FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
swscale_internal.h
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #ifndef SWSCALE_SWSCALE_INTERNAL_H
22 #define SWSCALE_SWSCALE_INTERNAL_H
23 
24 #include "config.h"
25 
26 #if HAVE_ALTIVEC_H
27 #include <altivec.h>
28 #endif
29 
30 #include "libavutil/avassert.h"
31 #include "libavutil/avutil.h"
32 #include "libavutil/common.h"
33 #include "libavutil/intreadwrite.h"
34 #include "libavutil/log.h"
35 #include "libavutil/pixfmt.h"
36 #include "libavutil/pixdesc.h"
37 
38 #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
39 
40 #define YUVRGB_TABLE_HEADROOM 128
41 
42 #define MAX_FILTER_SIZE 256
43 
44 #define DITHER1XBPP
45 
46 #if HAVE_BIGENDIAN
47 #define ALT32_CORR (-1)
48 #else
49 #define ALT32_CORR 1
50 #endif
51 
52 #if ARCH_X86_64
53 # define APCK_PTR2 8
54 # define APCK_COEF 16
55 # define APCK_SIZE 24
56 #else
57 # define APCK_PTR2 4
58 # define APCK_COEF 8
59 # define APCK_SIZE 16
60 #endif
61 
62 struct SwsContext;
63 
64 typedef enum SwsDither {
70 } SwsDither;
71 
72 typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
73  int srcStride[], int srcSliceY, int srcSliceH,
74  uint8_t *dst[], int dstStride[]);
75 
76 /**
77  * Write one line of horizontally scaled data to planar output
78  * without any additional vertical scaling (or point-scaling).
79  *
80  * @param src scaled source data, 15bit for 8-10bit output,
81  * 19-bit for 16bit output (in int32_t)
82  * @param dest pointer to the output plane. For >8bit
83  * output, this is in uint16_t
84  * @param dstW width of destination in pixels
85  * @param dither ordered dither array of type int16_t and size 8
86  * @param offset Dither offset
87  */
88 typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
89  const uint8_t *dither, int offset);
90 
91 /**
92  * Write one line of horizontally scaled data to planar output
93  * with multi-point vertical scaling between input pixels.
94  *
95  * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
96  * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
97  * 19-bit for 16bit output (in int32_t)
98  * @param filterSize number of vertical input lines to scale
99  * @param dest pointer to output plane. For >8bit
100  * output, this is in uint16_t
101  * @param dstW width of destination pixels
102  * @param offset Dither offset
103  */
104 typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
105  const int16_t **src, uint8_t *dest, int dstW,
106  const uint8_t *dither, int offset);
107 
108 /**
109  * Write one line of horizontally scaled chroma to interleaved output
110  * with multi-point vertical scaling between input pixels.
111  *
112  * @param c SWS scaling context
113  * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
114  * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
115  * 19-bit for 16bit output (in int32_t)
116  * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
117  * 19-bit for 16bit output (in int32_t)
118  * @param chrFilterSize number of vertical chroma input lines to scale
119  * @param dest pointer to the output plane. For >8bit
120  * output, this is in uint16_t
121  * @param dstW width of chroma planes
122  */
124  const int16_t *chrFilter,
125  int chrFilterSize,
126  const int16_t **chrUSrc,
127  const int16_t **chrVSrc,
128  uint8_t *dest, int dstW);
129 
130 /**
131  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
132  * output without any additional vertical scaling (or point-scaling). Note
133  * that this function may do chroma scaling, see the "uvalpha" argument.
134  *
135  * @param c SWS scaling context
136  * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
137  * 19-bit for 16bit output (in int32_t)
138  * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
139  * 19-bit for 16bit output (in int32_t)
140  * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
141  * 19-bit for 16bit output (in int32_t)
142  * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
143  * 19-bit for 16bit output (in int32_t)
144  * @param dest pointer to the output plane. For 16bit output, this is
145  * uint16_t
146  * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
147  * to write into dest[]
148  * @param uvalpha chroma scaling coefficient for the second line of chroma
149  * pixels, either 2048 or 0. If 0, one chroma input is used
150  * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
151  * is set, it generates 1 output pixel). If 2048, two chroma
152  * input pixels should be averaged for 2 output pixels (this
153  * only happens if SWS_FLAG_FULL_CHR_INT is not set)
154  * @param y vertical line number for this output. This does not need
155  * to be used to calculate the offset in the destination,
156  * but can be used to generate comfort noise using dithering
157  * for some output formats.
158  */
159 typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
160  const int16_t *chrUSrc[2],
161  const int16_t *chrVSrc[2],
162  const int16_t *alpSrc, uint8_t *dest,
163  int dstW, int uvalpha, int y);
164 /**
165  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
166  * output by doing bilinear scaling between two input lines.
167  *
168  * @param c SWS scaling context
169  * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
170  * 19-bit for 16bit output (in int32_t)
171  * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
172  * 19-bit for 16bit output (in int32_t)
173  * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
174  * 19-bit for 16bit output (in int32_t)
175  * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
176  * 19-bit for 16bit output (in int32_t)
177  * @param dest pointer to the output plane. For 16bit output, this is
178  * uint16_t
179  * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
180  * to write into dest[]
181  * @param yalpha luma/alpha scaling coefficients for the second input line.
182  * The first line's coefficients can be calculated by using
183  * 4096 - yalpha
184  * @param uvalpha chroma scaling coefficient for the second input line. The
185  * first line's coefficients can be calculated by using
186  * 4096 - uvalpha
187  * @param y vertical line number for this output. This does not need
188  * to be used to calculate the offset in the destination,
189  * but can be used to generate comfort noise using dithering
190  * for some output formats.
191  */
192 typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
193  const int16_t *chrUSrc[2],
194  const int16_t *chrVSrc[2],
195  const int16_t *alpSrc[2],
196  uint8_t *dest,
197  int dstW, int yalpha, int uvalpha, int y);
198 /**
199  * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
200  * output by doing multi-point vertical scaling between input pixels.
201  *
202  * @param c SWS scaling context
203  * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
204  * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
205  * 19-bit for 16bit output (in int32_t)
206  * @param lumFilterSize number of vertical luma/alpha input lines to scale
207  * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
208  * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
209  * 19-bit for 16bit output (in int32_t)
210  * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
211  * 19-bit for 16bit output (in int32_t)
212  * @param chrFilterSize number of vertical chroma input lines to scale
213  * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
214  * 19-bit for 16bit output (in int32_t)
215  * @param dest pointer to the output plane. For 16bit output, this is
216  * uint16_t
217  * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
218  * to write into dest[]
219  * @param y vertical line number for this output. This does not need
220  * to be used to calculate the offset in the destination,
221  * but can be used to generate comfort noise using dithering
222  * or some output formats.
223  */
224 typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
225  const int16_t **lumSrc, int lumFilterSize,
226  const int16_t *chrFilter,
227  const int16_t **chrUSrc,
228  const int16_t **chrVSrc, int chrFilterSize,
229  const int16_t **alpSrc, uint8_t *dest,
230  int dstW, int y);
231 
232 /**
233  * Write one line of horizontally scaled Y/U/V/A to YUV/RGB
234  * output by doing multi-point vertical scaling between input pixels.
235  *
236  * @param c SWS scaling context
237  * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
238  * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
239  * 19-bit for 16bit output (in int32_t)
240  * @param lumFilterSize number of vertical luma/alpha input lines to scale
241  * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
242  * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
243  * 19-bit for 16bit output (in int32_t)
244  * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
245  * 19-bit for 16bit output (in int32_t)
246  * @param chrFilterSize number of vertical chroma input lines to scale
247  * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
248  * 19-bit for 16bit output (in int32_t)
249  * @param dest pointer to the output planes. For 16bit output, this is
250  * uint16_t
251  * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
252  * to write into dest[]
253  * @param y vertical line number for this output. This does not need
254  * to be used to calculate the offset in the destination,
255  * but can be used to generate comfort noise using dithering
256  * or some output formats.
257  */
258 typedef void (*yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter,
259  const int16_t **lumSrc, int lumFilterSize,
260  const int16_t *chrFilter,
261  const int16_t **chrUSrc,
262  const int16_t **chrVSrc, int chrFilterSize,
263  const int16_t **alpSrc, uint8_t **dest,
264  int dstW, int y);
265 
266 /* This struct should be aligned on at least a 32-byte boundary. */
267 typedef struct SwsContext {
268  /**
269  * info on struct for av_log
270  */
272 
273  /**
274  * Note that src, dst, srcStride, dstStride will be copied in the
275  * sws_scale() wrapper so they can be freely modified here.
276  */
278  int srcW; ///< Width of source luma/alpha planes.
279  int srcH; ///< Height of source luma/alpha planes.
280  int dstH; ///< Height of destination luma/alpha planes.
281  int chrSrcW; ///< Width of source chroma planes.
282  int chrSrcH; ///< Height of source chroma planes.
283  int chrDstW; ///< Width of destination chroma planes.
284  int chrDstH; ///< Height of destination chroma planes.
287  enum AVPixelFormat dstFormat; ///< Destination pixel format.
288  enum AVPixelFormat srcFormat; ///< Source pixel format.
289  int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
290  int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
292  int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
293  int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
294  int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
295  int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
296  int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
297  int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
298  double param[2]; ///< Input parameters for scaling algorithms that need them.
299 
300  uint32_t pal_yuv[256];
301  uint32_t pal_rgb[256];
302 
303  /**
304  * @name Scaled horizontal lines ring buffer.
305  * The horizontal scaler keeps just enough scaled lines in a ring buffer
306  * so they may be passed to the vertical scaler. The pointers to the
307  * allocated buffers for each line are duplicated in sequence in the ring
308  * buffer to simplify indexing and avoid wrapping around between lines
309  * inside the vertical scaler code. The wrapping is done before the
310  * vertical scaler is called.
311  */
312  //@{
313  int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
314  int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
315  int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
316  int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
317  int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
318  int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
319  int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
320  int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
321  int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
322  int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
323  //@}
324 
326 
327  /**
328  * @name Horizontal and vertical filters.
329  * To better understand the following fields, here is a pseudo-code of
330  * their usage in filtering a horizontal line:
331  * @code
332  * for (i = 0; i < width; i++) {
333  * dst[i] = 0;
334  * for (j = 0; j < filterSize; j++)
335  * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
336  * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
337  * }
338  * @endcode
339  */
340  //@{
341  int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
342  int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
343  int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
344  int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
345  int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
346  int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
347  int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
348  int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
349  int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
350  int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
351  int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
352  int vChrFilterSize; ///< Vertical filter size for chroma pixels.
353  //@}
354 
355  int lumMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes.
356  int chrMmxextFilterCodeSize; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
357  uint8_t *lumMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
358  uint8_t *chrMmxextFilterCode; ///< Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
359 
361 
362  int dstY; ///< Last destination vertical line output from last slice.
363  int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
364  void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
369  DECLARE_ALIGNED(16, int32_t, input_rgb2yuv_table)[16+40*4]; // This table can contain both C and SIMD formatted values, teh C vales are always at the XY_IDX points
370 #define RY_IDX 0
371 #define GY_IDX 1
372 #define BY_IDX 2
373 #define RU_IDX 3
374 #define GU_IDX 4
375 #define BU_IDX 5
376 #define RV_IDX 6
377 #define GV_IDX 7
378 #define BV_IDX 8
379 #define RGB2YUV_SHIFT 15
380 
381  int *dither_error[4];
382 
383  //Colorspace stuff
384  int contrast, brightness, saturation; // for sws_getColorspaceDetails
387  int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
388  int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
391  int srcXYZ;
392  int dstXYZ;
403 
404 #define RED_DITHER "0*8"
405 #define GREEN_DITHER "1*8"
406 #define BLUE_DITHER "2*8"
407 #define Y_COEFF "3*8"
408 #define VR_COEFF "4*8"
409 #define UB_COEFF "5*8"
410 #define VG_COEFF "6*8"
411 #define UG_COEFF "7*8"
412 #define Y_OFFSET "8*8"
413 #define U_OFFSET "9*8"
414 #define V_OFFSET "10*8"
415 #define LUM_MMX_FILTER_OFFSET "11*8"
416 #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
417 #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
418 #define ESP_OFFSET "11*8+4*4*256*2+8"
419 #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
420 #define U_TEMP "11*8+4*4*256*2+24"
421 #define V_TEMP "11*8+4*4*256*2+32"
422 #define Y_TEMP "11*8+4*4*256*2+40"
423 #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
424 #define UV_OFF_PX "11*8+4*4*256*3+48"
425 #define UV_OFF_BYTE "11*8+4*4*256*3+56"
426 #define DITHER16 "11*8+4*4*256*3+64"
427 #define DITHER32 "11*8+4*4*256*3+80"
428 
429  DECLARE_ALIGNED(8, uint64_t, redDither);
432 
433  DECLARE_ALIGNED(8, uint64_t, yCoeff);
434  DECLARE_ALIGNED(8, uint64_t, vrCoeff);
435  DECLARE_ALIGNED(8, uint64_t, ubCoeff);
436  DECLARE_ALIGNED(8, uint64_t, vgCoeff);
437  DECLARE_ALIGNED(8, uint64_t, ugCoeff);
438  DECLARE_ALIGNED(8, uint64_t, yOffset);
439  DECLARE_ALIGNED(8, uint64_t, uOffset);
440  DECLARE_ALIGNED(8, uint64_t, vOffset);
443  int dstW; ///< Width of destination luma/alpha planes.
444  DECLARE_ALIGNED(8, uint64_t, esp);
445  DECLARE_ALIGNED(8, uint64_t, vRounder);
446  DECLARE_ALIGNED(8, uint64_t, u_temp);
447  DECLARE_ALIGNED(8, uint64_t, v_temp);
448  DECLARE_ALIGNED(8, uint64_t, y_temp);
450  // alignment of these values is not necessary, but merely here
451  // to maintain the same offset across x8632 and x86-64. Once we
452  // use proper offset macros in the asm, they can be removed.
453  DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
454  DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
455  DECLARE_ALIGNED(8, uint16_t, dither16)[8];
456  DECLARE_ALIGNED(8, uint32_t, dither32)[8];
457 
459 
460 #if HAVE_ALTIVEC
461  vector signed short CY;
462  vector signed short CRV;
463  vector signed short CBU;
464  vector signed short CGU;
465  vector signed short CGV;
466  vector signed short OY;
467  vector unsigned short CSHIFT;
468  vector signed short *vYCoeffsBank, *vCCoeffsBank;
469 #endif
470 
471 #if ARCH_BFIN
472  DECLARE_ALIGNED(4, uint32_t, oy);
473  DECLARE_ALIGNED(4, uint32_t, oc);
474  DECLARE_ALIGNED(4, uint32_t, zero);
475  DECLARE_ALIGNED(4, uint32_t, cy);
476  DECLARE_ALIGNED(4, uint32_t, crv);
477  DECLARE_ALIGNED(4, uint32_t, rmask);
478  DECLARE_ALIGNED(4, uint32_t, cbu);
479  DECLARE_ALIGNED(4, uint32_t, bmask);
480  DECLARE_ALIGNED(4, uint32_t, cgu);
481  DECLARE_ALIGNED(4, uint32_t, cgv);
482  DECLARE_ALIGNED(4, uint32_t, gmask);
483 #endif
484 
485 #if HAVE_VIS
486  DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
487 #endif
489 
490 /* pre defined color-spaces gamma */
491 #define XYZ_GAMMA (2.6f)
492 #define RGB_GAMMA (2.2f)
493  int16_t *xyzgamma;
494  int16_t *rgbgamma;
495  int16_t *xyzgammainv;
496  int16_t *rgbgammainv;
497  int16_t xyz2rgb_matrix[3][4];
498  int16_t rgb2xyz_matrix[3][4];
499 
500  /* function pointers for swscale() */
508 
509  /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
510  void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
511  int width, uint32_t *pal);
512  /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
513  void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
514  int width, uint32_t *pal);
515  /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
516  void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
517  const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
518  int width, uint32_t *pal);
519 
520  /**
521  * Functions to read planar input, such as planar RGB, and convert
522  * internally to Y/UV/A.
523  */
524  /** @{ */
525  void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
526  void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
527  int width, int32_t *rgb2yuv);
528  void (*readAlpPlanar)(uint8_t *dst, const uint8_t *src[4], int width, int32_t *rgb2yuv);
529  /** @} */
530 
531  /**
532  * Scale one horizontal line of input data using a bilinear filter
533  * to produce one line of output data. Compared to SwsContext->hScale(),
534  * please take note of the following caveats when using these:
535  * - Scaling is done using only 7bit instead of 14bit coefficients.
536  * - You can use no more than 5 input pixels to produce 4 output
537  * pixels. Therefore, this filter should not be used for downscaling
538  * by more than ~20% in width (because that equals more than 5/4th
539  * downscaling and thus more than 5 pixels input per 4 pixels output).
540  * - In general, bilinear filters create artifacts during downscaling
541  * (even when <20%), because one output pixel will span more than one
542  * input pixel, and thus some pixels will need edges of both neighbor
543  * pixels to interpolate the output pixel. Since you can use at most
544  * two input pixels per output pixel in bilinear scaling, this is
545  * impossible and thus downscaling by any size will create artifacts.
546  * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
547  * in SwsContext->flags.
548  */
549  /** @{ */
551  int16_t *dst, int dstWidth,
552  const uint8_t *src, int srcW, int xInc);
554  int16_t *dst1, int16_t *dst2, int dstWidth,
555  const uint8_t *src1, const uint8_t *src2,
556  int srcW, int xInc);
557  /** @} */
558 
559  /**
560  * Scale one horizontal line of input data using a filter over the input
561  * lines, to produce one (differently sized) line of output data.
562  *
563  * @param dst pointer to destination buffer for horizontally scaled
564  * data. If the number of bits per component of one
565  * destination pixel (SwsContext->dstBpc) is <= 10, data
566  * will be 15bpc in 16bits (int16_t) width. Else (i.e.
567  * SwsContext->dstBpc == 16), data will be 19bpc in
568  * 32bits (int32_t) width.
569  * @param dstW width of destination image
570  * @param src pointer to source data to be scaled. If the number of
571  * bits per component of a source pixel (SwsContext->srcBpc)
572  * is 8, this is 8bpc in 8bits (uint8_t) width. Else
573  * (i.e. SwsContext->dstBpc > 8), this is native depth
574  * in 16bits (uint16_t) width. In other words, for 9-bit
575  * YUV input, this is 9bpc, for 10-bit YUV input, this is
576  * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
577  * @param filter filter coefficients to be used per output pixel for
578  * scaling. This contains 14bpp filtering coefficients.
579  * Guaranteed to contain dstW * filterSize entries.
580  * @param filterPos position of the first input pixel to be used for
581  * each output pixel during scaling. Guaranteed to
582  * contain dstW entries.
583  * @param filterSize the number of input coefficients to be used (and
584  * thus the number of input pixels to be used) for
585  * creating a single output pixel. Is aligned to 4
586  * (and input coefficients thus padded with zeroes)
587  * to simplify creating SIMD code.
588  */
589  /** @{ */
590  void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
591  const uint8_t *src, const int16_t *filter,
592  const int32_t *filterPos, int filterSize);
593  void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
594  const uint8_t *src, const int16_t *filter,
595  const int32_t *filterPos, int filterSize);
596  /** @} */
597 
598  /// Color range conversion function for luma plane if needed.
599  void (*lumConvertRange)(int16_t *dst, int width);
600  /// Color range conversion function for chroma planes if needed.
601  void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
602 
603  int needs_hcscale; ///< Set if there are chroma planes to be converted.
604 
606 } SwsContext;
607 //FIXME check init (where 0)
608 
610 int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
611  int fullRange, int brightness,
612  int contrast, int saturation);
613 void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4],
614  int brightness, int contrast, int saturation);
615 
617  int lastInLumBuf, int lastInChrBuf);
618 
623 
624 #if FF_API_SWS_FORMAT_NAME
625 /**
626  * @deprecated Use av_get_pix_fmt_name() instead.
627  */
629 const char *sws_format_name(enum AVPixelFormat format);
630 #endif
631 
633 {
634  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
635  av_assert0(desc);
636  return desc->comp[0].depth_minus1 == 15;
637 }
638 
640 {
641  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
642  av_assert0(desc);
643  return desc->comp[0].depth_minus1 >= 8 && desc->comp[0].depth_minus1 <= 13;
644 }
645 
646 #define isNBPS(x) is9_OR_10BPS(x)
647 
649 {
650  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
651  av_assert0(desc);
652  return desc->flags & AV_PIX_FMT_FLAG_BE;
653 }
654 
656 {
657  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
658  av_assert0(desc);
659  return !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
660 }
661 
663 {
664  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
665  av_assert0(desc);
666  return ((desc->flags & AV_PIX_FMT_FLAG_PLANAR) && isYUV(pix_fmt));
667 }
668 
670 {
671  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
672  av_assert0(desc);
673  return (desc->flags & AV_PIX_FMT_FLAG_RGB);
674 }
675 
676 #if 0 // FIXME
677 #define isGray(x) \
678  (!(av_pix_fmt_desc_get(x)->flags & AV_PIX_FMT_FLAG_PAL) && \
679  av_pix_fmt_desc_get(x)->nb_components <= 2)
680 #else
681 #define isGray(x) \
682  ((x) == AV_PIX_FMT_GRAY8 || \
683  (x) == AV_PIX_FMT_Y400A || \
684  (x) == AV_PIX_FMT_GRAY16BE || \
685  (x) == AV_PIX_FMT_GRAY16LE)
686 #endif
687 
688 #define isRGBinInt(x) \
689  ( \
690  (x) == AV_PIX_FMT_RGB48BE || \
691  (x) == AV_PIX_FMT_RGB48LE || \
692  (x) == AV_PIX_FMT_RGBA64BE || \
693  (x) == AV_PIX_FMT_RGBA64LE || \
694  (x) == AV_PIX_FMT_RGB32 || \
695  (x) == AV_PIX_FMT_RGB32_1 || \
696  (x) == AV_PIX_FMT_RGB24 || \
697  (x) == AV_PIX_FMT_RGB565BE || \
698  (x) == AV_PIX_FMT_RGB565LE || \
699  (x) == AV_PIX_FMT_RGB555BE || \
700  (x) == AV_PIX_FMT_RGB555LE || \
701  (x) == AV_PIX_FMT_RGB444BE || \
702  (x) == AV_PIX_FMT_RGB444LE || \
703  (x) == AV_PIX_FMT_RGB8 || \
704  (x) == AV_PIX_FMT_RGB4 || \
705  (x) == AV_PIX_FMT_RGB4_BYTE || \
706  (x) == AV_PIX_FMT_MONOBLACK || \
707  (x) == AV_PIX_FMT_MONOWHITE \
708  )
709 #define isBGRinInt(x) \
710  ( \
711  (x) == AV_PIX_FMT_BGR48BE || \
712  (x) == AV_PIX_FMT_BGR48LE || \
713  (x) == AV_PIX_FMT_BGRA64BE || \
714  (x) == AV_PIX_FMT_BGRA64LE || \
715  (x) == AV_PIX_FMT_BGR32 || \
716  (x) == AV_PIX_FMT_BGR32_1 || \
717  (x) == AV_PIX_FMT_BGR24 || \
718  (x) == AV_PIX_FMT_BGR565BE || \
719  (x) == AV_PIX_FMT_BGR565LE || \
720  (x) == AV_PIX_FMT_BGR555BE || \
721  (x) == AV_PIX_FMT_BGR555LE || \
722  (x) == AV_PIX_FMT_BGR444BE || \
723  (x) == AV_PIX_FMT_BGR444LE || \
724  (x) == AV_PIX_FMT_BGR8 || \
725  (x) == AV_PIX_FMT_BGR4 || \
726  (x) == AV_PIX_FMT_BGR4_BYTE || \
727  (x) == AV_PIX_FMT_MONOBLACK || \
728  (x) == AV_PIX_FMT_MONOWHITE \
729  )
730 
731 #define isRGBinBytes(x) ( \
732  (x) == AV_PIX_FMT_RGB48BE \
733  || (x) == AV_PIX_FMT_RGB48LE \
734  || (x) == AV_PIX_FMT_RGBA64BE \
735  || (x) == AV_PIX_FMT_RGBA64LE \
736  || (x) == AV_PIX_FMT_RGBA \
737  || (x) == AV_PIX_FMT_ARGB \
738  || (x) == AV_PIX_FMT_RGB24 \
739  )
740 #define isBGRinBytes(x) ( \
741  (x) == AV_PIX_FMT_BGR48BE \
742  || (x) == AV_PIX_FMT_BGR48LE \
743  || (x) == AV_PIX_FMT_BGRA64BE \
744  || (x) == AV_PIX_FMT_BGRA64LE \
745  || (x) == AV_PIX_FMT_BGRA \
746  || (x) == AV_PIX_FMT_ABGR \
747  || (x) == AV_PIX_FMT_BGR24 \
748  )
749 
750 #define isAnyRGB(x) \
751  ( \
752  isRGBinInt(x) || \
753  isBGRinInt(x) || \
754  isRGB(x) \
755  )
756 
758 {
759  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
760  av_assert0(desc);
761  if (pix_fmt == AV_PIX_FMT_PAL8)
762  return 1;
763  return desc->flags & AV_PIX_FMT_FLAG_ALPHA;
764 }
765 
766 #if 1
767 #define isPacked(x) ( \
768  (x)==AV_PIX_FMT_PAL8 \
769  || (x)==AV_PIX_FMT_YUYV422 \
770  || (x)==AV_PIX_FMT_UYVY422 \
771  || (x)==AV_PIX_FMT_Y400A \
772  || isRGBinInt(x) \
773  || isBGRinInt(x) \
774  )
775 #else
777 {
778  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
779  av_assert0(desc);
780  return ((desc->nb_components >= 2 && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) ||
781  pix_fmt == AV_PIX_FMT_PAL8);
782 }
783 
784 #endif
786 {
787  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
788  av_assert0(desc);
789  return (desc->nb_components >= 2 && (desc->flags & AV_PIX_FMT_FLAG_PLANAR));
790 }
791 
793 {
794  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
795  av_assert0(desc);
797 }
798 
800 {
801  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
802  av_assert0(desc);
803  return ((desc->flags & (AV_PIX_FMT_FLAG_PLANAR | AV_PIX_FMT_FLAG_RGB)) ==
805 }
806 
808 {
809  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
810  av_assert0(desc);
811  return (desc->flags & AV_PIX_FMT_FLAG_PAL) || (desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL);
812 }
813 
814 extern const uint64_t ff_dither4[2];
815 extern const uint64_t ff_dither8[2];
816 
817 extern const uint8_t ff_dither_2x2_4[3][8];
818 extern const uint8_t ff_dither_2x2_8[3][8];
819 extern const uint8_t ff_dither_4x4_16[5][8];
820 extern const uint8_t ff_dither_8x8_32[9][8];
821 extern const uint8_t ff_dither_8x8_73[9][8];
822 extern const uint8_t ff_dither_8x8_128[9][8];
823 extern const uint8_t ff_dither_8x8_220[9][8];
824 
825 extern const int32_t ff_yuv2rgb_coeffs[8][4];
826 
827 extern const AVClass sws_context_class;
828 
829 /**
830  * Set c->swscale to an unscaled converter if one exists for the specific
831  * source and destination formats, bit depths, flags, etc.
832  */
836 
837 /**
838  * Return function pointer to fastest main scaler path function depending
839  * on architecture and available optimizations.
840  */
842 
854 
855 static inline void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
856  int alpha, int bits, const int big_endian)
857 {
858  int i, j;
859  uint8_t *ptr = plane + stride * y;
860  int v = alpha ? 0xFFFF>>(15-bits) : (1<<bits);
861  for (i = 0; i < height; i++) {
862 #define FILL(wfunc) \
863  for (j = 0; j < width; j++) {\
864  wfunc(ptr+2*j, v);\
865  }
866  if (big_endian) {
867  FILL(AV_WB16);
868  } else {
869  FILL(AV_WL16);
870  }
871  ptr += stride;
872  }
873 }
874 
875 #endif /* SWSCALE_SWSCALE_INTERNAL_H */