FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
adpcm.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001-2003 The ffmpeg Project
3  *
4  * first version by Francois Revol (revol@free.fr)
5  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6  * by Mike Melanson (melanson@pcisys.net)
7  * CD-ROM XA ADPCM codec by BERO
8  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13  * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15  *
16  * This file is part of FFmpeg.
17  *
18  * FFmpeg is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU Lesser General Public
20  * License as published by the Free Software Foundation; either
21  * version 2.1 of the License, or (at your option) any later version.
22  *
23  * FFmpeg is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26  * Lesser General Public License for more details.
27  *
28  * You should have received a copy of the GNU Lesser General Public
29  * License along with FFmpeg; if not, write to the Free Software
30  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31  */
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "bytestream.h"
35 #include "adpcm.h"
36 #include "adpcm_data.h"
37 #include "internal.h"
38 
39 /**
40  * @file
41  * ADPCM decoders
42  * Features and limitations:
43  *
44  * Reference documents:
45  * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46  * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47  * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48  * http://openquicktime.sourceforge.net/
49  * XAnim sources (xa_codec.c) http://xanim.polter.net/
50  * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51  * SoX source code http://sox.sourceforge.net/
52  *
53  * CD-ROM XA:
54  * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55  * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56  * readstr http://www.geocities.co.jp/Playtown/2004/
57  */
58 
59 /* These are for CD-ROM XA ADPCM */
60 static const int xa_adpcm_table[5][2] = {
61  { 0, 0 },
62  { 60, 0 },
63  { 115, -52 },
64  { 98, -55 },
65  { 122, -60 }
66 };
67 
68 static const int ea_adpcm_table[] = {
69  0, 240, 460, 392,
70  0, 0, -208, -220,
71  0, 1, 3, 4,
72  7, 8, 10, 11,
73  0, -1, -3, -4
74 };
75 
76 // padded to zero where table size is less then 16
77 static const int swf_index_tables[4][16] = {
78  /*2*/ { -1, 2 },
79  /*3*/ { -1, -1, 2, 4 },
80  /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81  /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82 };
83 
84 /* end of tables */
85 
86 typedef struct ADPCMDecodeContext {
88  int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
90 
92 {
93  ADPCMDecodeContext *c = avctx->priv_data;
94  unsigned int min_channels = 1;
95  unsigned int max_channels = 2;
96 
97  switch(avctx->codec->id) {
100  min_channels = 2;
101  break;
108  max_channels = 6;
109  break;
110  }
111  if (avctx->channels < min_channels || avctx->channels > max_channels) {
112  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
113  return AVERROR(EINVAL);
114  }
115 
116  switch(avctx->codec->id) {
118  c->status[0].step = c->status[1].step = 511;
119  break;
121  if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
122  return AVERROR_INVALIDDATA;
123  break;
125  if (avctx->extradata && avctx->extradata_size >= 8) {
126  c->status[0].predictor = AV_RL32(avctx->extradata);
127  c->status[1].predictor = AV_RL32(avctx->extradata + 4);
128  }
129  break;
131  if (avctx->extradata && avctx->extradata_size >= 2)
132  c->vqa_version = AV_RL16(avctx->extradata);
133  break;
134  default:
135  break;
136  }
137 
138  switch(avctx->codec->id) {
151  break;
153  avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
155  break;
156  default:
157  avctx->sample_fmt = AV_SAMPLE_FMT_S16;
158  }
159 
160  return 0;
161 }
162 
163 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
164 {
165  int step_index;
166  int predictor;
167  int sign, delta, diff, step;
168 
169  step = ff_adpcm_step_table[c->step_index];
170  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
171  step_index = av_clip(step_index, 0, 88);
172 
173  sign = nibble & 8;
174  delta = nibble & 7;
175  /* perform direct multiplication instead of series of jumps proposed by
176  * the reference ADPCM implementation since modern CPUs can do the mults
177  * quickly enough */
178  diff = ((2 * delta + 1) * step) >> shift;
179  predictor = c->predictor;
180  if (sign) predictor -= diff;
181  else predictor += diff;
182 
183  c->predictor = av_clip_int16(predictor);
184  c->step_index = step_index;
185 
186  return (short)c->predictor;
187 }
188 
190 {
191  int nibble, step_index, predictor, sign, delta, diff, step, shift;
192 
193  shift = bps - 1;
194  nibble = get_bits_le(gb, bps),
195  step = ff_adpcm_step_table[c->step_index];
196  step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
197  step_index = av_clip(step_index, 0, 88);
198 
199  sign = nibble & (1 << shift);
200  delta = nibble & ((1 << shift) - 1);
201  diff = ((2 * delta + 1) * step) >> shift;
202  predictor = c->predictor;
203  if (sign) predictor -= diff;
204  else predictor += diff;
205 
206  c->predictor = av_clip_int16(predictor);
207  c->step_index = step_index;
208 
209  return (int16_t)c->predictor;
210 }
211 
212 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
213 {
214  int step_index;
215  int predictor;
216  int diff, step;
217 
218  step = ff_adpcm_step_table[c->step_index];
219  step_index = c->step_index + ff_adpcm_index_table[nibble];
220  step_index = av_clip(step_index, 0, 88);
221 
222  diff = step >> 3;
223  if (nibble & 4) diff += step;
224  if (nibble & 2) diff += step >> 1;
225  if (nibble & 1) diff += step >> 2;
226 
227  if (nibble & 8)
228  predictor = c->predictor - diff;
229  else
230  predictor = c->predictor + diff;
231 
232  c->predictor = av_clip_int16(predictor);
233  c->step_index = step_index;
234 
235  return c->predictor;
236 }
237 
238 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
239 {
240  int predictor;
241 
242  predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
243  predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
244 
245  c->sample2 = c->sample1;
246  c->sample1 = av_clip_int16(predictor);
247  c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
248  if (c->idelta < 16) c->idelta = 16;
249 
250  return c->sample1;
251 }
252 
253 static inline short adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
254 {
255  int step_index, predictor, sign, delta, diff, step;
256 
258  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
259  step_index = av_clip(step_index, 0, 48);
260 
261  sign = nibble & 8;
262  delta = nibble & 7;
263  diff = ((2 * delta + 1) * step) >> 3;
264  predictor = c->predictor;
265  if (sign) predictor -= diff;
266  else predictor += diff;
267 
268  c->predictor = av_clip(predictor, -2048, 2047);
269  c->step_index = step_index;
270 
271  return c->predictor << 4;
272 }
273 
274 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
275 {
276  int sign, delta, diff;
277  int new_step;
278 
279  sign = nibble & 8;
280  delta = nibble & 7;
281  /* perform direct multiplication instead of series of jumps proposed by
282  * the reference ADPCM implementation since modern CPUs can do the mults
283  * quickly enough */
284  diff = ((2 * delta + 1) * c->step) >> 3;
285  /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
286  c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
287  c->predictor = av_clip_int16(c->predictor);
288  /* calculate new step and clamp it to range 511..32767 */
289  new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
290  c->step = av_clip(new_step, 511, 32767);
291 
292  return (short)c->predictor;
293 }
294 
295 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
296 {
297  int sign, delta, diff;
298 
299  sign = nibble & (1<<(size-1));
300  delta = nibble & ((1<<(size-1))-1);
301  diff = delta << (7 + c->step + shift);
302 
303  /* clamp result */
304  c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
305 
306  /* calculate new step */
307  if (delta >= (2*size - 3) && c->step < 3)
308  c->step++;
309  else if (delta == 0 && c->step > 0)
310  c->step--;
311 
312  return (short) c->predictor;
313 }
314 
315 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
316 {
317  if(!c->step) {
318  c->predictor = 0;
319  c->step = 127;
320  }
321 
322  c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
323  c->predictor = av_clip_int16(c->predictor);
324  c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
325  c->step = av_clip(c->step, 127, 24567);
326  return c->predictor;
327 }
328 
329 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
330  const uint8_t *in, ADPCMChannelStatus *left,
331  ADPCMChannelStatus *right, int channels, int sample_offset)
332 {
333  int i, j;
334  int shift,filter,f0,f1;
335  int s_1,s_2;
336  int d,s,t;
337 
338  out0 += sample_offset;
339  if (channels == 1)
340  out1 = out0 + 28;
341  else
342  out1 += sample_offset;
343 
344  for(i=0;i<4;i++) {
345  shift = 12 - (in[4+i*2] & 15);
346  filter = in[4+i*2] >> 4;
347  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
348  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
349  filter=0;
350  }
351  f0 = xa_adpcm_table[filter][0];
352  f1 = xa_adpcm_table[filter][1];
353 
354  s_1 = left->sample1;
355  s_2 = left->sample2;
356 
357  for(j=0;j<28;j++) {
358  d = in[16+i+j*4];
359 
360  t = sign_extend(d, 4);
361  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
362  s_2 = s_1;
363  s_1 = av_clip_int16(s);
364  out0[j] = s_1;
365  }
366 
367  if (channels == 2) {
368  left->sample1 = s_1;
369  left->sample2 = s_2;
370  s_1 = right->sample1;
371  s_2 = right->sample2;
372  }
373 
374  shift = 12 - (in[5+i*2] & 15);
375  filter = in[5+i*2] >> 4;
376  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
377  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
378  filter=0;
379  }
380 
381  f0 = xa_adpcm_table[filter][0];
382  f1 = xa_adpcm_table[filter][1];
383 
384  for(j=0;j<28;j++) {
385  d = in[16+i+j*4];
386 
387  t = sign_extend(d >> 4, 4);
388  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
389  s_2 = s_1;
390  s_1 = av_clip_int16(s);
391  out1[j] = s_1;
392  }
393 
394  if (channels == 2) {
395  right->sample1 = s_1;
396  right->sample2 = s_2;
397  } else {
398  left->sample1 = s_1;
399  left->sample2 = s_2;
400  }
401 
402  out0 += 28 * (3 - channels);
403  out1 += 28 * (3 - channels);
404  }
405 
406  return 0;
407 }
408 
409 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
410 {
411  ADPCMDecodeContext *c = avctx->priv_data;
412  GetBitContext gb;
413  const int *table;
414  int k0, signmask, nb_bits, count;
415  int size = buf_size*8;
416  int i;
417 
418  init_get_bits(&gb, buf, size);
419 
420  //read bits & initial values
421  nb_bits = get_bits(&gb, 2)+2;
422  table = swf_index_tables[nb_bits-2];
423  k0 = 1 << (nb_bits-2);
424  signmask = 1 << (nb_bits-1);
425 
426  while (get_bits_count(&gb) <= size - 22*avctx->channels) {
427  for (i = 0; i < avctx->channels; i++) {
428  *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
429  c->status[i].step_index = get_bits(&gb, 6);
430  }
431 
432  for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
433  int i;
434 
435  for (i = 0; i < avctx->channels; i++) {
436  // similar to IMA adpcm
437  int delta = get_bits(&gb, nb_bits);
438  int step = ff_adpcm_step_table[c->status[i].step_index];
439  long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
440  int k = k0;
441 
442  do {
443  if (delta & k)
444  vpdiff += step;
445  step >>= 1;
446  k >>= 1;
447  } while(k);
448  vpdiff += step;
449 
450  if (delta & signmask)
451  c->status[i].predictor -= vpdiff;
452  else
453  c->status[i].predictor += vpdiff;
454 
455  c->status[i].step_index += table[delta & (~signmask)];
456 
457  c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
458  c->status[i].predictor = av_clip_int16(c->status[i].predictor);
459 
460  *samples++ = c->status[i].predictor;
461  }
462  }
463  }
464 }
465 
466 /**
467  * Get the number of samples that will be decoded from the packet.
468  * In one case, this is actually the maximum number of samples possible to
469  * decode with the given buf_size.
470  *
471  * @param[out] coded_samples set to the number of samples as coded in the
472  * packet, or 0 if the codec does not encode the
473  * number of samples in each frame.
474  * @param[out] approx_nb_samples set to non-zero if the number of samples
475  * returned is an approximation.
476  */
478  int buf_size, int *coded_samples, int *approx_nb_samples)
479 {
480  ADPCMDecodeContext *s = avctx->priv_data;
481  int nb_samples = 0;
482  int ch = avctx->channels;
483  int has_coded_samples = 0;
484  int header_size;
485 
486  *coded_samples = 0;
487  *approx_nb_samples = 0;
488 
489  if(ch <= 0)
490  return 0;
491 
492  switch (avctx->codec->id) {
493  /* constant, only check buf_size */
495  if (buf_size < 76 * ch)
496  return 0;
497  nb_samples = 128;
498  break;
500  if (buf_size < 34 * ch)
501  return 0;
502  nb_samples = 64;
503  break;
504  /* simple 4-bit adpcm */
511  nb_samples = buf_size * 2 / ch;
512  break;
513  }
514  if (nb_samples)
515  return nb_samples;
516 
517  /* simple 4-bit adpcm, with header */
518  header_size = 0;
519  switch (avctx->codec->id) {
521  case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
522  case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
523  case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
524  }
525  if (header_size > 0)
526  return (buf_size - header_size) * 2 / ch;
527 
528  /* more complex formats */
529  switch (avctx->codec->id) {
531  has_coded_samples = 1;
532  *coded_samples = bytestream2_get_le32(gb);
533  *coded_samples -= *coded_samples % 28;
534  nb_samples = (buf_size - 12) / 30 * 28;
535  break;
537  has_coded_samples = 1;
538  *coded_samples = bytestream2_get_le32(gb);
539  nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
540  break;
542  nb_samples = (buf_size - ch) / ch * 2;
543  break;
547  /* maximum number of samples */
548  /* has internal offsets and a per-frame switch to signal raw 16-bit */
549  has_coded_samples = 1;
550  switch (avctx->codec->id) {
552  header_size = 4 + 9 * ch;
553  *coded_samples = bytestream2_get_le32(gb);
554  break;
556  header_size = 4 + 5 * ch;
557  *coded_samples = bytestream2_get_le32(gb);
558  *approx_nb_samples = 1;
559  break;
561  header_size = 4 + 5 * ch;
562  *coded_samples = bytestream2_get_be32(gb);
563  *approx_nb_samples = 1;
564  break;
565  }
566  *coded_samples -= *coded_samples % 28;
567  nb_samples = (buf_size - header_size) * 2 / ch;
568  nb_samples -= nb_samples % 28;
569  break;
571  if (avctx->block_align > 0)
572  buf_size = FFMIN(buf_size, avctx->block_align);
573  nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
574  break;
576  if (avctx->block_align > 0)
577  buf_size = FFMIN(buf_size, avctx->block_align);
578  nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
579  break;
581  if (avctx->block_align > 0)
582  buf_size = FFMIN(buf_size, avctx->block_align);
583  nb_samples = (buf_size - 4 * ch) * 2 / ch;
584  break;
586  {
587  int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
588  int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
589  if (avctx->block_align > 0)
590  buf_size = FFMIN(buf_size, avctx->block_align);
591  nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
592  break;
593  }
595  if (avctx->block_align > 0)
596  buf_size = FFMIN(buf_size, avctx->block_align);
597  nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
598  break;
602  {
603  int samples_per_byte;
604  switch (avctx->codec->id) {
605  case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
606  case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
607  case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
608  }
609  if (!s->status[0].step_index) {
610  nb_samples++;
611  buf_size -= ch;
612  }
613  nb_samples += buf_size * samples_per_byte / ch;
614  break;
615  }
617  {
618  int buf_bits = buf_size * 8 - 2;
619  int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
620  int block_hdr_size = 22 * ch;
621  int block_size = block_hdr_size + nbits * ch * 4095;
622  int nblocks = buf_bits / block_size;
623  int bits_left = buf_bits - nblocks * block_size;
624  nb_samples = nblocks * 4096;
625  if (bits_left >= block_hdr_size)
626  nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
627  break;
628  }
630  if (avctx->extradata) {
631  nb_samples = buf_size / (8 * ch) * 14;
632  break;
633  }
634  has_coded_samples = 1;
635  bytestream2_skip(gb, 4); // channel size
636  *coded_samples = bytestream2_get_be32(gb);
637  *coded_samples -= *coded_samples % 14;
638  nb_samples = (buf_size - (8 + 36 * ch)) / (8 * ch) * 14;
639  break;
641  nb_samples = buf_size / (9 * ch) * 16;
642  break;
644  nb_samples = (buf_size / 128) * 224 / ch;
645  break;
647  nb_samples = buf_size / (16 * ch) * 28;
648  break;
649  }
650 
651  /* validate coded sample count */
652  if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
653  return AVERROR_INVALIDDATA;
654 
655  return nb_samples;
656 }
657 
658 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
659  int *got_frame_ptr, AVPacket *avpkt)
660 {
661  AVFrame *frame = data;
662  const uint8_t *buf = avpkt->data;
663  int buf_size = avpkt->size;
664  ADPCMDecodeContext *c = avctx->priv_data;
665  ADPCMChannelStatus *cs;
666  int n, m, channel, i;
667  short *samples;
668  int16_t **samples_p;
669  int st; /* stereo */
670  int count1, count2;
671  int nb_samples, coded_samples, approx_nb_samples, ret;
672  GetByteContext gb;
673 
674  bytestream2_init(&gb, buf, buf_size);
675  nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
676  if (nb_samples <= 0) {
677  av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
678  return AVERROR_INVALIDDATA;
679  }
680 
681  /* get output buffer */
682  frame->nb_samples = nb_samples;
683  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
684  return ret;
685  samples = (short *)frame->data[0];
686  samples_p = (int16_t **)frame->extended_data;
687 
688  /* use coded_samples when applicable */
689  /* it is always <= nb_samples, so the output buffer will be large enough */
690  if (coded_samples) {
691  if (!approx_nb_samples && coded_samples != nb_samples)
692  av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
693  frame->nb_samples = nb_samples = coded_samples;
694  }
695 
696  st = avctx->channels == 2 ? 1 : 0;
697 
698  switch(avctx->codec->id) {
700  /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
701  Channel data is interleaved per-chunk. */
702  for (channel = 0; channel < avctx->channels; channel++) {
703  int predictor;
704  int step_index;
705  cs = &(c->status[channel]);
706  /* (pppppp) (piiiiiii) */
707 
708  /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
709  predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
710  step_index = predictor & 0x7F;
711  predictor &= ~0x7F;
712 
713  if (cs->step_index == step_index) {
714  int diff = predictor - cs->predictor;
715  if (diff < 0)
716  diff = - diff;
717  if (diff > 0x7f)
718  goto update;
719  } else {
720  update:
721  cs->step_index = step_index;
722  cs->predictor = predictor;
723  }
724 
725  if (cs->step_index > 88u){
726  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
727  channel, cs->step_index);
728  return AVERROR_INVALIDDATA;
729  }
730 
731  samples = samples_p[channel];
732 
733  for (m = 0; m < 64; m += 2) {
734  int byte = bytestream2_get_byteu(&gb);
735  samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
736  samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
737  }
738  }
739  break;
741  for(i=0; i<avctx->channels; i++){
742  cs = &(c->status[i]);
743  cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
744 
745  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
746  if (cs->step_index > 88u){
747  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
748  i, cs->step_index);
749  return AVERROR_INVALIDDATA;
750  }
751  }
752 
753  if (avctx->bits_per_coded_sample != 4) {
754  int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
756 
758  for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
759  for (i = 0; i < avctx->channels; i++) {
760  cs = &c->status[i];
761  samples = &samples_p[i][1 + n * samples_per_block];
762  for (m = 0; m < samples_per_block; m++) {
763  samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
764  avctx->bits_per_coded_sample);
765  }
766  }
767  }
768  bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
769  } else {
770  for (n = 0; n < (nb_samples - 1) / 8; n++) {
771  for (i = 0; i < avctx->channels; i++) {
772  cs = &c->status[i];
773  samples = &samples_p[i][1 + n * 8];
774  for (m = 0; m < 8; m += 2) {
775  int v = bytestream2_get_byteu(&gb);
776  samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
777  samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
778  }
779  }
780  }
781  }
782  break;
784  for (i = 0; i < avctx->channels; i++)
785  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
786 
787  for (i = 0; i < avctx->channels; i++) {
788  c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
789  if (c->status[i].step_index > 88u) {
790  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
791  i, c->status[i].step_index);
792  return AVERROR_INVALIDDATA;
793  }
794  }
795 
796  for (i = 0; i < avctx->channels; i++) {
797  samples = (int16_t *)frame->data[i];
798  cs = &c->status[i];
799  for (n = nb_samples >> 1; n > 0; n--) {
800  int v = bytestream2_get_byteu(&gb);
801  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
802  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
803  }
804  }
805  break;
807  {
808  int block_predictor;
809 
810  block_predictor = bytestream2_get_byteu(&gb);
811  if (block_predictor > 6) {
812  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
813  block_predictor);
814  return AVERROR_INVALIDDATA;
815  }
816  c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
817  c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
818  if (st) {
819  block_predictor = bytestream2_get_byteu(&gb);
820  if (block_predictor > 6) {
821  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
822  block_predictor);
823  return AVERROR_INVALIDDATA;
824  }
825  c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
826  c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
827  }
828  c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
829  if (st){
830  c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
831  }
832 
833  c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
834  if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
835  c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
836  if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
837 
838  *samples++ = c->status[0].sample2;
839  if (st) *samples++ = c->status[1].sample2;
840  *samples++ = c->status[0].sample1;
841  if (st) *samples++ = c->status[1].sample1;
842  for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
843  int byte = bytestream2_get_byteu(&gb);
844  *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
845  *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
846  }
847  break;
848  }
850  for (channel = 0; channel < avctx->channels; channel++) {
851  cs = &c->status[channel];
852  cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
853  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
854  if (cs->step_index > 88u){
855  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
856  channel, cs->step_index);
857  return AVERROR_INVALIDDATA;
858  }
859  }
860  for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
861  int v = bytestream2_get_byteu(&gb);
862  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
863  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
864  }
865  break;
867  {
868  int last_byte = 0;
869  int nibble;
870  int decode_top_nibble_next = 0;
871  int diff_channel;
872  const int16_t *samples_end = samples + avctx->channels * nb_samples;
873 
874  bytestream2_skipu(&gb, 10);
875  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
876  c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
877  c->status[0].step_index = bytestream2_get_byteu(&gb);
878  c->status[1].step_index = bytestream2_get_byteu(&gb);
879  if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
880  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
881  c->status[0].step_index, c->status[1].step_index);
882  return AVERROR_INVALIDDATA;
883  }
884  /* sign extend the predictors */
885  diff_channel = c->status[1].predictor;
886 
887  /* DK3 ADPCM support macro */
888 #define DK3_GET_NEXT_NIBBLE() \
889  if (decode_top_nibble_next) { \
890  nibble = last_byte >> 4; \
891  decode_top_nibble_next = 0; \
892  } else { \
893  last_byte = bytestream2_get_byteu(&gb); \
894  nibble = last_byte & 0x0F; \
895  decode_top_nibble_next = 1; \
896  }
897 
898  while (samples < samples_end) {
899 
900  /* for this algorithm, c->status[0] is the sum channel and
901  * c->status[1] is the diff channel */
902 
903  /* process the first predictor of the sum channel */
905  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
906 
907  /* process the diff channel predictor */
909  adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
910 
911  /* process the first pair of stereo PCM samples */
912  diff_channel = (diff_channel + c->status[1].predictor) / 2;
913  *samples++ = c->status[0].predictor + c->status[1].predictor;
914  *samples++ = c->status[0].predictor - c->status[1].predictor;
915 
916  /* process the second predictor of the sum channel */
918  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
919 
920  /* process the second pair of stereo PCM samples */
921  diff_channel = (diff_channel + c->status[1].predictor) / 2;
922  *samples++ = c->status[0].predictor + c->status[1].predictor;
923  *samples++ = c->status[0].predictor - c->status[1].predictor;
924  }
925 
926  if ((bytestream2_tell(&gb) & 1))
927  bytestream2_skip(&gb, 1);
928  break;
929  }
931  for (channel = 0; channel < avctx->channels; channel++) {
932  cs = &c->status[channel];
933  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
934  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
935  if (cs->step_index > 88u){
936  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
937  channel, cs->step_index);
938  return AVERROR_INVALIDDATA;
939  }
940  }
941 
942  for (n = nb_samples >> (1 - st); n > 0; n--) {
943  int v1, v2;
944  int v = bytestream2_get_byteu(&gb);
945  /* nibbles are swapped for mono */
946  if (st) {
947  v1 = v >> 4;
948  v2 = v & 0x0F;
949  } else {
950  v2 = v >> 4;
951  v1 = v & 0x0F;
952  }
953  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
954  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
955  }
956  break;
958  while (bytestream2_get_bytes_left(&gb) > 0) {
959  int v = bytestream2_get_byteu(&gb);
960  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
961  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
962  }
963  break;
965  while (bytestream2_get_bytes_left(&gb) > 0) {
966  int v = bytestream2_get_byteu(&gb);
967  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
968  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
969  }
970  break;
972  for (channel = 0; channel < avctx->channels; channel++) {
973  cs = &c->status[channel];
974  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
975  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
976  if (cs->step_index > 88u){
977  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
978  channel, cs->step_index);
979  return AVERROR_INVALIDDATA;
980  }
981  }
982  for (n = 0; n < nb_samples / 2; n++) {
983  int byte[2];
984 
985  byte[0] = bytestream2_get_byteu(&gb);
986  if (st)
987  byte[1] = bytestream2_get_byteu(&gb);
988  for(channel = 0; channel < avctx->channels; channel++) {
989  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
990  }
991  for(channel = 0; channel < avctx->channels; channel++) {
992  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
993  }
994  }
995  break;
997  if (c->vqa_version == 3) {
998  for (channel = 0; channel < avctx->channels; channel++) {
999  int16_t *smp = samples_p[channel];
1000 
1001  for (n = nb_samples / 2; n > 0; n--) {
1002  int v = bytestream2_get_byteu(&gb);
1003  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1004  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1005  }
1006  }
1007  } else {
1008  for (n = nb_samples / 2; n > 0; n--) {
1009  for (channel = 0; channel < avctx->channels; channel++) {
1010  int v = bytestream2_get_byteu(&gb);
1011  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1012  samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1013  }
1014  samples += avctx->channels;
1015  }
1016  }
1017  bytestream2_seek(&gb, 0, SEEK_END);
1018  break;
1019  case AV_CODEC_ID_ADPCM_XA:
1020  {
1021  int16_t *out0 = samples_p[0];
1022  int16_t *out1 = samples_p[1];
1023  int samples_per_block = 28 * (3 - avctx->channels) * 4;
1024  int sample_offset = 0;
1025  while (bytestream2_get_bytes_left(&gb) >= 128) {
1026  if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1027  &c->status[0], &c->status[1],
1028  avctx->channels, sample_offset)) < 0)
1029  return ret;
1030  bytestream2_skipu(&gb, 128);
1031  sample_offset += samples_per_block;
1032  }
1033  break;
1034  }
1036  for (i=0; i<=st; i++) {
1037  c->status[i].step_index = bytestream2_get_le32u(&gb);
1038  if (c->status[i].step_index > 88u) {
1039  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1040  i, c->status[i].step_index);
1041  return AVERROR_INVALIDDATA;
1042  }
1043  }
1044  for (i=0; i<=st; i++)
1045  c->status[i].predictor = bytestream2_get_le32u(&gb);
1046 
1047  for (n = nb_samples >> (1 - st); n > 0; n--) {
1048  int byte = bytestream2_get_byteu(&gb);
1049  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1050  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1051  }
1052  break;
1054  for (n = nb_samples >> (1 - st); n > 0; n--) {
1055  int byte = bytestream2_get_byteu(&gb);
1056  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1057  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1058  }
1059  break;
1060  case AV_CODEC_ID_ADPCM_EA:
1061  {
1062  int previous_left_sample, previous_right_sample;
1063  int current_left_sample, current_right_sample;
1064  int next_left_sample, next_right_sample;
1065  int coeff1l, coeff2l, coeff1r, coeff2r;
1066  int shift_left, shift_right;
1067 
1068  /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1069  each coding 28 stereo samples. */
1070 
1071  if(avctx->channels != 2)
1072  return AVERROR_INVALIDDATA;
1073 
1074  current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1075  previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1076  current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1077  previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1078 
1079  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1080  int byte = bytestream2_get_byteu(&gb);
1081  coeff1l = ea_adpcm_table[ byte >> 4 ];
1082  coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1083  coeff1r = ea_adpcm_table[ byte & 0x0F];
1084  coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1085 
1086  byte = bytestream2_get_byteu(&gb);
1087  shift_left = 20 - (byte >> 4);
1088  shift_right = 20 - (byte & 0x0F);
1089 
1090  for (count2 = 0; count2 < 28; count2++) {
1091  byte = bytestream2_get_byteu(&gb);
1092  next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
1093  next_right_sample = sign_extend(byte, 4) << shift_right;
1094 
1095  next_left_sample = (next_left_sample +
1096  (current_left_sample * coeff1l) +
1097  (previous_left_sample * coeff2l) + 0x80) >> 8;
1098  next_right_sample = (next_right_sample +
1099  (current_right_sample * coeff1r) +
1100  (previous_right_sample * coeff2r) + 0x80) >> 8;
1101 
1102  previous_left_sample = current_left_sample;
1103  current_left_sample = av_clip_int16(next_left_sample);
1104  previous_right_sample = current_right_sample;
1105  current_right_sample = av_clip_int16(next_right_sample);
1106  *samples++ = current_left_sample;
1107  *samples++ = current_right_sample;
1108  }
1109  }
1110 
1111  bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1112 
1113  break;
1114  }
1116  {
1117  int coeff[2][2], shift[2];
1118 
1119  for(channel = 0; channel < avctx->channels; channel++) {
1120  int byte = bytestream2_get_byteu(&gb);
1121  for (i=0; i<2; i++)
1122  coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1123  shift[channel] = 20 - (byte & 0x0F);
1124  }
1125  for (count1 = 0; count1 < nb_samples / 2; count1++) {
1126  int byte[2];
1127 
1128  byte[0] = bytestream2_get_byteu(&gb);
1129  if (st) byte[1] = bytestream2_get_byteu(&gb);
1130  for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1131  for(channel = 0; channel < avctx->channels; channel++) {
1132  int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1133  sample = (sample +
1134  c->status[channel].sample1 * coeff[channel][0] +
1135  c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1136  c->status[channel].sample2 = c->status[channel].sample1;
1137  c->status[channel].sample1 = av_clip_int16(sample);
1138  *samples++ = c->status[channel].sample1;
1139  }
1140  }
1141  }
1142  bytestream2_seek(&gb, 0, SEEK_END);
1143  break;
1144  }
1147  case AV_CODEC_ID_ADPCM_EA_R3: {
1148  /* channel numbering
1149  2chan: 0=fl, 1=fr
1150  4chan: 0=fl, 1=rl, 2=fr, 3=rr
1151  6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1152  const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1153  int previous_sample, current_sample, next_sample;
1154  int coeff1, coeff2;
1155  int shift;
1156  unsigned int channel;
1157  uint16_t *samplesC;
1158  int count = 0;
1159  int offsets[6];
1160 
1161  for (channel=0; channel<avctx->channels; channel++)
1162  offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1163  bytestream2_get_le32(&gb)) +
1164  (avctx->channels + 1) * 4;
1165 
1166  for (channel=0; channel<avctx->channels; channel++) {
1167  bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1168  samplesC = samples_p[channel];
1169 
1170  if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1171  current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1172  previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1173  } else {
1174  current_sample = c->status[channel].predictor;
1175  previous_sample = c->status[channel].prev_sample;
1176  }
1177 
1178  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1179  int byte = bytestream2_get_byte(&gb);
1180  if (byte == 0xEE) { /* only seen in R2 and R3 */
1181  current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1182  previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1183 
1184  for (count2=0; count2<28; count2++)
1185  *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1186  } else {
1187  coeff1 = ea_adpcm_table[ byte >> 4 ];
1188  coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1189  shift = 20 - (byte & 0x0F);
1190 
1191  for (count2=0; count2<28; count2++) {
1192  if (count2 & 1)
1193  next_sample = sign_extend(byte, 4) << shift;
1194  else {
1195  byte = bytestream2_get_byte(&gb);
1196  next_sample = sign_extend(byte >> 4, 4) << shift;
1197  }
1198 
1199  next_sample += (current_sample * coeff1) +
1200  (previous_sample * coeff2);
1201  next_sample = av_clip_int16(next_sample >> 8);
1202 
1203  previous_sample = current_sample;
1204  current_sample = next_sample;
1205  *samplesC++ = current_sample;
1206  }
1207  }
1208  }
1209  if (!count) {
1210  count = count1;
1211  } else if (count != count1) {
1212  av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1213  count = FFMAX(count, count1);
1214  }
1215 
1216  if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1217  c->status[channel].predictor = current_sample;
1218  c->status[channel].prev_sample = previous_sample;
1219  }
1220  }
1221 
1222  frame->nb_samples = count * 28;
1223  bytestream2_seek(&gb, 0, SEEK_END);
1224  break;
1225  }
1227  for (channel=0; channel<avctx->channels; channel++) {
1228  int coeff[2][4], shift[4];
1229  int16_t *s = samples_p[channel];
1230  for (n = 0; n < 4; n++, s += 32) {
1231  int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1232  for (i=0; i<2; i++)
1233  coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1234  s[0] = val & ~0x0F;
1235 
1236  val = sign_extend(bytestream2_get_le16u(&gb), 16);
1237  shift[n] = 20 - (val & 0x0F);
1238  s[1] = val & ~0x0F;
1239  }
1240 
1241  for (m=2; m<32; m+=2) {
1242  s = &samples_p[channel][m];
1243  for (n = 0; n < 4; n++, s += 32) {
1244  int level, pred;
1245  int byte = bytestream2_get_byteu(&gb);
1246 
1247  level = sign_extend(byte >> 4, 4) << shift[n];
1248  pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1249  s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1250 
1251  level = sign_extend(byte, 4) << shift[n];
1252  pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1253  s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1254  }
1255  }
1256  }
1257  break;
1259  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1260  c->status[0].step_index = bytestream2_get_le16u(&gb);
1261  bytestream2_skipu(&gb, 4);
1262  if (c->status[0].step_index > 88u) {
1263  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1264  c->status[0].step_index);
1265  return AVERROR_INVALIDDATA;
1266  }
1267 
1268  for (n = nb_samples >> (1 - st); n > 0; n--) {
1269  int v = bytestream2_get_byteu(&gb);
1270 
1271  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1272  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1273  }
1274  break;
1276  for (i = 0; i < avctx->channels; i++) {
1277  c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1278  c->status[i].step_index = bytestream2_get_byteu(&gb);
1279  bytestream2_skipu(&gb, 1);
1280  if (c->status[i].step_index > 88u) {
1281  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1282  c->status[i].step_index);
1283  return AVERROR_INVALIDDATA;
1284  }
1285  }
1286 
1287  for (n = nb_samples >> (1 - st); n > 0; n--) {
1288  int v = bytestream2_get_byteu(&gb);
1289 
1290  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1291  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1292  }
1293  break;
1294  case AV_CODEC_ID_ADPCM_CT:
1295  for (n = nb_samples >> (1 - st); n > 0; n--) {
1296  int v = bytestream2_get_byteu(&gb);
1297  *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1298  *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1299  }
1300  break;
1304  if (!c->status[0].step_index) {
1305  /* the first byte is a raw sample */
1306  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1307  if (st)
1308  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1309  c->status[0].step_index = 1;
1310  nb_samples--;
1311  }
1312  if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1313  for (n = nb_samples >> (1 - st); n > 0; n--) {
1314  int byte = bytestream2_get_byteu(&gb);
1315  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1316  byte >> 4, 4, 0);
1317  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1318  byte & 0x0F, 4, 0);
1319  }
1320  } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1321  for (n = (nb_samples<<st) / 3; n > 0; n--) {
1322  int byte = bytestream2_get_byteu(&gb);
1323  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1324  byte >> 5 , 3, 0);
1325  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1326  (byte >> 2) & 0x07, 3, 0);
1327  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1328  byte & 0x03, 2, 0);
1329  }
1330  } else {
1331  for (n = nb_samples >> (2 - st); n > 0; n--) {
1332  int byte = bytestream2_get_byteu(&gb);
1333  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1334  byte >> 6 , 2, 2);
1335  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1336  (byte >> 4) & 0x03, 2, 2);
1337  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1338  (byte >> 2) & 0x03, 2, 2);
1339  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1340  byte & 0x03, 2, 2);
1341  }
1342  }
1343  break;
1344  case AV_CODEC_ID_ADPCM_SWF:
1345  adpcm_swf_decode(avctx, buf, buf_size, samples);
1346  bytestream2_seek(&gb, 0, SEEK_END);
1347  break;
1349  for (n = nb_samples >> (1 - st); n > 0; n--) {
1350  int v = bytestream2_get_byteu(&gb);
1351  *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1352  *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1353  }
1354  break;
1355  case AV_CODEC_ID_ADPCM_AFC:
1356  {
1357  int samples_per_block;
1358  int blocks;
1359 
1360  if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1361  samples_per_block = avctx->extradata[0] / 16;
1362  blocks = nb_samples / avctx->extradata[0];
1363  } else {
1364  samples_per_block = nb_samples / 16;
1365  blocks = 1;
1366  }
1367 
1368  for (m = 0; m < blocks; m++) {
1369  for (channel = 0; channel < avctx->channels; channel++) {
1370  int prev1 = c->status[channel].sample1;
1371  int prev2 = c->status[channel].sample2;
1372 
1373  samples = samples_p[channel] + m * 16;
1374  /* Read in every sample for this channel. */
1375  for (i = 0; i < samples_per_block; i++) {
1376  int byte = bytestream2_get_byteu(&gb);
1377  int scale = 1 << (byte >> 4);
1378  int index = byte & 0xf;
1379  int factor1 = ff_adpcm_afc_coeffs[0][index];
1380  int factor2 = ff_adpcm_afc_coeffs[1][index];
1381 
1382  /* Decode 16 samples. */
1383  for (n = 0; n < 16; n++) {
1384  int32_t sampledat;
1385 
1386  if (n & 1) {
1387  sampledat = sign_extend(byte, 4);
1388  } else {
1389  byte = bytestream2_get_byteu(&gb);
1390  sampledat = sign_extend(byte >> 4, 4);
1391  }
1392 
1393  sampledat = ((prev1 * factor1 + prev2 * factor2) +
1394  ((sampledat * scale) << 11)) >> 11;
1395  *samples = av_clip_int16(sampledat);
1396  prev2 = prev1;
1397  prev1 = *samples++;
1398  }
1399  }
1400 
1401  c->status[channel].sample1 = prev1;
1402  c->status[channel].sample2 = prev2;
1403  }
1404  }
1405  bytestream2_seek(&gb, 0, SEEK_END);
1406  break;
1407  }
1408  case AV_CODEC_ID_ADPCM_THP:
1409  {
1410  int table[6][16];
1411  int ch;
1412 
1413  if (avctx->extradata) {
1415  if (avctx->extradata_size < 32 * avctx->channels) {
1416  av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1417  return AVERROR_INVALIDDATA;
1418  }
1419 
1420  bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1421  for (i = 0; i < avctx->channels; i++)
1422  for (n = 0; n < 16; n++)
1423  table[i][n] = sign_extend(bytestream2_get_be16u(&tb), 16);
1424  } else {
1425  for (i = 0; i < avctx->channels; i++)
1426  for (n = 0; n < 16; n++)
1427  table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1428 
1429  /* Initialize the previous sample. */
1430  for (i = 0; i < avctx->channels; i++) {
1431  c->status[i].sample1 = sign_extend(bytestream2_get_be16u(&gb), 16);
1432  c->status[i].sample2 = sign_extend(bytestream2_get_be16u(&gb), 16);
1433  }
1434  }
1435 
1436  for (ch = 0; ch < avctx->channels; ch++) {
1437  samples = samples_p[ch];
1438 
1439  /* Read in every sample for this channel. */
1440  for (i = 0; i < nb_samples / 14; i++) {
1441  int byte = bytestream2_get_byteu(&gb);
1442  int index = (byte >> 4) & 7;
1443  unsigned int exp = byte & 0x0F;
1444  int factor1 = table[ch][index * 2];
1445  int factor2 = table[ch][index * 2 + 1];
1446 
1447  /* Decode 14 samples. */
1448  for (n = 0; n < 14; n++) {
1449  int32_t sampledat;
1450 
1451  if (n & 1) {
1452  sampledat = sign_extend(byte, 4);
1453  } else {
1454  byte = bytestream2_get_byteu(&gb);
1455  sampledat = sign_extend(byte >> 4, 4);
1456  }
1457 
1458  sampledat = ((c->status[ch].sample1 * factor1
1459  + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1460  *samples = av_clip_int16(sampledat);
1461  c->status[ch].sample2 = c->status[ch].sample1;
1462  c->status[ch].sample1 = *samples++;
1463  }
1464  }
1465  }
1466  break;
1467  }
1468  case AV_CODEC_ID_ADPCM_DTK:
1469  for (channel = 0; channel < avctx->channels; channel++) {
1470  samples = samples_p[channel];
1471 
1472  /* Read in every sample for this channel. */
1473  for (i = 0; i < nb_samples / 28; i++) {
1474  int byte, header;
1475  if (channel)
1476  bytestream2_skipu(&gb, 1);
1477  header = bytestream2_get_byteu(&gb);
1478  bytestream2_skipu(&gb, 3 - channel);
1479 
1480  /* Decode 28 samples. */
1481  for (n = 0; n < 28; n++) {
1482  int32_t sampledat, prev;
1483 
1484  switch (header >> 4) {
1485  case 1:
1486  prev = (c->status[channel].sample1 * 0x3c);
1487  break;
1488  case 2:
1489  prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1490  break;
1491  case 3:
1492  prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1493  break;
1494  default:
1495  prev = 0;
1496  }
1497 
1498  prev = av_clip((prev + 0x20) >> 6, -0x200000, 0x1fffff);
1499 
1500  byte = bytestream2_get_byteu(&gb);
1501  if (!channel)
1502  sampledat = sign_extend(byte, 4);
1503  else
1504  sampledat = sign_extend(byte >> 4, 4);
1505 
1506  sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1507  *samples++ = av_clip_int16(sampledat >> 6);
1508  c->status[channel].sample2 = c->status[channel].sample1;
1509  c->status[channel].sample1 = sampledat;
1510  }
1511  }
1512  if (!channel)
1513  bytestream2_seek(&gb, 0, SEEK_SET);
1514  }
1515  break;
1516 
1517  default:
1518  return -1;
1519  }
1520 
1521  if (avpkt->size && bytestream2_tell(&gb) == 0) {
1522  av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1523  return AVERROR_INVALIDDATA;
1524  }
1525 
1526  *got_frame_ptr = 1;
1527 
1528  return bytestream2_tell(&gb);
1529 }
1530 
1531 
1539 
1540 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1541 AVCodec ff_ ## name_ ## _decoder = { \
1542  .name = #name_, \
1543  .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1544  .type = AVMEDIA_TYPE_AUDIO, \
1545  .id = id_, \
1546  .priv_data_size = sizeof(ADPCMDecodeContext), \
1547  .init = adpcm_decode_init, \
1548  .decode = adpcm_decode_frame, \
1549  .capabilities = CODEC_CAP_DR1, \
1550  .sample_fmts = sample_fmts_, \
1551 }
1552 
1553 /* Note: Do not forget to add new entries to the Makefile as well. */
1554 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1555 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
1556 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1557 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
1558 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1559 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1560 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1561 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1562 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1563 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1564 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1565 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1566 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1567 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1568 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1569 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1570 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1571 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
1572 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1573 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
1574 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1575 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1576 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1577 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1578 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1579 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1580 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1581 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1582 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1583 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1584 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");