1].status == OC_LOCKED) {
427  ac->oc[0] = ac->oc[1];
428  }
429  ac->oc[1].status = OC_NONE;
430 }
431 
432 /**
433  * Restore the previous output configuration if and only if the current
434  * configuration is unlocked.
435  */
437  if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) {
438  ac->oc[1] = ac->oc[0];
439  ac->avctx->channels = ac->oc[1].channels;
440  ac->avctx->channel_layout = ac->oc[1].channel_layout;
441  output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags,
442  ac->oc[1].status, 0);
443  }
444 }
445 
446 /**
447  * Configure output channel order based on the current program
448  * configuration element.
449  *
450  * @return Returns error status. 0 - OK, !0 - error
451  */
453  uint8_t layout_map[MAX_ELEM_ID * 4][3], int tags,
454  enum OCStatus oc_type, int get_new_frame)
455 {
456  AVCodecContext *avctx = ac->avctx;
457  int i, channels = 0, ret;
458  uint64_t layout = 0;
459 
460  if (ac->oc[1].layout_map != layout_map) {
461  memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0]));
462  ac->oc[1].layout_map_tags = tags;
463  }
464 
465  // Try to sniff a reasonable channel order, otherwise output the
466  // channels in the order the PCE declared them.
468  layout = sniff_channel_order(layout_map, tags);
469  for (i = 0; i < tags; i++) {
470  int type = layout_map[i][0];
471  int id = layout_map[i][1];
472  int position = layout_map[i][2];
473  // Allocate or free elements depending on if they are in the
474  // current program configuration.
475  ret = che_configure(ac, position, type, id, &channels);
476  if (ret < 0)
477  return ret;
478  }
479  if (ac->oc[1].m4ac.ps == 1 && channels == 2) {
480  if (layout == AV_CH_FRONT_CENTER) {
482  } else {
483  layout = 0;
484  }
485  }
486 
487  memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
488  if (layout) avctx->channel_layout = layout;
489  ac->oc[1].channel_layout = layout;
490  avctx->channels = ac->oc[1].channels = channels;
491  ac->oc[1].status = oc_type;
492 
493  if (get_new_frame) {
494  if ((ret = frame_configure_elements(ac->avctx)) < 0)
495  return ret;
496  }
497 
498  return 0;
499 }
500 
501 static void flush(AVCodecContext *avctx)
502 {
503  AACContext *ac= avctx->priv_data;
504  int type, i, j;
505 
506  for (type = 3; type >= 0; type--) {
507  for (i = 0; i < MAX_ELEM_ID; i++) {
508  ChannelElement *che = ac->che[type][i];
509  if (che) {
510  for (j = 0; j <= 1; j++) {
511  memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved));
512  }
513  }
514  }
515  }
516 }
517 
518 /**
519  * Set up channel positions based on a default channel configuration
520  * as specified in table 1.17.
521  *
522  * @return Returns error status. 0 - OK, !0 - error
523  */
525  uint8_t (*layout_map)[3],
526  int *tags,
527  int channel_config)
528 {
529  if (channel_config < 1 || channel_config > 7) {
530  av_log(avctx, AV_LOG_ERROR,
531  "invalid default channel configuration (%d)\n",
532  channel_config);
533  return AVERROR_INVALIDDATA;
534  }
535  *tags = tags_per_config[channel_config];
536  memcpy(layout_map, aac_channel_layout_map[channel_config - 1],
537  *tags * sizeof(*layout_map));
538  return 0;
539 }
540 
541 static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
542 {
543  /* For PCE based channel configurations map the channels solely based
544  * on tags. */
545  if (!ac->oc[1].m4ac.chan_config) {
546  return ac->tag_che_map[type][elem_id];
547  }
548  // Allow single CPE stereo files to be signalled with mono configuration.
549  if (!ac->tags_mapped && type == TYPE_CPE &&
550  ac->oc[1].m4ac.chan_config == 1) {
551  uint8_t layout_map[MAX_ELEM_ID*4][3];
552  int layout_map_tags;
554 
555  av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n");
556 
557  if (set_default_channel_config(ac->avctx, layout_map,
558  &layout_map_tags, 2) < 0)
559  return NULL;
560  if (output_configure(ac, layout_map, layout_map_tags,
561  OC_TRIAL_FRAME, 1) < 0)
562  return NULL;
563 
564  ac->oc[1].m4ac.chan_config = 2;
565  ac->oc[1].m4ac.ps = 0;
566  }
567  // And vice-versa
568  if (!ac->tags_mapped && type == TYPE_SCE &&
569  ac->oc[1].m4ac.chan_config == 2) {
570  uint8_t layout_map[MAX_ELEM_ID * 4][3];
571  int layout_map_tags;
573 
574  av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n");
575 
576  if (set_default_channel_config(ac->avctx, layout_map,
577  &layout_map_tags, 1) < 0)
578  return NULL;
579  if (output_configure(ac, layout_map, layout_map_tags,
580  OC_TRIAL_FRAME, 1) < 0)
581  return NULL;
582 
583  ac->oc[1].m4ac.chan_config = 1;
584  if (ac->oc[1].m4ac.sbr)
585  ac->oc[1].m4ac.ps = -1;
586  }
587  /* For indexed channel configurations map the channels solely based
588  * on position. */
589  switch (ac->oc[1].m4ac.chan_config) {
590  case 7:
591  if (ac->tags_mapped == 3 && type == TYPE_CPE) {
592  ac->tags_mapped++;
593  return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
594  }
595  case 6:
596  /* Some streams incorrectly code 5.1 audio as
597  * SCE[0] CPE[0] CPE[1] SCE[1]
598  * instead of
599  * SCE[0] CPE[0] CPE[1] LFE[0].
600  * If we seem to have encountered such a stream, transfer
601  * the LFE[0] element to the SCE[1]'s mapping */
602  if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
603  ac->tags_mapped++;
604  return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
605  }
606  case 5:
607  if (ac->tags_mapped == 2 && type == TYPE_CPE) {
608  ac->tags_mapped++;
609  return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
610  }
611  case 4:
612  if (ac->tags_mapped == 2 &&
613  ac->oc[1].m4ac.chan_config == 4 &&
614  type == TYPE_SCE) {
615  ac->tags_mapped++;
616  return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
617  }
618  case 3:
619  case 2:
620  if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) &&
621  type == TYPE_CPE) {
622  ac->tags_mapped++;
623  return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
624  } else if (ac->oc[1].m4ac.chan_config == 2) {
625  return NULL;
626  }
627  case 1:
628  if (!ac->tags_mapped && type == TYPE_SCE) {
629  ac->tags_mapped++;
630  return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
631  }
632  default:
633  return NULL;
634  }
635 }
636 
637 /**
638  * Decode an array of 4 bit element IDs, optionally interleaved with a
639  * stereo/mono switching bit.
640  *
641  * @param type speaker type/position for these channels
642  */
643 static void decode_channel_map(uint8_t layout_map[][3],
644  enum ChannelPosition type,
645  GetBitContext *gb, int n)
646 {
647  while (n--) {
648  enum RawDataBlockType syn_ele;
649  switch (type) {
650  case AAC_CHANNEL_FRONT:
651  case AAC_CHANNEL_BACK:
652  case AAC_CHANNEL_SIDE:
653  syn_ele = get_bits1(gb);
654  break;
655  case AAC_CHANNEL_CC:
656  skip_bits1(gb);
657  syn_ele = TYPE_CCE;
658  break;
659  case AAC_CHANNEL_LFE:
660  syn_ele = TYPE_LFE;
661  break;
662  default:
663  av_assert0(0);
664  }
665  layout_map[0][0] = syn_ele;
666  layout_map[0][1] = get_bits(gb, 4);
667  layout_map[0][2] = type;
668  layout_map++;
669  }
670 }
671 
672 /**
673  * Decode program configuration element; reference: table 4.2.
674  *
675  * @return Returns error status. 0 - OK, !0 - error
676  */
677 static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
678  uint8_t (*layout_map)[3],
679  GetBitContext *gb)
680 {
681  int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;
682  int sampling_index;
683  int comment_len;
684  int tags;
685 
686  skip_bits(gb, 2); // object_type
687 
688  sampling_index = get_bits(gb, 4);
689  if (m4ac->sampling_index != sampling_index)
690  av_log(avctx, AV_LOG_WARNING,
691  "Sample rate index in program config element does not "
692  "match the sample rate index configured by the container.\n");
693 
694  num_front = get_bits(gb, 4);
695  num_side = get_bits(gb, 4);
696  num_back = get_bits(gb, 4);
697  num_lfe = get_bits(gb, 2);
698  num_assoc_data = get_bits(gb, 3);
699  num_cc = get_bits(gb, 4);
700 
701  if (get_bits1(gb))
702  skip_bits(gb, 4); // mono_mixdown_tag
703  if (get_bits1(gb))
704  skip_bits(gb, 4); // stereo_mixdown_tag
705 
706  if (get_bits1(gb))
707  skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
708 
709  if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) {
710  av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
711  return -1;
712  }
713  decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front);
714  tags = num_front;
715  decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side);
716  tags += num_side;
717  decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back);
718  tags += num_back;
719  decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe);
720  tags += num_lfe;
721 
722  skip_bits_long(gb, 4 * num_assoc_data);
723 
724  decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc);
725  tags += num_cc;
726 
727  align_get_bits(gb);
728 
729  /* comment field, first byte is length */
730  comment_len = get_bits(gb, 8) * 8;
731  if (get_bits_left(gb) < comment_len) {
732  av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
733  return AVERROR_INVALIDDATA;
734  }
735  skip_bits_long(gb, comment_len);
736  return tags;
737 }
738 
739 /**
740  * Decode GA "General Audio" specific configuration; reference: table 4.1.
741  *
742  * @param ac pointer to AACContext, may be null
743  * @param avctx pointer to AVCCodecContext, used for logging
744  *
745  * @return Returns error status. 0 - OK, !0 - error
746  */
748  GetBitContext *gb,
749  MPEG4AudioConfig *m4ac,
750  int channel_config)
751 {
752  int extension_flag, ret, ep_config, res_flags;
753  uint8_t layout_map[MAX_ELEM_ID*4][3];
754  int tags = 0;
755 
756  if (get_bits1(gb)) { // frameLengthFlag
757  avpriv_request_sample(avctx, "960/120 MDCT window");
758  return AVERROR_PATCHWELCOME;
759  }
760 
761  if (get_bits1(gb)) // dependsOnCoreCoder
762  skip_bits(gb, 14); // coreCoderDelay
763  extension_flag = get_bits1(gb);
764 
765  if (m4ac->object_type == AOT_AAC_SCALABLE ||
767  skip_bits(gb, 3); // layerNr
768 
769  if (channel_config == 0) {
770  skip_bits(gb, 4); // element_instance_tag
771  tags = decode_pce(avctx, m4ac, layout_map, gb);
772  if (tags < 0)
773  return tags;
774  } else {
775  if ((ret = set_default_channel_config(avctx, layout_map,
776  &tags, channel_config)))
777  return ret;
778  }
779 
780  if (count_channels(layout_map, tags) > 1) {
781  m4ac->ps = 0;
782  } else if (m4ac->sbr == 1 && m4ac->ps == -1)
783  m4ac->ps = 1;
784 
785  if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0)))
786  return ret;
787 
788  if (extension_flag) {
789  switch (m4ac->object_type) {
790  case AOT_ER_BSAC:
791  skip_bits(gb, 5); // numOfSubFrame
792  skip_bits(gb, 11); // layer_length
793  break;
794  case AOT_ER_AAC_LC:
795  case AOT_ER_AAC_LTP:
796  case AOT_ER_AAC_SCALABLE:
797  case AOT_ER_AAC_LD:
798  res_flags = get_bits(gb, 3);
799  if (res_flags) {
801  "AAC data resilience (flags %x)",
802  res_flags);
803  return AVERROR_PATCHWELCOME;
804  }
805  break;
806  }
807  skip_bits1(gb); // extensionFlag3 (TBD in version 3)
808  }
809  switch (m4ac->object_type) {
810  case AOT_ER_AAC_LC:
811  case AOT_ER_AAC_LTP:
812  case AOT_ER_AAC_SCALABLE:
813  case AOT_ER_AAC_LD:
814  ep_config = get_bits(gb, 2);
815  if (ep_config) {
817  "epConfig %d", ep_config);
818  return AVERROR_PATCHWELCOME;
819  }
820  }
821  return 0;
822 }
823 
825  GetBitContext *gb,
826  MPEG4AudioConfig *m4ac,
827  int channel_config)
828 {
829  int ret, ep_config, res_flags;
830  uint8_t layout_map[MAX_ELEM_ID*4][3];
831  int tags = 0;
832  const int ELDEXT_TERM = 0;
833 
834  m4ac->ps = 0;
835  m4ac->sbr = 0;
836 
837  if (get_bits1(gb)) { // frameLengthFlag
838  avpriv_request_sample(avctx, "960/120 MDCT window");
839  return AVERROR_PATCHWELCOME;
840  }
841 
842  res_flags = get_bits(gb, 3);
843  if (res_flags) {
845  "AAC data resilience (flags %x)",
846  res_flags);
847  return AVERROR_PATCHWELCOME;
848  }
849 
850  if (get_bits1(gb)) { // ldSbrPresentFlag
852  "Low Delay SBR");
853  return AVERROR_PATCHWELCOME;
854  }
855 
856  while (get_bits(gb, 4) != ELDEXT_TERM) {
857  int len = get_bits(gb, 4);
858  if (len == 15)
859  len += get_bits(gb, 8);
860  if (len == 15 + 255)
861  len += get_bits(gb, 16);
862  if (get_bits_left(gb) < len * 8 + 4) {
864  return AVERROR_INVALIDDATA;
865  }
866  skip_bits_long(gb, 8 * len);
867  }
868 
869  if ((ret = set_default_channel_config(avctx, layout_map,
870  &tags, channel_config)))
871  return ret;
872 
873  if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0)))
874  return ret;
875 
876  ep_config = get_bits(gb, 2);
877  if (ep_config) {
879  "epConfig %d", ep_config);
880  return AVERROR_PATCHWELCOME;
881  }
882  return 0;
883 }
884 
885 /**
886  * Decode audio specific configuration; reference: table 1.13.
887  *
888  * @param ac pointer to AACContext, may be null
889  * @param avctx pointer to AVCCodecContext, used for logging
890  * @param m4ac pointer to MPEG4AudioConfig, used for parsing
891  * @param data pointer to buffer holding an audio specific config
892  * @param bit_size size of audio specific config or data in bits
893  * @param sync_extension look for an appended sync extension
894  *
895  * @return Returns error status or number of consumed bits. <0 - error
896  */
898  AVCodecContext *avctx,
899  MPEG4AudioConfig *m4ac,
900  const uint8_t *data, int bit_size,
901  int sync_extension)
902 {
903  GetBitContext gb;
904  int i, ret;
905 
906  av_dlog(avctx, "audio specific config size %d\n", bit_size >> 3);
907  for (i = 0; i < bit_size >> 3; i++)
908  av_dlog(avctx, "%02x ", data[i]);
909  av_dlog(avctx, "\n");
910 
911  if ((ret = init_get_bits(&gb, data, bit_size)) < 0)
912  return ret;
913 
914  if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size,
915  sync_extension)) < 0)
916  return AVERROR_INVALIDDATA;
917  if (m4ac->sampling_index > 12) {
918  av_log(avctx, AV_LOG_ERROR,
919  "invalid sampling rate index %d\n",
920  m4ac->sampling_index);
921  return AVERROR_INVALIDDATA;
922  }
923  if (m4ac->object_type == AOT_ER_AAC_LD &&
924  (m4ac->sampling_index < 3 || m4ac->sampling_index > 7)) {
925  av_log(avctx, AV_LOG_ERROR,
926  "invalid low delay sampling rate index %d\n",
927  m4ac->sampling_index);
928  return AVERROR_INVALIDDATA;
929  }
930 
931  skip_bits_long(&gb, i);
932 
933  switch (m4ac->object_type) {
934  case AOT_AAC_MAIN:
935  case AOT_AAC_LC:
936  case AOT_AAC_LTP:
937  case AOT_ER_AAC_LC:
938  case AOT_ER_AAC_LD:
939  if ((ret = decode_ga_specific_config(ac, avctx, &gb,
940  m4ac, m4ac->chan_config)) < 0)
941  return ret;
942  break;
943  case AOT_ER_AAC_ELD:
944  if ((ret = decode_eld_specific_config(ac, avctx, &gb,
945  m4ac, m4ac->chan_config)) < 0)
946  return ret;
947  break;
948  default:
950  "Audio object type %s%d",
951  m4ac->sbr == 1 ? "SBR+" : "",
952  m4ac->object_type);
953  return AVERROR(ENOSYS);
954  }
955 
956  av_dlog(avctx,
957  "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
958  m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
959  m4ac->sample_rate, m4ac->sbr,
960  m4ac->ps);
961 
962  return get_bits_count(&gb);
963 }
964 
965 /**
966  * linear congruential pseudorandom number generator
967  *
968  * @param previous_val pointer to the current state of the generator
969  *
970  * @return Returns a 32-bit pseudorandom integer
971  */
972 static av_always_inline int lcg_random(unsigned previous_val)
973 {
974  union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
975  return v.s;
976 }
977 
979 {
980  ps->r0 = 0.0f;
981  ps->r1 = 0.0f;
982  ps->cor0 = 0.0f;
983  ps->cor1 = 0.0f;
984  ps->var0 = 1.0f;
985  ps->var1 = 1.0f;
986 }
987 
989 {
990  int i;
991  for (i = 0; i < MAX_PREDICTORS; i++)
992  reset_predict_state(&ps[i]);
993 }
994 
995 static int sample_rate_idx (int rate)
996 {
997  if (92017 <= rate) return 0;
998  else if (75132 <= rate) return 1;
999  else if (55426 <= rate) return 2;
1000  else if (46009 <= rate) return 3;
1001  else if (37566 <= rate) return 4;
1002  else if (27713 <= rate) return 5;
1003  else if (23004 <= rate) return 6;
1004  else if (18783 <= rate) return 7;
1005  else if (13856 <= rate) return 8;
1006  else if (11502 <= rate) return 9;
1007  else if (9391 <= rate) return 10;
1008  else return 11;
1009 }
1010 
1011 static void reset_predictor_group(PredictorState *ps, int group_num)
1012 {
1013  int i;
1014  for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
1015  reset_predict_state(&ps[i]);
1016 }
1017 
1018 #define AAC_INIT_VLC_STATIC(num, size) \
1019  INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
1020  ff_aac_spectral_bits[num], sizeof(ff_aac_spectral_bits[num][0]), \
1021  sizeof(ff_aac_spectral_bits[num][0]), \
1022  ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), \
1023  sizeof(ff_aac_spectral_codes[num][0]), \
1024  size);
1025 
1026 static void aacdec_init(AACContext *ac);
1027 
1029 {
1030  AACContext *ac = avctx->priv_data;
1031  int ret;
1032 
1033  ac->avctx = avctx;
1034  ac->oc[1].m4ac.sample_rate = avctx->sample_rate;
1035 
1036  aacdec_init(ac);
1037 
1038  avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1039 
1040  if (avctx->extradata_size > 0) {
1041  if ((ret = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
1042  avctx->extradata,
1043  avctx->extradata_size * 8,
1044  1)) < 0)
1045  return ret;
1046  } else {
1047  int sr, i;
1048  uint8_t layout_map[MAX_ELEM_ID*4][3];
1049  int layout_map_tags;
1050 
1051  sr = sample_rate_idx(avctx->sample_rate);
1052  ac->oc[1].m4ac.sampling_index = sr;
1053  ac->oc[1].m4ac.channels = avctx->channels;
1054  ac->oc[1].m4ac.sbr = -1;
1055  ac->oc[1].m4ac.ps = -1;
1056 
1057  for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
1058  if (ff_mpeg4audio_channels[i] == avctx->channels)
1059  break;
1061  i = 0;
1062  }
1063  ac->oc[1].m4ac.chan_config = i;
1064 
1065  if (ac->oc[1].m4ac.chan_config) {
1066  int ret = set_default_channel_config(avctx, layout_map,
1067  &layout_map_tags, ac->oc[1].m4ac.chan_config);
1068  if (!ret)
1069  output_configure(ac, layout_map, layout_map_tags,
1070  OC_GLOBAL_HDR, 0);
1071  else if (avctx->err_recognition & AV_EF_EXPLODE)
1072  return AVERROR_INVALIDDATA;
1073  }
1074  }
1075 
1076  if (avctx->channels > MAX_CHANNELS) {
1077  av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
1078  return AVERROR_INVALIDDATA;
1079  }
1080 
1081  AAC_INIT_VLC_STATIC( 0, 304);
1082  AAC_INIT_VLC_STATIC( 1, 270);
1083  AAC_INIT_VLC_STATIC( 2, 550);
1084  AAC_INIT_VLC_STATIC( 3, 300);
1085  AAC_INIT_VLC_STATIC( 4, 328);
1086  AAC_INIT_VLC_STATIC( 5, 294);
1087  AAC_INIT_VLC_STATIC( 6, 306);
1088  AAC_INIT_VLC_STATIC( 7, 268);
1089  AAC_INIT_VLC_STATIC( 8, 510);
1090  AAC_INIT_VLC_STATIC( 9, 366);
1091  AAC_INIT_VLC_STATIC(10, 462);
1092 
1093  ff_aac_sbr_init();
1094 
1095  ff_fmt_convert_init(&ac->fmt_conv, avctx);
1097 
1098  ac->random_state = 0x1f2e3d4c;
1099 
1100  ff_aac_tableinit();
1101 
1102  INIT_VLC_STATIC(&vlc_scalefactors, 7,
1105  sizeof(ff_aac_scalefactor_bits[0]),
1106  sizeof(ff_aac_scalefactor_bits[0]),
1108  sizeof(ff_aac_scalefactor_code[0]),
1109  sizeof(ff_aac_scalefactor_code[0]),
1110  352);
1111 
1112  ff_mdct_init(&ac->mdct, 11, 1, 1.0 / (32768.0 * 1024.0));
1113  ff_mdct_init(&ac->mdct_ld, 10, 1, 1.0 / (32768.0 * 512.0));
1114  ff_mdct_init(&ac->mdct_small, 8, 1, 1.0 / (32768.0 * 128.0));
1115  ff_mdct_init(&ac->mdct_ltp, 11, 0, -2.0 * 32768.0);
1116  // window initialization
1123 
1124  cbrt_tableinit();
1125 
1126  return 0;
1127 }
1128 
1129 /**
1130  * Skip data_stream_element; reference: table 4.10.
1131  */
1133 {
1134  int byte_align = get_bits1(gb);
1135  int count = get_bits(gb, 8);
1136  if (count == 255)
1137  count += get_bits(gb, 8);
1138  if (byte_align)
1139  align_get_bits(gb);
1140 
1141  if (get_bits_left(gb) < 8 * count) {
1142  av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err);
1143  return AVERROR_INVALIDDATA;
1144  }
1145  skip_bits_long(gb, 8 * count);
1146  return 0;
1147 }
1148 
1150  GetBitContext *gb)
1151 {
1152  int sfb;
1153  if (get_bits1(gb)) {
1154  ics->predictor_reset_group = get_bits(gb, 5);
1155  if (ics->predictor_reset_group == 0 ||
1156  ics->predictor_reset_group > 30) {
1157  av_log(ac->avctx, AV_LOG_ERROR,
1158  "Invalid Predictor Reset Group.\n");
1159  return AVERROR_INVALIDDATA;
1160  }
1161  }
1162  for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) {
1163  ics->prediction_used[sfb] = get_bits1(gb);
1164  }
1165  return 0;
1166 }
1167 
1168 /**
1169  * Decode Long Term Prediction data; reference: table 4.xx.
1170  */
1172  GetBitContext *gb, uint8_t max_sfb)
1173 {
1174  int sfb;
1175 
1176  ltp->lag = get_bits(gb, 11);
1177  ltp->coef = ltp_coef[get_bits(gb, 3)];
1178  for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
1179  ltp->used[sfb] = get_bits1(gb);
1180 }
1181 
1182 /**
1183  * Decode Individual Channel Stream info; reference: table 4.6.
1184  */
1186  GetBitContext *gb)
1187 {
1188  int aot = ac->oc[1].m4ac.object_type;
1189  if (aot != AOT_ER_AAC_ELD) {
1190  if (get_bits1(gb)) {
1191  av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
1192  return AVERROR_INVALIDDATA;
1193  }
1194  ics->window_sequence[1] = ics->window_sequence[0];
1195  ics->window_sequence[0] = get_bits(gb, 2);
1196  if (aot == AOT_ER_AAC_LD &&
1197  ics->window_sequence[0] != ONLY_LONG_SEQUENCE) {
1198  av_log(ac->avctx, AV_LOG_ERROR,
1199  "AAC LD is only defined for ONLY_LONG_SEQUENCE but "
1200  "window sequence %d found.\n", ics->window_sequence[0]);
1202  return AVERROR_INVALIDDATA;
1203  }
1204  ics->use_kb_window[1] = ics->use_kb_window[0];
1205  ics->use_kb_window[0] = get_bits1(gb);
1206  }
1207  ics->num_window_groups = 1;
1208  ics->group_len[0] = 1;
1209  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1210  int i;
1211  ics->max_sfb = get_bits(gb, 4);
1212  for (i = 0; i < 7; i++) {
1213  if (get_bits1(gb)) {
1214  ics->group_len[ics->num_window_groups - 1]++;
1215  } else {
1216  ics->num_window_groups++;
1217  ics->group_len[ics->num_window_groups - 1] = 1;
1218  }
1219  }
1220  ics->num_windows = 8;
1224  ics->predictor_present = 0;
1225  } else {
1226  ics->max_sfb = get_bits(gb, 6);
1227  ics->num_windows = 1;
1228  if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) {
1231  if (!ics->num_swb || !ics->swb_offset)
1232  return AVERROR_BUG;
1233  } else {
1236  }
1238  if (aot != AOT_ER_AAC_ELD) {
1239  ics->predictor_present = get_bits1(gb);
1240  ics->predictor_reset_group = 0;
1241  }
1242  if (ics->predictor_present) {
1243  if (aot == AOT_AAC_MAIN) {
1244  if (decode_prediction(ac, ics, gb)) {
1245  goto fail;
1246  }
1247  } else if (aot == AOT_AAC_LC ||
1248  aot == AOT_ER_AAC_LC) {
1249  av_log(ac->avctx, AV_LOG_ERROR,
1250  "Prediction is not allowed in AAC-LC.\n");
1251  goto fail;
1252  } else {
1253  if (aot == AOT_ER_AAC_LD) {
1254  av_log(ac->avctx, AV_LOG_ERROR,
1255  "LTP in ER AAC LD not yet implemented.\n");
1256  return AVERROR_PATCHWELCOME;
1257  }
1258  if ((ics->ltp.present = get_bits(gb, 1)))
1259  decode_ltp(&ics->ltp, gb, ics->max_sfb);
1260  }
1261  }
1262  }
1263 
1264  if (ics->max_sfb > ics->num_swb) {
1265  av_log(ac->avctx, AV_LOG_ERROR,
1266  "Number of scalefactor bands in group (%d) "
1267  "exceeds limit (%d).\n",
1268  ics->max_sfb, ics->num_swb);
1269  goto fail;
1270  }
1271 
1272  return 0;
1273 fail:
1274  ics->max_sfb = 0;
1275  return AVERROR_INVALIDDATA;
1276 }
1277 
1278 /**
1279  * Decode band types (section_data payload); reference: table 4.46.
1280  *
1281  * @param band_type array of the used band type
1282  * @param band_type_run_end array of the last scalefactor band of a band type run
1283  *
1284  * @return Returns error status. 0 - OK, !0 - error
1285  */
1286 static int decode_band_types(AACContext *ac, enum BandType band_type[120],
1287  int band_type_run_end[120], GetBitContext *gb,
1289 {
1290  int g, idx = 0;
1291  const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
1292  for (g = 0; g < ics->num_window_groups; g++) {
1293  int k = 0;
1294  while (k < ics->max_sfb) {
1295  uint8_t sect_end = k;
1296  int sect_len_incr;
1297  int sect_band_type = get_bits(gb, 4);
1298  if (sect_band_type == 12) {
1299  av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
1300  return AVERROR_INVALIDDATA;
1301  }
1302  do {
1303  sect_len_incr = get_bits(gb, bits);
1304  sect_end += sect_len_incr;
1305  if (get_bits_left(gb) < 0) {
1306  av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err);
1307  return AVERROR_INVALIDDATA;
1308  }
1309  if (sect_end > ics->max_sfb) {
1310  av_log(ac->avctx, AV_LOG_ERROR,
1311  "Number of bands (%d) exceeds limit (%d).\n",
1312  sect_end, ics->max_sfb);
1313  return AVERROR_INVALIDDATA;
1314  }
1315  } while (sect_len_incr == (1 << bits) - 1);
1316  for (; k < sect_end; k++) {
1317  band_type [idx] = sect_band_type;
1318  band_type_run_end[idx++] = sect_end;
1319  }
1320  }
1321  }
1322  return 0;
1323 }
1324 
1325 /**
1326  * Decode scalefactors; reference: table 4.47.
1327  *
1328  * @param global_gain first scalefactor value as scalefactors are differentially coded
1329  * @param band_type array of the used band type
1330  * @param band_type_run_end array of the last scalefactor band of a band type run
1331  * @param sf array of scalefactors or intensity stereo positions
1332  *
1333  * @return Returns error status. 0 - OK, !0 - error
1334  */
1335 static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
1336  unsigned int global_gain,
1338  enum BandType band_type[120],
1339  int band_type_run_end[120])
1340 {
1341  int g, i, idx = 0;
1342  int offset[3] = { global_gain, global_gain - 90, 0 };
1343  int clipped_offset;
1344  int noise_flag = 1;
1345  for (g = 0; g < ics->num_window_groups; g++) {
1346  for (i = 0; i < ics->max_sfb;) {
1347  int run_end = band_type_run_end[idx];
1348  if (band_type[idx] == ZERO_BT) {
1349  for (; i < run_end; i++, idx++)
1350  sf[idx] = 0.0;
1351  } else if ((band_type[idx] == INTENSITY_BT) ||
1352  (band_type[idx] == INTENSITY_BT2)) {
1353  for (; i < run_end; i++, idx++) {
1354  offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1355  clipped_offset = av_clip(offset[2], -155, 100);
1356  if (offset[2] != clipped_offset) {
1358  "If you heard an audible artifact, there may be a bug in the decoder. "
1359  "Clipped intensity stereo position (%d -> %d)",
1360  offset[2], clipped_offset);
1361  }
1362  sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
1363  }
1364  } else if (band_type[idx] == NOISE_BT) {
1365  for (; i < run_end; i++, idx++) {
1366  if (noise_flag-- > 0)
1367  offset[1] += get_bits(gb, 9) - 256;
1368  else
1369  offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1370  clipped_offset = av_clip(offset[1], -100, 155);
1371  if (offset[1] != clipped_offset) {
1373  "If you heard an audible artifact, there may be a bug in the decoder. "
1374  "Clipped noise gain (%d -> %d)",
1375  offset[1], clipped_offset);
1376  }
1377  sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
1378  }
1379  } else {
1380  for (; i < run_end; i++, idx++) {
1381  offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1382  if (offset[0] > 255U) {
1383  av_log(ac->avctx, AV_LOG_ERROR,
1384  "Scalefactor (%d) out of range.\n", offset[0]);
1385  return AVERROR_INVALIDDATA;
1386  }
1387  sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
1388  }
1389  }
1390  }
1391  }
1392  return 0;
1393 }
1394 
1395 /**
1396  * Decode pulse data; reference: table 4.7.
1397  */
1398 static int decode_pulses(Pulse *pulse, GetBitContext *gb,
1399  const uint16_t *swb_offset, int num_swb)
1400 {
1401  int i, pulse_swb;
1402  pulse->num_pulse = get_bits(gb, 2) + 1;
1403  pulse_swb = get_bits(gb, 6);
1404  if (pulse_swb >= num_swb)
1405  return -1;
1406  pulse->pos[0] = swb_offset[pulse_swb];
1407  pulse->pos[0] += get_bits(gb, 5);
1408  if (pulse->pos[0] > 1023)
1409  return -1;
1410  pulse->amp[0] = get_bits(gb, 4);
1411  for (i = 1; i < pulse->num_pulse; i++) {
1412  pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
1413  if (pulse->pos[i] > 1023)
1414  return -1;
1415  pulse->amp[i] = get_bits(gb, 4);
1416  }
1417  return 0;
1418 }
1419 
1420 /**
1421  * Decode Temporal Noise Shaping data; reference: table 4.48.
1422  *
1423  * @return Returns error status. 0 - OK, !0 - error
1424  */
1426  GetBitContext *gb, const IndividualChannelStream *ics)
1427 {
1428  int w, filt, i, coef_len, coef_res, coef_compress;
1429  const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
1430  const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
1431  for (w = 0; w < ics->num_windows; w++) {
1432  if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
1433  coef_res = get_bits1(gb);
1434 
1435  for (filt = 0; filt < tns->n_filt[w]; filt++) {
1436  int tmp2_idx;
1437  tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
1438 
1439  if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
1440  av_log(ac->avctx, AV_LOG_ERROR,
1441  "TNS filter order %d is greater than maximum %d.\n",
1442  tns->order[w][filt], tns_max_order);
1443  tns->order[w][filt] = 0;
1444  return AVERROR_INVALIDDATA;
1445  }
1446  if (tns->order[w][filt]) {
1447  tns->direction[w][filt] = get_bits1(gb);
1448  coef_compress = get_bits1(gb);
1449  coef_len = coef_res + 3 - coef_compress;
1450  tmp2_idx = 2 * coef_compress + coef_res;
1451 
1452  for (i = 0; i < tns->order[w][filt]; i++)
1453  tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
1454  }
1455  }
1456  }
1457  }
1458  return 0;
1459 }
1460 
1461 /**
1462  * Decode Mid/Side data; reference: table 4.54.
1463  *
1464  * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1465  * [1] mask is decoded from bitstream; [2] mask is all 1s;
1466  * [3] reserved for scalable AAC
1467  */
1469  int ms_present)
1470 {
1471  int idx;
1472  if (ms_present == 1) {
1473  for (idx = 0;
1474  idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb;
1475  idx++)
1476  cpe->ms_mask[idx] = get_bits1(gb);
1477  } else if (ms_present == 2) {
1478  memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask[0]) * cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb);
1479  }
1480 }
1481 
1482 #ifndef VMUL2
1483 static inline float *VMUL2(float *dst, const float *v, unsigned idx,
1484  const float *scale)
1485 {
1486  float s = *scale;
1487  *dst++ = v[idx & 15] * s;
1488  *dst++ = v[idx>>4 & 15] * s;
1489  return dst;
1490 }
1491 #endif
1492 
1493 #ifndef VMUL4
1494 static inline float *VMUL4(float *dst, const float *v, unsigned idx,
1495  const float *scale)
1496 {
1497  float s = *scale;
1498  *dst++ = v[idx & 3] * s;
1499  *dst++ = v[idx>>2 & 3] * s;
1500  *dst++ = v[idx>>4 & 3] * s;
1501  *dst++ = v[idx>>6 & 3] * s;
1502  return dst;
1503 }
1504 #endif
1505 
1506 #ifndef VMUL2S
1507 static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
1508  unsigned sign, const float *scale)
1509 {
1510  union av_intfloat32 s0, s1;
1511 
1512  s0.f = s1.f = *scale;
1513  s0.i ^= sign >> 1 << 31;
1514  s1.i ^= sign << 31;
1515 
1516  *dst++ = v[idx & 15] * s0.f;
1517  *dst++ = v[idx>>4 & 15] * s1.f;
1518 
1519  return dst;
1520 }
1521 #endif
1522 
1523 #ifndef VMUL4S
1524 static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
1525  unsigned sign, const float *scale)
1526 {
1527  unsigned nz = idx >> 12;
1528  union av_intfloat32 s = { .f = *scale };
1529  union av_intfloat32 t;
1530 
1531  t.i = s.i ^ (sign & 1U<<31);
1532  *dst++ = v[idx & 3] * t.f;
1533 
1534  sign <<= nz & 1; nz >>= 1;
1535  t.i = s.i ^ (sign & 1U<<31);
1536  *dst++ = v[idx>>2 & 3] * t.f;
1537 
1538  sign <<= nz & 1; nz >>= 1;
1539  t.i = s.i ^ (sign & 1U<<31);
1540  *dst++ = v[idx>>4 & 3] * t.f;
1541 
1542  sign <<= nz & 1;
1543  t.i = s.i ^ (sign & 1U<<31);
1544  *dst++ = v[idx>>6 & 3] * t.f;
1545 
1546  return dst;
1547 }
1548 #endif
1549 
1550 /**
1551  * Decode spectral data; reference: table 4.50.
1552  * Dequantize and scale spectral data; reference: 4.6.3.3.
1553  *
1554  * @param coef array of dequantized, scaled spectral data
1555  * @param sf array of scalefactors or intensity stereo positions
1556  * @param pulse_present set if pulses are present
1557  * @param pulse pointer to pulse data struct
1558  * @param band_type array of the used band type
1559  *
1560  * @return Returns error status. 0 - OK, !0 - error
1561  */
1562 static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
1563  GetBitContext *gb, const float sf[120],
1564  int pulse_present, const Pulse *pulse,
1565  const IndividualChannelStream *ics,
1566  enum BandType band_type[120])
1567 {
1568  int i, k, g, idx = 0;
1569  const int c = 1024 / ics->num_windows;
1570  const uint16_t *offsets = ics->swb_offset;
1571  float *coef_base = coef;
1572 
1573  for (g = 0; g < ics->num_windows; g++)
1574  memset(coef + g * 128 + offsets[ics->max_sfb], 0,
1575  sizeof(float) * (c - offsets[ics->max_sfb]));
1576 
1577  for (g = 0; g < ics->num_window_groups; g++) {
1578  unsigned g_len = ics->group_len[g];
1579 
1580  for (i = 0; i < ics->max_sfb; i++, idx++) {
1581  const unsigned cbt_m1 = band_type[idx] - 1;
1582  float *cfo = coef + offsets[i];
1583  int off_len = offsets[i + 1] - offsets[i];
1584  int group;
1585 
1586  if (cbt_m1 >= INTENSITY_BT2 - 1) {
1587  for (group = 0; group < g_len; group++, cfo+=128) {
1588  memset(cfo, 0, off_len * sizeof(float));
1589  }
1590  } else if (cbt_m1 == NOISE_BT - 1) {
1591  for (group = 0; group < g_len; group++, cfo+=128) {
1592  float scale;
1593  float band_energy;
1594 
1595  for (k = 0; k < off_len; k++) {
1597  cfo[k] = ac->random_state;
1598  }
1599 
1600  band_energy = ac->fdsp.scalarproduct_float(cfo, cfo, off_len);
1601  scale = sf[idx] / sqrtf(band_energy);
1602  ac->fdsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
1603  }
1604  } else {
1605  const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
1606  const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
1607  VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
1608  OPEN_READER(re, gb);
1609 
1610  switch (cbt_m1 >> 1) {
1611  case 0:
1612  for (group = 0; group < g_len; group++, cfo+=128) {
1613  float *cf = cfo;
1614  int len = off_len;
1615 
1616  do {
1617  int code;
1618  unsigned cb_idx;
1619 
1620  UPDATE_CACHE(re, gb);
1621  GET_VLC(code, re, gb, vlc_tab, 8, 2);
1622  cb_idx = cb_vector_idx[code];
1623  cf = VMUL4(cf, vq, cb_idx, sf + idx);
1624  } while (len -= 4);
1625  }
1626  break;
1627 
1628  case 1:
1629  for (group = 0; group < g_len; group++, cfo+=128) {
1630  float *cf = cfo;
1631  int len = off_len;
1632 
1633  do {
1634  int code;
1635  unsigned nnz;
1636  unsigned cb_idx;
1637  uint32_t bits;
1638 
1639  UPDATE_CACHE(re, gb);
1640  GET_VLC(code, re, gb, vlc_tab, 8, 2);
1641  cb_idx = cb_vector_idx[code];
1642  nnz = cb_idx >> 8 & 15;
1643  bits = nnz ? GET_CACHE(re, gb) : 0;
1644  LAST_SKIP_BITS(re, gb, nnz);
1645  cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
1646  } while (len -= 4);
1647  }
1648  break;
1649 
1650  case 2:
1651  for (group = 0; group < g_len; group++, cfo+=128) {
1652  float *cf = cfo;
1653  int len = off_len;
1654 
1655  do {
1656  int code;
1657  unsigned cb_idx;
1658 
1659  UPDATE_CACHE(re, gb);
1660  GET_VLC(code, re, gb, vlc_tab, 8, 2);
1661  cb_idx = cb_vector_idx[code];
1662  cf = VMUL2(cf, vq, cb_idx, sf + idx);
1663  } while (len -= 2);
1664  }
1665  break;
1666 
1667  case 3:
1668  case 4:
1669  for (group = 0; group < g_len; group++, cfo+=128) {
1670  float *cf = cfo;
1671  int len = off_len;
1672 
1673  do {
1674  int code;
1675  unsigned nnz;
1676  unsigned cb_idx;
1677  unsigned sign;
1678 
1679  UPDATE_CACHE(re, gb);
1680  GET_VLC(code, re, gb, vlc_tab, 8, 2);
1681  cb_idx = cb_vector_idx[code];
1682  nnz = cb_idx >> 8 & 15;
1683  sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0;
1684  LAST_SKIP_BITS(re, gb, nnz);
1685  cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
1686  } while (len -= 2);
1687  }
1688  break;
1689 
1690  default:
1691  for (group = 0; group < g_len; group++, cfo+=128) {
1692  float *cf = cfo;
1693  uint32_t *icf = (uint32_t *) cf;
1694  int len = off_len;
1695 
1696  do {
1697  int code;
1698  unsigned nzt, nnz;
1699  unsigned cb_idx;
1700  uint32_t bits;
1701  int j;
1702 
1703  UPDATE_CACHE(re, gb);
1704  GET_VLC(code, re, gb, vlc_tab, 8, 2);
1705 
1706  if (!code) {
1707  *icf++ = 0;
1708  *icf++ = 0;
1709  continue;
1710  }
1711 
1712  cb_idx = cb_vector_idx[code];
1713  nnz = cb_idx >> 12;
1714  nzt = cb_idx >> 8;
1715  bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
1716  LAST_SKIP_BITS(re, gb, nnz);
1717 
1718  for (j = 0; j < 2; j++) {
1719  if (nzt & 1<<j) {
1720  uint32_t b;
1721  int n;
1722  /* The total length of escape_sequence must be < 22 bits according
1723  to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
1724  UPDATE_CACHE(re, gb);
1725  b = GET_CACHE(re, gb);
1726  b = 31 - av_log2(~b);
1727 
1728  if (b > 8) {
1729  av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
1730  return AVERROR_INVALIDDATA;
1731  }
1732 
1733  SKIP_BITS(re, gb, b + 1);
1734  b += 4;
1735  n = (1 << b) + SHOW_UBITS(re, gb, b);
1736  LAST_SKIP_BITS(re, gb, b);
1737  *icf++ = cbrt_tab[n] | (bits & 1U<<31);
1738  bits <<= 1;
1739  } else {
1740  unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
1741  *icf++ = (bits & 1U<<31) | v;
1742  bits <<= !!v;
1743  }
1744  cb_idx >>= 4;
1745  }
1746  } while (len -= 2);
1747 
1748  ac->fdsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
1749  }
1750  }
1751 
1752  CLOSE_READER(re, gb);
1753  }
1754  }
1755  coef += g_len << 7;
1756  }
1757 
1758  if (pulse_present) {
1759  idx = 0;
1760  for (i = 0; i < pulse->num_pulse; i++) {
1761  float co = coef_base[ pulse->pos[i] ];
1762  while (offsets[idx + 1] <= pulse->pos[i])
1763  idx++;
1764  if (band_type[idx] != NOISE_BT && sf[idx]) {
1765  float ico = -pulse->amp[i];
1766  if (co) {
1767  co /= sf[idx];
1768  ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
1769  }
1770  coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
1771  }
1772  }
1773  }
1774  return 0;
1775 }
1776 
1777 static av_always_inline float flt16_round(float pf)
1778 {
1779  union av_intfloat32 tmp;
1780  tmp.f = pf;
1781  tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
1782  return tmp.f;
1783 }
1784 
1785 static av_always_inline float flt16_even(float pf)
1786 {
1787  union av_intfloat32 tmp;
1788  tmp.f = pf;
1789  tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
1790  return tmp.f;
1791 }
1792 
1793 static av_always_inline float flt16_trunc(float pf)
1794 {
1795  union av_intfloat32 pun;
1796  pun.f = pf;
1797  pun.i &= 0xFFFF0000U;
1798  return pun.f;
1799 }
1800 
1801 static av_always_inline void predict(PredictorState *ps, float *coef,
1802  int output_enable)
1803 {
1804  const float a = 0.953125; // 61.0 / 64
1805  const float alpha = 0.90625; // 29.0 / 32
1806  float e0, e1;
1807  float pv;
1808  float k1, k2;
1809  float r0 = ps->r0, r1 = ps->r1;
1810  float cor0 = ps->cor0, cor1 = ps->cor1;
1811  float var0 = ps->var0, var1 = ps->var1;
1812 
1813  k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
1814  k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
1815 
1816  pv = flt16_round(k1 * r0 + k2 * r1);
1817  if (output_enable)
1818  *coef += pv;
1819 
1820  e0 = *coef;
1821  e1 = e0 - k1 * r0;
1822 
1823  ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
1824  ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
1825  ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
1826  ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
1827 
1828  ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
1829  ps->r0 = flt16_trunc(a * e0);
1830 }
1831 
1832 /**
1833  * Apply AAC-Main style frequency domain prediction.
1834  */
1836 {
1837  int sfb, k;
1838 
1839  if (!sce->ics.predictor_initialized) {
1841  sce->ics.predictor_initialized = 1;
1842  }
1843 
1844  if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
1845  for (sfb = 0;
1846  sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index];
1847  sfb++) {
1848  for (k = sce->ics.swb_offset[sfb];
1849  k < sce->ics.swb_offset[sfb + 1];
1850  k++) {
1851  predict(&sce->predictor_state[k], &sce->coeffs[k],
1852  sce->ics.predictor_present &&
1853  sce->ics.prediction_used[sfb]);
1854  }
1855  }
1856  if (sce->ics.predictor_reset_group)
1858  sce->ics.predictor_reset_group);
1859  } else
1861 }
1862 
1863 /**
1864  * Decode an individual_channel_stream payload; reference: table 4.44.
1865  *
1866  * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1867  * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1868  *
1869  * @return Returns error status. 0 - OK, !0 - error
1870  */
1872  GetBitContext *gb, int common_window, int scale_flag)
1873 {
1874  Pulse pulse;
1875  TemporalNoiseShaping *tns = &sce->tns;
1876  IndividualChannelStream *ics = &sce->ics;
1877  float *out = sce->coeffs;
1878  int global_gain, eld_syntax, er_syntax, pulse_present = 0;
1879  int ret;
1880 
1881  eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD;
1882  er_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_LC ||
1883  ac->oc[1].m4ac.object_type == AOT_ER_AAC_LTP ||
1884  ac->oc[1].m4ac.object_type == AOT_ER_AAC_LD ||
1885  ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD;
1886 
1887  /* This assignment is to silence a GCC warning about the variable being used
1888  * uninitialized when in fact it always is.
1889  */
1890  pulse.num_pulse = 0;
1891 
1892  global_gain = get_bits(gb, 8);
1893 
1894  if (!common_window && !scale_flag) {
1895  if (decode_ics_info(ac, ics, gb) < 0)
1896  return AVERROR_INVALIDDATA;
1897  }
1898 
1899  if ((ret = decode_band_types(ac, sce->band_type,
1900  sce->band_type_run_end, gb, ics)) < 0)
1901  return ret;
1902  if ((ret = decode_scalefactors(ac, sce->sf, gb, global_gain, ics,
1903  sce->band_type, sce->band_type_run_end)) < 0)
1904  return ret;
1905 
1906  pulse_present = 0;
1907  if (!scale_flag) {
1908  if (!eld_syntax && (pulse_present = get_bits1(gb))) {
1909  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1910  av_log(ac->avctx, AV_LOG_ERROR,
1911  "Pulse tool not allowed in eight short sequence.\n");
1912  return AVERROR_INVALIDDATA;
1913  }
1914  if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1915  av_log(ac->avctx, AV_LOG_ERROR,
1916  "Pulse data corrupt or invalid.\n");
1917  return AVERROR_INVALIDDATA;
1918  }
1919  }
1920  tns->present = get_bits1(gb);
1921  if (tns->present && !er_syntax)
1922  if (decode_tns(ac, tns, gb, ics) < 0)
1923  return AVERROR_INVALIDDATA;
1924  if (!eld_syntax && get_bits1(gb)) {
1925  avpriv_request_sample(ac->avctx, "SSR");
1926  return AVERROR_PATCHWELCOME;
1927  }
1928  // I see no textual basis in the spec for this occuring after SSR gain
1929  // control, but this is what both reference and real implmentations do
1930  if (tns->present && er_syntax)
1931  if (decode_tns(ac, tns, gb, ics) < 0)
1932  return AVERROR_INVALIDDATA;
1933  }
1934 
1935  if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present,
1936  &pulse, ics, sce->band_type) < 0)
1937  return AVERROR_INVALIDDATA;
1938 
1939  if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window)
1940  apply_prediction(ac, sce);
1941 
1942  return 0;
1943 }
1944 
1945 /**
1946  * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1947  */
1949 {
1950  const IndividualChannelStream *ics = &cpe->ch[0].ics;
1951  float *ch0 = cpe->ch[0].coeffs;
1952  float *ch1 = cpe->ch[1].coeffs;
1953  int g, i, group, idx = 0;
1954  const uint16_t *offsets = ics->swb_offset;
1955  for (g = 0; g < ics->num_window_groups; g++) {
1956  for (i = 0; i < ics->max_sfb; i++, idx++) {
1957  if (cpe->ms_mask[idx] &&
1958  cpe->ch[0].band_type[idx] < NOISE_BT &&
1959  cpe->ch[1].band_type[idx] < NOISE_BT) {
1960  for (group = 0; group < ics->group_len[g]; group++) {
1961  ac->fdsp.butterflies_float(ch0 + group * 128 + offsets[i],
1962  ch1 + group * 128 + offsets[i],
1963  offsets[i+1] - offsets[i]);
1964  }
1965  }
1966  }
1967  ch0 += ics->group_len[g] * 128;
1968  ch1 += ics->group_len[g] * 128;
1969  }
1970 }
1971 
1972 /**
1973  * intensity stereo decoding; reference: 4.6.8.2.3
1974  *
1975  * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1976  * [1] mask is decoded from bitstream; [2] mask is all 1s;
1977  * [3] reserved for scalable AAC
1978  */
1980  ChannelElement *cpe, int ms_present)
1981 {
1982  const IndividualChannelStream *ics = &cpe->ch[1].ics;
1983  SingleChannelElement *sce1 = &cpe->ch[1];
1984  float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1985  const uint16_t *offsets = ics->swb_offset;
1986  int g, group, i, idx = 0;
1987  int c;
1988  float scale;
1989  for (g = 0; g < ics->num_window_groups; g++) {
1990  for (i = 0; i < ics->max_sfb;) {
1991  if (sce1->band_type[idx] == INTENSITY_BT ||
1992  sce1->band_type[idx] == INTENSITY_BT2) {
1993  const int bt_run_end = sce1->band_type_run_end[idx];
1994  for (; i < bt_run_end; i++, idx++) {
1995  c = -1 + 2 * (sce1->band_type[idx] - 14);
1996  if (ms_present)
1997  c *= 1 - 2 * cpe->ms_mask[idx];
1998  scale = c * sce1->sf[idx];
1999  for (group = 0; group < ics->group_len[g]; group++)
2000  ac->fdsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i],
2001  coef0 + group * 128 + offsets[i],
2002  scale,
2003  offsets[i + 1] - offsets[i]);
2004  }
2005  } else {
2006  int bt_run_end = sce1->band_type_run_end[idx];
2007  idx += bt_run_end - i;
2008  i = bt_run_end;
2009  }
2010  }
2011  coef0 += ics->group_len[g] * 128;
2012  coef1 += ics->group_len[g] * 128;
2013  }
2014 }
2015 
2016 /**
2017  * Decode a channel_pair_element; reference: table 4.4.
2018  *
2019  * @return Returns error status. 0 - OK, !0 - error
2020  */
2022 {
2023  int i, ret, common_window, ms_present = 0;
2024  int eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD;
2025 
2026  common_window = eld_syntax || get_bits1(gb);
2027  if (common_window) {
2028  if (decode_ics_info(ac, &cpe->ch[0].ics, gb))
2029  return AVERROR_INVALIDDATA;
2030  i = cpe->ch[1].ics.use_kb_window[0];
2031  cpe->ch[1].ics = cpe->ch[0].ics;
2032  cpe->ch[1].ics.use_kb_window[1] = i;
2033  if (cpe->ch[1].ics.predictor_present &&
2034  (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN))
2035  if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
2036  decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
2037  ms_present = get_bits(gb, 2);
2038  if (ms_present == 3) {
2039  av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
2040  return AVERROR_INVALIDDATA;
2041  } else if (ms_present)
2042  decode_mid_side_stereo(cpe, gb, ms_present);
2043  }
2044  if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
2045  return ret;
2046  if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
2047  return ret;
2048 
2049  if (common_window) {
2050  if (ms_present)
2051  apply_mid_side_stereo(ac, cpe);
2052  if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) {
2053  apply_prediction(ac, &cpe->ch[0]);
2054  apply_prediction(ac, &cpe->ch[1]);
2055  }
2056  }
2057 
2058  apply_intensity_stereo(ac, cpe, ms_present);
2059  return 0;
2060 }
2061 
2062 static const float cce_scale[] = {
2063  1.09050773266525765921, //2^(1/8)
2064  1.18920711500272106672, //2^(1/4)
2065  M_SQRT2,
2066  2,
2067 };
2068 
2069 /**
2070  * Decode coupling_channel_element; reference: table 4.8.
2071  *
2072  * @return Returns error status. 0 - OK, !0 - error
2073  */
2075 {
2076  int num_gain = 0;
2077  int c, g, sfb, ret;
2078  int sign;
2079  float scale;
2080  SingleChannelElement *sce = &che->ch[0];
2081  ChannelCoupling *coup = &che->coup;
2082 
2083  coup->coupling_point = 2 * get_bits1(gb);
2084  coup->num_coupled = get_bits(gb, 3);
2085  for (c = 0; c <= coup->num_coupled; c++) {
2086  num_gain++;
2087  coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
2088  coup->id_select[c] = get_bits(gb, 4);
2089  if (coup->type[c] == TYPE_CPE) {
2090  coup->ch_select[c] = get_bits(gb, 2);
2091  if (coup->ch_select[c] == 3)
2092  num_gain++;
2093  } else
2094  coup->ch_select[c] = 2;
2095  }
2096  coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
2097 
2098  sign = get_bits(gb, 1);
2099  scale = cce_scale[get_bits(gb, 2)];
2100 
2101  if ((ret = decode_ics(ac, sce, gb, 0, 0)))
2102  return ret;
2103 
2104  for (c = 0; c < num_gain; c++) {
2105  int idx = 0;
2106  int cge = 1;
2107  int gain = 0;
2108  float gain_cache = 1.0;
2109  if (c) {
2110  cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
2111  gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
2112  gain_cache = powf(scale, -gain);
2113  }
2114  if (coup->coupling_point == AFTER_IMDCT) {
2115  coup->gain[c][0] = gain_cache;
2116  } else {
2117  for (g = 0; g < sce->ics.num_window_groups; g++) {
2118  for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
2119  if (sce->band_type[idx] != ZERO_BT) {
2120  if (!cge) {
2121  int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
2122  if (t) {
2123  int s = 1;
2124  t = gain += t;
2125  if (sign) {
2126  s -= 2 * (t & 0x1);
2127  t >>= 1;
2128  }
2129  gain_cache = powf(scale, -t) * s;
2130  }
2131  }
2132  coup->gain[c][idx] = gain_cache;
2133  }
2134  }
2135  }
2136  }
2137  }
2138  return 0;
2139 }
2140 
2141 /**
2142  * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
2143  *
2144  * @return Returns number of bytes consumed.
2145  */
2147  GetBitContext *gb)
2148 {
2149  int i;
2150  int num_excl_chan = 0;
2151 
2152  do {
2153  for (i = 0; i < 7; i++)
2154  che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
2155  } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
2156 
2157  return num_excl_chan / 7;
2158 }
2159 
2160 /**
2161  * Decode dynamic range information; reference: table 4.52.
2162  *
2163  * @return Returns number of bytes consumed.
2164  */
2166  GetBitContext *gb)
2167 {
2168  int n = 1;
2169  int drc_num_bands = 1;
2170  int i;
2171 
2172  /* pce_tag_present? */
2173  if (get_bits1(gb)) {
2174  che_drc->pce_instance_tag = get_bits(gb, 4);
2175  skip_bits(gb, 4); // tag_reserved_bits
2176  n++;
2177  }
2178 
2179  /* excluded_chns_present? */
2180  if (get_bits1(gb)) {
2181  n += decode_drc_channel_exclusions(che_drc, gb);
2182  }
2183 
2184  /* drc_bands_present? */
2185  if (get_bits1(gb)) {
2186  che_drc->band_incr = get_bits(gb, 4);
2187  che_drc->interpolation_scheme = get_bits(gb, 4);
2188  n++;
2189  drc_num_bands += che_drc->band_incr;
2190  for (i = 0; i < drc_num_bands; i++) {
2191  che_drc->band_top[i] = get_bits(gb, 8);
2192  n++;
2193  }
2194  }
2195 
2196  /* prog_ref_level_present? */
2197  if (get_bits1(gb)) {
2198  che_drc->prog_ref_level = get_bits(gb, 7);
2199  skip_bits1(gb); // prog_ref_level_reserved_bits
2200  n++;
2201  }
2202 
2203  for (i = 0; i < drc_num_bands; i++) {
2204  che_drc->dyn_rng_sgn[i] = get_bits1(gb);
2205  che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
2206  n++;
2207  }
2208 
2209  return n;
2210 }
2211 
2212 static int decode_fill(AACContext *ac, GetBitContext *gb, int len) {
2213  uint8_t buf[256];
2214  int i, major, minor;
2215 
2216  if (len < 13+7*8)
2217  goto unknown;
2218 
2219  get_bits(gb, 13); len -= 13;
2220 
2221  for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8)
2222  buf[i] = get_bits(gb, 8);
2223 
2224  buf[i] = 0;
2225  if (ac->avctx->debug & FF_DEBUG_PICT_INFO)
2226  av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf);
2227 
2228  if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){
2229  ac->avctx->internal->skip_samples = 1024;
2230  }
2231 
2232 unknown:
2233  skip_bits_long(gb, len);
2234 
2235  return 0;
2236 }
2237 
2238 /**
2239  * Decode extension data (incomplete); reference: table 4.51.
2240  *
2241  * @param cnt length of TYPE_FIL syntactic element in bytes
2242  *
2243  * @return Returns number of bytes consumed
2244  */
2246  ChannelElement *che, enum RawDataBlockType elem_type)
2247 {
2248  int crc_flag = 0;
2249  int res = cnt;
2250  switch (get_bits(gb, 4)) { // extension type
2251  case EXT_SBR_DATA_CRC:
2252  crc_flag++;
2253  case EXT_SBR_DATA:
2254  if (!che) {
2255  av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
2256  return res;
2257  } else if (!ac->oc[1].m4ac.sbr) {
2258  av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
2259  skip_bits_long(gb, 8 * cnt - 4);
2260  return res;
2261  } else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) {
2262  av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
2263  skip_bits_long(gb, 8 * cnt - 4);
2264  return res;
2265  } else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && ac->avctx->channels == 1) {
2266  ac->oc[1].m4ac.sbr = 1;
2267  ac->oc[1].m4ac.ps = 1;
2268  output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags,
2269  ac->oc[1].status, 1);
2270  } else {
2271  ac->oc[1].m4ac.sbr = 1;
2272  }
2273  res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
2274  break;
2275  case EXT_DYNAMIC_RANGE:
2276  res = decode_dynamic_range(&ac->che_drc, gb);
2277  break;
2278  case EXT_FILL:
2279  decode_fill(ac, gb, 8 * cnt - 4);
2280  break;
2281  case EXT_FILL_DATA:
2282  case EXT_DATA_ELEMENT:
2283  default:
2284  skip_bits_long(gb, 8 * cnt - 4);
2285  break;
2286  };
2287  return res;
2288 }
2289 
2290 /**
2291  * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
2292  *
2293  * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
2294  * @param coef spectral coefficients
2295  */
2296 static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
2297  IndividualChannelStream *ics, int decode)
2298 {
2299  const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
2300  int w, filt, m, i;
2301  int bottom, top, order, start, end, size, inc;
2302  float lpc[TNS_MAX_ORDER];
2303  float tmp[TNS_MAX_ORDER+1];
2304 
2305  for (w = 0; w < ics->num_windows; w++) {
2306  bottom = ics->num_swb;
2307  for (filt = 0; filt < tns->n_filt[w]; filt++) {
2308  top = bottom;
2309  bottom = FFMAX(0, top - tns->length[w][filt]);
2310  order = tns->order[w][filt];
2311  if (order == 0)
2312  continue;
2313 
2314  // tns_decode_coef
2315  compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
2316 
2317  start = ics->swb_offset[FFMIN(bottom, mmm)];
2318  end = ics->swb_offset[FFMIN( top, mmm)];
2319  if ((size = end - start) <= 0)
2320  continue;
2321  if (tns->direction[w][filt]) {
2322  inc = -1;
2323  start = end - 1;
2324  } else {
2325  inc = 1;
2326  }
2327  start += w * 128;
2328 
2329  if (decode) {
2330  // ar filter
2331  for (m = 0; m < size; m++, start += inc)
2332  for (i = 1; i <= FFMIN(m, order); i++)
2333  coef[start] -= coef[start - i * inc] * lpc[i - 1];
2334  } else {
2335  // ma filter
2336  for (m = 0; m < size; m++, start += inc) {
2337  tmp[0] = coef[start];
2338  for (i = 1; i <= FFMIN(m, order); i++)
2339  coef[start] += tmp[i] * lpc[i - 1];
2340  for (i = order; i > 0; i--)
2341  tmp[i] = tmp[i - 1];
2342  }
2343  }
2344  }
2345  }
2346 }
2347 
2348 /**
2349  * Apply windowing and MDCT to obtain the spectral
2350  * coefficient from the predicted sample by LTP.
2351  */
2352 static void windowing_and_mdct_ltp(AACContext *ac, float *out,
2353  float *in, IndividualChannelStream *ics)
2354 {
2355  const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
2356  const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
2357  const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
2358  const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
2359 
2360  if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
2361  ac->fdsp.vector_fmul(in, in, lwindow_prev, 1024);
2362  } else {
2363  memset(in, 0, 448 * sizeof(float));
2364  ac->fdsp.vector_fmul(in + 448, in + 448, swindow_prev, 128);
2365  }
2366  if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
2367  ac->fdsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
2368  } else {
2369  ac->fdsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
2370  memset(in + 1024 + 576, 0, 448 * sizeof(float));
2371  }
2372  ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in);
2373 }
2374 
2375 /**
2376  * Apply the long term prediction
2377  */
2379 {
2380  const LongTermPrediction *ltp = &sce->ics.ltp;
2381  const uint16_t *offsets = sce->ics.swb_offset;
2382  int i, sfb;
2383 
2384  if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
2385  float *predTime = sce->ret;
2386  float *predFreq = ac->buf_mdct;
2387  int16_t num_samples = 2048;
2388 
2389  if (ltp->lag < 1024)
2390  num_samples = ltp->lag + 1024;
2391  for (i = 0; i < num_samples; i++)
2392  predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
2393  memset(&predTime[i], 0, (2048 - i) * sizeof(float));
2394 
2395  ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
2396 
2397  if (sce->tns.present)
2398  ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0);
2399 
2400  for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
2401  if (ltp->used[sfb])
2402  for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
2403  sce->coeffs[i] += predFreq[i];
2404  }
2405 }
2406 
2407 /**
2408  * Update the LTP buffer for next frame
2409  */
2411 {
2412  IndividualChannelStream *ics = &sce->ics;
2413  float *saved = sce->saved;
2414  float *saved_ltp = sce->coeffs;
2415  const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
2416  const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
2417  int i;
2418 
2419  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
2420  memcpy(saved_ltp, saved, 512 * sizeof(float));
2421  memset(saved_ltp + 576, 0, 448 * sizeof(float));
2422  ac->fdsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
2423  for (i = 0; i < 64; i++)
2424  saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
2425  } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
2426  memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(float));
2427  memset(saved_ltp + 576, 0, 448 * sizeof(float));
2428  ac->fdsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
2429  for (i = 0; i < 64; i++)
2430  saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
2431  } else { // LONG_STOP or ONLY_LONG
2432  ac->fdsp.vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512);
2433  for (i = 0; i < 512; i++)
2434  saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i];
2435  }
2436 
2437  memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state));
2438  memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state));
2439  memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state));
2440 }
2441 
2442 /**
2443  * Conduct IMDCT and windowing.
2444  */
2446 {
2447  IndividualChannelStream *ics = &sce->ics;
2448  float *in = sce->coeffs;
2449  float *out = sce->ret;
2450  float *saved = sce->saved;
2451  const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
2452  const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
2453  const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
2454  float *buf = ac->buf_mdct;
2455  float *temp = ac->temp;
2456  int i;
2457 
2458  // imdct
2459  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
2460  for (i = 0; i < 1024; i += 128)
2461  ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
2462  } else
2463  ac->mdct.imdct_half(&ac->mdct, buf, in);
2464 
2465  /* window overlapping
2466  * NOTE: To simplify the overlapping code, all 'meaningless' short to long
2467  * and long to short transitions are considered to be short to short
2468  * transitions. This leaves just two cases (long to long and short to short)
2469  * with a little special sauce for EIGHT_SHORT_SEQUENCE.
2470  */
2471  if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
2473  ac->fdsp.vector_fmul_window( out, saved, buf, lwindow_prev, 512);
2474  } else {
2475  memcpy( out, saved, 448 * sizeof(float));
2476 
2477  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
2478  ac->fdsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64);
2479  ac->fdsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64);
2480  ac->fdsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64);
2481  ac->fdsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64);
2482  ac->fdsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64);
2483  memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
2484  } else {
2485  ac->fdsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64);
2486  memcpy( out + 576, buf + 64, 448 * sizeof(float));
2487  }
2488  }
2489 
2490  // buffer update
2491  if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
2492  memcpy( saved, temp + 64, 64 * sizeof(float));
2493  ac->fdsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64);
2494  ac->fdsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
2495  ac->fdsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
2496  memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
2497  } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
2498  memcpy( saved, buf + 512, 448 * sizeof(float));
2499  memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
2500  } else { // LONG_STOP or ONLY_LONG
2501  memcpy( saved, buf + 512, 512 * sizeof(float));
2502  }
2503 }
2504 
2506 {
2507  IndividualChannelStream *ics = &sce->ics;
2508  float *in = sce->coeffs;
2509  float *out = sce->ret;
2510  float *saved = sce->saved;
2511  const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_512 : ff_sine_512;
2512  float *buf = ac->buf_mdct;
2513 
2514  // imdct
2515  ac->mdct.imdct_half(&ac->mdct_ld, buf, in);
2516 
2517  // window overlapping
2518  ac->fdsp.vector_fmul_window(out, saved, buf, lwindow_prev, 256);
2519 
2520  // buffer update
2521  memcpy(saved, buf + 256, 256 * sizeof(float));
2522 }
2523 
2525 {
2526  float *in = sce->coeffs;
2527  float *out = sce->ret;
2528  float *saved = sce->saved;
2529  const float *const window = ff_aac_eld_window;
2530  float *buf = ac->buf_mdct;
2531  int i;
2532  const int n = 512;
2533  const int n2 = n >> 1;
2534  const int n4 = n >> 2;
2535 
2536  // Inverse transform, mapped to the conventional IMDCT by
2537  // Chivukula, R.K.; Reznik, Y.A.; Devarajan, V.,
2538  // "Efficient algorithms for MPEG-4 AAC-ELD, AAC-LD and AAC-LC filterbanks,"
2539  // Audio, Language and Image Processing, 2008. ICALIP 2008. International Conference on
2540  // URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4590245&isnumber=4589950
2541  for (i = 0; i < n2; i+=2) {
2542  float temp;
2543  temp = in[i ]; in[i ] = -in[n - 1 - i]; in[n - 1 - i] = temp;
2544  temp = -in[i + 1]; in[i + 1] = in[n - 2 - i]; in[n - 2 - i] = temp;
2545  }
2546  ac->mdct.imdct_half(&ac->mdct_ld, buf, in);
2547  for (i = 0; i < n; i+=2) {
2548  buf[i] = -buf[i];
2549  }
2550  // Like with the regular IMDCT at this point we still have the middle half
2551  // of a transform but with even symmetry on the left and odd symmetry on
2552  // the right
2553 
2554  // window overlapping
2555  // The spec says to use samples [0..511] but the reference decoder uses
2556  // samples [128..639].
2557  for (i = n4; i < n2; i ++) {
2558  out[i - n4] = buf[n2 - 1 - i] * window[i - n4] +
2559  saved[ i + n2] * window[i + n - n4] +
2560  -saved[ n + n2 - 1 - i] * window[i + 2*n - n4] +
2561  -saved[2*n + n2 + i] * window[i + 3*n - n4];
2562  }
2563  for (i = 0; i < n2; i ++) {
2564  out[n4 + i] = buf[i] * window[i + n2 - n4] +
2565  -saved[ n - 1 - i] * window[i + n2 + n - n4] +
2566  -saved[ n + i] * window[i + n2 + 2*n - n4] +
2567  saved[2*n + n - 1 - i] * window[i + n2 + 3*n - n4];
2568  }
2569  for (i = 0; i < n4; i ++) {
2570  out[n2 + n4 + i] = buf[ i + n2] * window[i + n - n4] +
2571  -saved[ n2 - 1 - i] * window[i + 2*n - n4] +
2572  -saved[ n + n2 + i] * window[i + 3*n - n4];
2573  }
2574 
2575  // buffer update
2576  memmove(saved + n, saved, 2 * n * sizeof(float));
2577  memcpy( saved, buf, n * sizeof(float));
2578 }
2579 
2580 /**
2581  * Apply dependent channel coupling (applied before IMDCT).
2582  *
2583  * @param index index into coupling gain array
2584  */
2586  SingleChannelElement *target,
2587  ChannelElement *cce, int index)
2588 {
2589  IndividualChannelStream *ics = &cce->ch[0].ics;
2590  const uint16_t *offsets = ics->swb_offset;
2591  float *dest = target->coeffs;
2592  const float *src = cce->ch[0].coeffs;
2593  int g, i, group, k, idx = 0;
2594  if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
2595  av_log(ac->avctx, AV_LOG_ERROR,
2596  "Dependent coupling is not supported together with LTP\n");
2597  return;
2598  }
2599  for (g = 0; g < ics->num_window_groups; g++) {
2600  for (i = 0; i < ics->max_sfb; i++, idx++) {
2601  if (cce->ch[0].band_type[idx] != ZERO_BT) {
2602  const float gain = cce->coup.gain[index][idx];
2603  for (group = 0; group < ics->group_len[g]; group++) {
2604  for (k = offsets[i]; k < offsets[i + 1]; k++) {
2605  // XXX dsputil-ize
2606  dest[group * 128 + k] += gain * src[group * 128 + k];
2607  }
2608  }
2609  }
2610  }
2611  dest += ics->group_len[g] * 128;
2612  src += ics->group_len[g] * 128;
2613  }
2614 }
2615 
2616 /**
2617  * Apply independent channel coupling (applied after IMDCT).
2618  *
2619  * @param index index into coupling gain array
2620  */
2622  SingleChannelElement *target,
2623  ChannelElement *cce, int index)
2624 {
2625  int i;
2626  const float gain = cce->coup.gain[index][0];
2627  const float *src = cce->ch[0].ret;
2628  float *dest = target->ret;
2629  const int len = 1024 << (ac->oc[1].m4ac.sbr == 1);
2630 
2631  for (i = 0; i < len; i++)
2632  dest[i] += gain * src[i];
2633 }
2634 
2635 /**
2636  * channel coupling transformation interface
2637  *
2638  * @param apply_coupling_method pointer to (in)dependent coupling function
2639  */
2641  enum RawDataBlockType type, int elem_id,
2642  enum CouplingPoint coupling_point,
2643  void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
2644 {
2645  int i, c;
2646 
2647  for (i = 0; i < MAX_ELEM_ID; i++) {
2648  ChannelElement *cce = ac->che[TYPE_CCE][i];
2649  int index = 0;
2650 
2651  if (cce && cce->coup.coupling_point == coupling_point) {
2652  ChannelCoupling *coup = &cce->coup;
2653 
2654  for (c = 0; c <= coup->num_coupled; c++) {
2655  if (coup->type[c] == type && coup->id_select[c] == elem_id) {
2656  if (coup->ch_select[c] != 1) {
2657  apply_coupling_method(ac, &cc->ch[0], cce, index);
2658  if (coup->ch_select[c] != 0)
2659  index++;
2660  }
2661  if (coup->ch_select[c] != 2)
2662  apply_coupling_method(ac, &cc->ch[1], cce, index++);
2663  } else
2664  index += 1 + (coup->ch_select[c] == 3);
2665  }
2666  }
2667  }
2668 }
2669 
2670 /**
2671  * Convert spectral data to float samples, applying all supported tools as appropriate.
2672  */
2674 {
2675  int i, type;
2677  switch (ac->oc[1].m4ac.object_type) {
2678  case AOT_ER_AAC_LD:
2680  break;
2681  case AOT_ER_AAC_ELD:
2683  break;
2684  default:
2686  }
2687  for (type = 3; type >= 0; type--) {
2688  for (i = 0; i < MAX_ELEM_ID; i++) {
2689  ChannelElement *che = ac->che[type][i];
2690  if (che) {
2691  if (type <= TYPE_CPE)
2693  if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
2694  if (che->ch[0].ics.predictor_present) {
2695  if (che->ch[0].ics.ltp.present)
2696  ac->apply_ltp(ac, &che->ch[0]);
2697  if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
2698  ac->apply_ltp(ac, &che->ch[1]);
2699  }
2700  }
2701  if (che->ch[0].tns.present)
2702  ac->apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
2703  if (che->ch[1].tns.present)
2704  ac->apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
2705  if (type <= TYPE_CPE)
2707  if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
2708  imdct_and_window(ac, &che->ch[0]);
2709  if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
2710  ac->update_ltp(ac, &che->ch[0]);
2711  if (type == TYPE_CPE) {
2712  imdct_and_window(ac, &che->ch[1]);
2713  if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
2714  ac->update_ltp(ac, &che->ch[1]);
2715  }
2716  if (ac->oc[1].m4ac.sbr > 0) {
2717  ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
2718  }
2719  }
2720  if (type <= TYPE_CCE)
2722  }
2723  }
2724  }
2725 }
2726 
2728 {
2729  int size;
2730  AACADTSHeaderInfo hdr_info;
2731  uint8_t layout_map[MAX_ELEM_ID*4][3];
2732  int layout_map_tags, ret;
2733 
2734  size = avpriv_aac_parse_header(gb, &hdr_info);
2735  if (size > 0) {
2736  if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) {
2737  // This is 2 for "VLB " audio in NSV files.
2738  // See samples/nsv/vlb_audio.
2740  "More than one AAC RDB per ADTS frame");
2741  ac->warned_num_aac_frames = 1;
2742  }
2744  if (hdr_info.chan_config) {
2745  ac->oc[1].m4ac.chan_config = hdr_info.chan_config;
2746  if ((ret = set_default_channel_config(ac->avctx,
2747  layout_map,
2748  &layout_map_tags,
2749  hdr_info.chan_config)) < 0)
2750  return ret;
2751  if ((ret = output_configure(ac, layout_map, layout_map_tags,
2752  FFMAX(ac->oc[1].status,
2753  OC_TRIAL_FRAME), 0)) < 0)
2754  return ret;
2755  } else {
2756  ac->oc[1].m4ac.chan_config = 0;
2757  /**
2758  * dual mono frames in Japanese DTV can have chan_config 0
2759  * WITHOUT specifying PCE.
2760  * thus, set dual mono as default.
2761  */
2762  if (ac->dmono_mode && ac->oc[0].status == OC_NONE) {
2763  layout_map_tags = 2;
2764  layout_map[0][0] = layout_map[1][0] = TYPE_SCE;
2765  layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT;
2766  layout_map[0][1] = 0;
2767  layout_map[1][1] = 1;
2768  if (output_configure(ac, layout_map, layout_map_tags,
2769  OC_TRIAL_FRAME, 0))
2770  return -7;
2771  }
2772  }
2773  ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate;
2774  ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index;
2775  ac->oc[1].m4ac.object_type = hdr_info.object_type;
2776  if (ac->oc[0].status != OC_LOCKED ||
2777  ac->oc[0].m4ac.chan_config != hdr_info.chan_config ||
2778  ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) {
2779  ac->oc[1].m4ac.sbr = -1;
2780  ac->oc[1].m4ac.ps = -1;
2781  }
2782  if (!hdr_info.crc_absent)
2783  skip_bits(gb, 16);
2784  }
2785  return size;
2786 }
2787 
2788 static int aac_decode_er_frame(AVCodecContext *avctx, void *data,
2789  int *got_frame_ptr, GetBitContext *gb)
2790 {
2791  AACContext *ac = avctx->priv_data;
2792  ChannelElement *che;
2793  int err, i;
2794  int samples = 1024;
2795  int chan_config = ac->oc[1].m4ac.chan_config;
2796  int aot = ac->oc[1].m4ac.object_type;
2797 
2798  if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD)
2799  samples >>= 1;
2800 
2801  ac->frame = data;
2802 
2803  if ((err = frame_configure_elements(avctx)) < 0)
2804  return err;
2805 
2806  ac->tags_mapped = 0;
2807 
2808  if (chan_config < 0 || chan_config >= 8) {
2809  avpriv_request_sample(avctx, "Unknown ER channel configuration %d",
2810  ac->oc[1].m4ac.chan_config);
2811  return AVERROR_INVALIDDATA;
2812  }
2813  for (i = 0; i < tags_per_config[chan_config]; i++) {
2814  const int elem_type = aac_channel_layout_map[chan_config-1][i][0];
2815  const int elem_id = aac_channel_layout_map[chan_config-1][i][1];
2816  if (!(che=get_che(ac, elem_type, elem_id))) {
2817  av_log(ac->avctx, AV_LOG_ERROR,
2818  "channel element %d.%d is not allocated\n",
2819  elem_type, elem_id);
2820  return AVERROR_INVALIDDATA;
2821  }
2822  if (aot != AOT_ER_AAC_ELD)
2823  skip_bits(gb, 4);
2824  switch (elem_type) {
2825  case TYPE_SCE:
2826  err = decode_ics(ac, &che->ch[0], gb, 0, 0);
2827  break;
2828  case TYPE_CPE:
2829  err = decode_cpe(ac, gb, che);
2830  break;
2831  case TYPE_LFE:
2832  err = decode_ics(ac, &che->ch[0], gb, 0, 0);
2833  break;
2834  }
2835  if (err < 0)
2836  return err;
2837  }
2838 
2839  spectral_to_sample(ac);
2840 
2841  ac->frame->nb_samples = samples;
2842  *got_frame_ptr = 1;
2843 
2844  skip_bits_long(gb, get_bits_left(gb));
2845  return 0;
2846 }
2847 
2848 static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
2849  int *got_frame_ptr, GetBitContext *gb, AVPacket *avpkt)
2850 {
2851  AACContext *ac = avctx->priv_data;
2852  ChannelElement *che = NULL, *che_prev = NULL;
2853  enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
2854  int err, elem_id;
2855  int samples = 0, multiplier, audio_found = 0, pce_found = 0;
2856  int is_dmono, sce_count = 0;
2857 
2858  ac->frame = data;
2859 
2860  if (show_bits(gb, 12) == 0xfff) {
2861  if ((err = parse_adts_frame_header(ac, gb)) < 0) {
2862  av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
2863  goto fail;
2864  }
2865  if (ac->oc[1].m4ac.sampling_index > 12) {
2866  av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index);
2867  err = AVERROR_INVALIDDATA;
2868  goto fail;
2869  }
2870  }
2871 
2872  if ((err = frame_configure_elements(avctx)) < 0)
2873  goto fail;
2874 
2875  ac->tags_mapped = 0;
2876  // parse
2877  while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
2878  elem_id = get_bits(gb, 4);
2879 
2880  if (elem_type < TYPE_DSE) {
2881  if (!(che=get_che(ac, elem_type, elem_id))) {
2882  av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
2883  elem_type, elem_id);
2884  err = AVERROR_INVALIDDATA;
2885  goto fail;
2886  }
2887  samples = 1024;
2888  }
2889 
2890  switch (elem_type) {
2891 
2892  case TYPE_SCE:
2893  err = decode_ics(ac, &che->ch[0], gb, 0, 0);
2894  audio_found = 1;
2895  sce_count++;
2896  break;
2897 
2898  case TYPE_CPE:
2899  err = decode_cpe(ac, gb, che);
2900  audio_found = 1;
2901  break;
2902 
2903  case TYPE_CCE:
2904  err = decode_cce(ac, gb, che);
2905  break;
2906 
2907  case TYPE_LFE:
2908  err = decode_ics(ac, &che->ch[0], gb, 0, 0);
2909  audio_found = 1;
2910  break;
2911 
2912  case TYPE_DSE:
2913  err = skip_data_stream_element(ac, gb);
2914  break;
2915 
2916  case TYPE_PCE: {
2917  uint8_t layout_map[MAX_ELEM_ID*4][3];
2918  int tags;
2920  tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb);
2921  if (tags < 0) {
2922  err = tags;
2923  break;
2924  }
2925  if (pce_found) {
2926  av_log(avctx, AV_LOG_ERROR,
2927  "Not evaluating a further program_config_element as this construct is dubious at best.\n");
2928  } else {
2929  err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1);
2930  if (!err)
2931  ac->oc[1].m4ac.chan_config = 0;
2932  pce_found = 1;
2933  }
2934  break;
2935  }
2936 
2937  case TYPE_FIL:
2938  if (elem_id == 15)
2939  elem_id += get_bits(gb, 8) - 1;
2940  if (get_bits_left(gb) < 8 * elem_id) {
2941  av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err);
2942  err = AVERROR_INVALIDDATA;
2943  goto fail;
2944  }
2945  while (elem_id > 0)
2946  elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
2947  err = 0; /* FIXME */
2948  break;
2949 
2950  default:
2951  err = AVERROR_BUG; /* should not happen, but keeps compiler happy */
2952  break;
2953  }
2954 
2955  che_prev = che;
2956  elem_type_prev = elem_type;
2957 
2958  if (err)
2959  goto fail;
2960 
2961  if (get_bits_left(gb) < 3) {
2962  av_log(avctx, AV_LOG_ERROR, overread_err);
2963  err = AVERROR_INVALIDDATA;
2964  goto fail;
2965  }
2966  }
2967 
2968  spectral_to_sample(ac);
2969 
2970  multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0;
2971  samples <<= multiplier;
2972  /* for dual-mono audio (SCE + SCE) */
2973  is_dmono = ac->dmono_mode && sce_count == 2 &&
2975 
2976  if (samples)
2977  ac->frame->nb_samples = samples;
2978  else
2979  av_frame_unref(ac->frame);
2980  *got_frame_ptr = !!samples;
2981 
2982  if (is_dmono) {
2983  if (ac->dmono_mode == 1)
2984  ((AVFrame *)data)->data[1] =((AVFrame *)data)->data[0];
2985  else if (ac->dmono_mode == 2)
2986  ((AVFrame *)data)->data[0] =((AVFrame *)data)->data[1];
2987  }
2988 
2989  if (ac->oc[1].status && audio_found) {
2990  avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier;
2991  avctx->frame_size = samples;
2992  ac->oc[1].status = OC_LOCKED;
2993  }
2994 
2995  if (multiplier) {
2996  int side_size;
2997  const uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, &side_size);
2998  if (side && side_size>=4)
2999  AV_WL32(side, 2*AV_RL32(side));
3000  }
3001  return 0;
3002 fail:
3004  return err;
3005 }
3006 
3007 static int aac_decode_frame(AVCodecContext *avctx, void *data,
3008  int *got_frame_ptr, AVPacket *avpkt)
3009 {
3010  AACContext *ac = avctx->priv_data;
3011  const uint8_t *buf = avpkt->data;
3012  int buf_size = avpkt->size;
3013  GetBitContext gb;
3014  int buf_consumed;
3015  int buf_offset;
3016  int err;
3017  int new_extradata_size;
3018  const uint8_t *new_extradata = av_packet_get_side_data(avpkt,
3020  &new_extradata_size);
3021  int jp_dualmono_size;
3022  const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt,
3024  &jp_dualmono_size);
3025 
3026  if (new_extradata && 0) {
3027  av_free(avctx->extradata);
3028  avctx->extradata = av_mallocz(new_extradata_size +
3030  if (!avctx->extradata)
3031  return AVERROR(ENOMEM);
3032  avctx->extradata_size = new_extradata_size;
3033  memcpy(avctx->extradata, new_extradata, new_extradata_size);
3035  if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
3036  avctx->extradata,
3037  avctx->extradata_size*8, 1) < 0) {
3039  return AVERROR_INVALIDDATA;
3040  }
3041  }
3042 
3043  ac->dmono_mode = 0;
3044  if (jp_dualmono && jp_dualmono_size > 0)
3045  ac->dmono_mode = 1 + *jp_dualmono;
3046  if (ac->force_dmono_mode >= 0)
3047  ac->dmono_mode = ac->force_dmono_mode;
3048 
3049  if (INT_MAX / 8 <= buf_size)
3050  return AVERROR_INVALIDDATA;
3051 
3052  if ((err = init_get_bits(&gb, buf, buf_size * 8)) < 0)
3053  return err;
3054 
3055  switch (ac->oc[1].m4ac.object_type) {
3056  case AOT_ER_AAC_LC:
3057  case AOT_ER_AAC_LTP:
3058  case AOT_ER_AAC_LD:
3059  case AOT_ER_AAC_ELD:
3060  err = aac_decode_er_frame(avctx, data, got_frame_ptr, &gb);
3061  break;
3062  default:
3063  err = aac_decode_frame_int(avctx, data, got_frame_ptr, &gb, avpkt);
3064  }
3065  if (err < 0)
3066  return err;
3067 
3068  buf_consumed = (get_bits_count(&gb) + 7) >> 3;
3069  for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
3070  if (buf[buf_offset])
3071  break;
3072 
3073  return buf_size > buf_offset ? buf_consumed : buf_size;
3074 }
3075 
3077 {
3078  AACContext *ac = avctx->priv_data;
3079  int i, type;
3080 
3081  for (i = 0; i < MAX_ELEM_ID; i++) {
3082  for (type = 0; type < 4; type++) {
3083  if (ac->che[type][i])
3084  ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
3085  av_freep(&ac->che[type][i]);
3086  }
3087  }
3088 
3089  ff_mdct_end(&ac->mdct);
3090  ff_mdct_end(&ac->mdct_small);
3091  ff_mdct_end(&ac->mdct_ld);
3092  ff_mdct_end(&ac->mdct_ltp);
3093  return 0;
3094 }
3095 
3096 
3097 #define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word
3098 
3099 struct LATMContext {
3100  AACContext aac_ctx; ///< containing AACContext
3101  int initialized; ///< initialized after a valid extradata was seen
3102 
3103  // parser data
3104  int audio_mux_version_A; ///< LATM syntax version
3105  int frame_length_type; ///< 0/1 variable/fixed frame length
3106  int frame_length; ///< frame length for fixed frame length
3107 };
3108 
3109 static inline uint32_t latm_get_value(GetBitContext *b)
3110 {
3111  int length = get_bits(b, 2);
3112 
3113  return get_bits_long(b, (length+1)*8);
3114 }
3115 
3117  GetBitContext *gb, int asclen)
3118 {
3119  AACContext *ac = &latmctx->aac_ctx;
3120  AVCodecContext *avctx = ac->avctx;
3121  MPEG4AudioConfig m4ac = { 0 };
3122  int config_start_bit = get_bits_count(gb);
3123  int sync_extension = 0;
3124  int bits_consumed, esize;
3125 
3126  if (asclen) {
3127  sync_extension = 1;
3128  asclen = FFMIN(asclen, get_bits_left(gb));
3129  } else
3130  asclen = get_bits_left(gb);
3131 
3132  if (config_start_bit % 8) {
3134  "Non-byte-aligned audio-specific config");
3135  return AVERROR_PATCHWELCOME;
3136  }
3137  if (asclen <= 0)
3138  return AVERROR_INVALIDDATA;
3139  bits_consumed = decode_audio_specific_config(NULL, avctx, &m4ac,
3140  gb->buffer + (config_start_bit / 8),
3141  asclen, sync_extension);
3142 
3143  if (bits_consumed < 0)
3144  return AVERROR_INVALIDDATA;
3145 
3146  if (!latmctx->initialized ||
3147  ac->oc[1].m4ac.sample_rate != m4ac.sample_rate ||
3148  ac->oc[1].m4ac.chan_config != m4ac.chan_config) {
3149 
3150  if(latmctx->initialized) {
3151  av_log(avctx, AV_LOG_INFO, "audio config changed\n");
3152  } else {
3153  av_log(avctx, AV_LOG_DEBUG, "initializing latmctx\n");
3154  }
3155  latmctx->initialized = 0;
3156 
3157  esize = (bits_consumed+7) / 8;
3158 
3159  if (avctx->extradata_size < esize) {
3160  av_free(avctx->extradata);
3162  if (!avctx->extradata)
3163  return AVERROR(ENOMEM);
3164  }
3165 
3166  avctx->extradata_size = esize;
3167  memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
3168  memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
3169  }
3170  skip_bits_long(gb, bits_consumed);
3171 
3172  return bits_consumed;
3173 }
3174 
3175 static int read_stream_mux_config(struct LATMContext *latmctx,
3176  GetBitContext *gb)
3177 {
3178  int ret, audio_mux_version = get_bits(gb, 1);
3179 
3180  latmctx->audio_mux_version_A = 0;
3181  if (audio_mux_version)
3182  latmctx->audio_mux_version_A = get_bits(gb, 1);
3183 
3184  if (!latmctx->audio_mux_version_A) {
3185 
3186  if (audio_mux_version)
3187  latm_get_value(gb); // taraFullness
3188 
3189  skip_bits(gb, 1); // allStreamSameTimeFraming
3190  skip_bits(gb, 6); // numSubFrames
3191  // numPrograms
3192  if (get_bits(gb, 4)) { // numPrograms
3193  avpriv_request_sample(latmctx->aac_ctx.avctx, "Multiple programs");
3194  return AVERROR_PATCHWELCOME;
3195  }
3196 
3197  // for each program (which there is only one in DVB)
3198 
3199  // for each layer (which there is only one in DVB)
3200  if (get_bits(gb, 3)) { // numLayer
3201  avpriv_request_sample(latmctx->aac_ctx.avctx, "Multiple layers");
3202  return AVERROR_PATCHWELCOME;
3203  }
3204 
3205  // for all but first stream: use_same_config = get_bits(gb, 1);
3206  if (!audio_mux_version) {
3207  if ((ret = latm_decode_audio_specific_config(latmctx, gb, 0)) < 0)
3208  return ret;
3209  } else {
3210  int ascLen = latm_get_value(gb);
3211  if ((ret = latm_decode_audio_specific_config(latmctx, gb, ascLen)) < 0)
3212  return ret;
3213  ascLen -= ret;
3214  skip_bits_long(gb, ascLen);
3215  }
3216 
3217  latmctx->frame_length_type = get_bits(gb, 3);
3218  switch (latmctx->frame_length_type) {
3219  case 0:
3220  skip_bits(gb, 8); // latmBufferFullness
3221  break;
3222  case 1:
3223  latmctx->frame_length = get_bits(gb, 9);
3224  break;
3225  case 3:
3226  case 4:
3227  case 5:
3228  skip_bits(gb, 6); // CELP frame length table index
3229  break;
3230  case 6:
3231  case 7:
3232  skip_bits(gb, 1); // HVXC frame length table index
3233  break;
3234  }
3235 
3236  if (get_bits(gb, 1)) { // other data
3237  if (audio_mux_version) {
3238  latm_get_value(gb); // other_data_bits
3239  } else {
3240  int esc;
3241  do {
3242  esc = get_bits(gb, 1);
3243  skip_bits(gb, 8);
3244  } while (esc);
3245  }
3246  }
3247 
3248  if (get_bits(gb, 1)) // crc present
3249  skip_bits(gb, 8); // config_crc
3250  }
3251 
3252  return 0;
3253 }
3254 
3256 {
3257  uint8_t tmp;
3258 
3259  if (ctx->frame_length_type == 0) {
3260  int mux_slot_length = 0;
3261  do {
3262  tmp = get_bits(gb, 8);
3263  mux_slot_length += tmp;
3264  } while (tmp == 255);
3265  return mux_slot_length;
3266  } else if (ctx->frame_length_type == 1) {
3267  return ctx->frame_length;
3268  } else if (ctx->frame_length_type == 3 ||
3269  ctx->frame_length_type == 5 ||
3270  ctx->frame_length_type == 7) {
3271  skip_bits(gb, 2); // mux_slot_length_coded
3272  }
3273  return 0;
3274 }
3275 
3276 static int read_audio_mux_element(struct LATMContext *latmctx,
3277  GetBitContext *gb)
3278 {
3279  int err;
3280  uint8_t use_same_mux = get_bits(gb, 1);
3281  if (!use_same_mux) {
3282  if ((err = read_stream_mux_config(latmctx, gb)) < 0)
3283  return err;
3284  } else if (!latmctx->aac_ctx.avctx->extradata) {
3285  av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
3286  "no decoder config found\n");
3287  return AVERROR(EAGAIN);
3288  }
3289  if (latmctx->audio_mux_version_A == 0) {
3290  int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
3291  if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
3292  av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
3293  return AVERROR_INVALIDDATA;
3294  } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
3295  av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
3296  "frame length mismatch %d << %d\n",
3297  mux_slot_length_bytes * 8, get_bits_left(gb));
3298  return AVERROR_INVALIDDATA;
3299  }
3300  }
3301  return 0;
3302 }
3303 
3304 
3305 static int latm_decode_frame(AVCodecContext *avctx, void *out,
3306  int *got_frame_ptr, AVPacket *avpkt)
3307 {
3308  struct LATMContext *latmctx = avctx->priv_data;
3309  int muxlength, err;
3310  GetBitContext gb;
3311 
3312  if ((err = init_get_bits8(&gb, avpkt->data, avpkt->size)) < 0)
3313  return err;
3314 
3315  // check for LOAS sync word
3316  if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
3317  return AVERROR_INVALIDDATA;
3318 
3319  muxlength = get_bits(&gb, 13) + 3;
3320  // not enough data, the parser should have sorted this out
3321  if (muxlength > avpkt->size)
3322  return AVERROR_INVALIDDATA;
3323 
3324  if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
3325  return err;
3326 
3327  if (!latmctx->initialized) {
3328  if (!avctx->extradata) {
3329  *got_frame_ptr = 0;
3330  return avpkt->size;
3331  } else {
3333  if ((err = decode_audio_specific_config(
3334  &latmctx->aac_ctx, avctx, &latmctx->aac_ctx.oc[1].m4ac,
3335  avctx->extradata, avctx->extradata_size*8, 1)) < 0) {
3336  pop_output_configuration(&latmctx->aac_ctx);
3337  return err;
3338  }
3339  latmctx->initialized = 1;
3340  }
3341  }
3342 
3343  if (show_bits(&gb, 12) == 0xfff) {
3344  av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
3345  "ADTS header detected, probably as result of configuration "
3346  "misparsing\n");
3347  return AVERROR_INVALIDDATA;
3348  }
3349 
3350  if ((err = aac_decode_frame_int(avctx, out, got_frame_ptr, &gb, avpkt)) < 0)
3351  return err;
3352 
3353  return muxlength;
3354 }
3355 
3357 {
3358  struct LATMContext *latmctx = avctx->priv_data;
3359  int ret = aac_decode_init(avctx);
3360 
3361  if (avctx->extradata_size > 0)
3362  latmctx->initialized = !ret;
3363 
3364  return ret;
3365 }
3366 
3367 static void aacdec_init(AACContext *c)
3368 {
3370  c->apply_ltp = apply_ltp;
3371  c->apply_tns = apply_tns;
3373  c->update_ltp = update_ltp;
3374 
3375  if(ARCH_MIPS)
3377 }
3378 /**
3379  * AVOptions for Japanese DTV specific extensions (ADTS only)
3380  */
3381 #define AACDEC_FLAGS AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
3382 static const AVOption options[] = {
3383  {"dual_mono_mode", "Select the channel to decode for dual mono",
3384  offsetof(AACContext, force_dmono_mode), AV_OPT_TYPE_INT, {.i64=-1}, -1, 2,
3385  AACDEC_FLAGS, "dual_mono_mode"},
3386 
3387  {"auto", "autoselection", 0, AV_OPT_TYPE_CONST, {.i64=-1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"},
3388  {"main", "Select Main/Left channel", 0, AV_OPT_TYPE_CONST, {.i64= 1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"},
3389  {"sub" , "Select Sub/Right channel", 0, AV_OPT_TYPE_CONST, {.i64= 2}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"},
3390  {"both", "Select both channels", 0, AV_OPT_TYPE_CONST, {.i64= 0}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"},
3391 
3392  {NULL},
3393 };
3394 
3395 static const AVClass aac_decoder_class = {
3396  .class_name = "AAC decoder",
3397  .item_name = av_default_item_name,
3398  .option = options,
3399  .version = LIBAVUTIL_VERSION_INT,
3400 };
3401 
3403  .name = "aac",
3404  .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
3405  .type = AVMEDIA_TYPE_AUDIO,
3406  .id = AV_CODEC_ID_AAC,
3407  .priv_data_size = sizeof(AACContext),
3408  .init = aac_decode_init,
3411  .sample_fmts = (const enum AVSampleFormat[]) {
3413  },
3414  .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
3415  .channel_layouts = aac_channel_layout,
3416  .flush = flush,
3417  .priv_class = &aac_decoder_class,
3418 };
3419 
3420 /*
3421  Note: This decoder filter is intended to decode LATM streams transferred
3422  in MPEG transport streams which only contain one program.
3423  To do a more complex LATM demuxing a separate LATM demuxer should be used.
3424 */
3426  .name = "aac_latm",
3427  .long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Coding LATM syntax)"),
3428  .type = AVMEDIA_TYPE_AUDIO,
3429  .id = AV_CODEC_ID_AAC_LATM,
3430  .priv_data_size = sizeof(struct LATMContext),
3431  .init = latm_decode_init,
3432  .close = aac_decode_close,
3433  .decode = latm_decode_frame,
3434  .sample_fmts = (const enum AVSampleFormat[]) {
3436  },
3437  .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
3438  .channel_layouts = aac_channel_layout,
3439  .flush = flush,
3440 };