FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
exr.c
Go to the documentation of this file.
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2009 Jimmy Christensen
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * OpenEXR decoder
25  * @author Jimmy Christensen
26  *
27  * For more information on the OpenEXR format, visit:
28  * http://openexr.com/
29  *
30  * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger
31  */
32 
33 #include <zlib.h>
34 
35 #include "get_bits.h"
36 #include "avcodec.h"
37 #include "bytestream.h"
38 #include "internal.h"
39 #include "mathops.h"
40 #include "thread.h"
41 #include "libavutil/imgutils.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/opt.h"
44 
45 enum ExrCompr {
46  EXR_RAW = 0,
47  EXR_RLE = 1,
48  EXR_ZIP1 = 2,
49  EXR_ZIP16 = 3,
50  EXR_PIZ = 4,
51  EXR_PXR24 = 5,
52  EXR_B44 = 6,
53  EXR_B44A = 7,
54 };
55 
60 };
61 
62 typedef struct EXRChannel {
63  int xsub, ysub;
65 } EXRChannel;
66 
67 typedef struct EXRThreadData {
70 
72  int tmp_size;
73 
75  uint16_t *lut;
77 
78 typedef struct EXRContext {
79  AVClass *class;
81  int compr;
83  int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
85 
86  uint32_t xmax, xmin;
87  uint32_t ymax, ymin;
88  uint32_t xdelta, ydelta;
89 
90  int ysize;
91 
92  uint64_t scan_line_size;
94 
95  const uint8_t *buf, *table;
96  int buf_size;
97 
100 
103 
104  const char* layer;
105 } EXRContext;
106 
107 #define OFFSET(x) offsetof(EXRContext, x)
108 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
109 static const AVOption options[] = {
110  { "layer", "Set the decoding layer", OFFSET(layer), AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD},
111  { NULL },
112 };
113 
114 static const AVClass exr_class = {
115  .class_name = "EXR",
116  .item_name = av_default_item_name,
117  .option = options,
118  .version = LIBAVUTIL_VERSION_INT,
119 };
120 
121 /**
122  * Converts from 32-bit float as uint32_t to uint16_t
123  *
124  * @param v 32-bit float
125  * @return normalized 16-bit unsigned int
126  */
127 static inline uint16_t exr_flt2uint(uint32_t v)
128 {
129  unsigned int exp = v >> 23;
130  // "HACK": negative values result in exp< 0, so clipping them to 0
131  // is also handled by this condition, avoids explicit check for sign bit.
132  if (exp<= 127 + 7 - 24) // we would shift out all bits anyway
133  return 0;
134  if (exp >= 127)
135  return 0xffff;
136  v &= 0x007fffff;
137  return (v + (1 << 23)) >> (127 + 7 - exp);
138 }
139 
140 /**
141  * Converts from 16-bit float as uint16_t to uint16_t
142  *
143  * @param v 16-bit float
144  * @return normalized 16-bit unsigned int
145  */
146 static inline uint16_t exr_halflt2uint(uint16_t v)
147 {
148  unsigned exp = 14 - (v >> 10);
149  if (exp >= 14) {
150  if (exp == 14) return (v >> 9) & 1;
151  else return (v & 0x8000) ? 0 : 0xffff;
152  }
153  v <<= 6;
154  return (v + (1 << 16)) >> (exp + 1);
155 }
156 
157 /**
158  * Gets the size of the header variable
159  *
160  * @param **buf the current pointer location in the header where
161  * the variable data starts
162  * @param *buf_end pointer location of the end of the buffer
163  * @return size of variable data
164  */
165 static unsigned int get_header_variable_length(const uint8_t **buf,
166  const uint8_t *buf_end)
167 {
168  unsigned int variable_buffer_data_size = bytestream_get_le32(buf);
169  if (variable_buffer_data_size >= buf_end - *buf)
170  return 0;
171  return variable_buffer_data_size;
172 }
173 
174 /**
175  * Checks if the variable name corresponds with it's data type
176  *
177  * @param *avctx the AVCodecContext
178  * @param **buf the current pointer location in the header where
179  * the variable name starts
180  * @param *buf_end pointer location of the end of the buffer
181  * @param *value_name name of the varible to check
182  * @param *value_type type of the varible to check
183  * @param minimum_length minimum length of the variable data
184  * @param variable_buffer_data_size variable length read from the header
185  * after it's checked
186  * @return negative if variable is invalid
187  */
189  const uint8_t **buf,
190  const uint8_t *buf_end,
191  const char *value_name,
192  const char *value_type,
193  unsigned int minimum_length,
194  unsigned int *variable_buffer_data_size)
195 {
196  if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) {
197  *buf += strlen(value_name)+1;
198  if (!strcmp(*buf, value_type)) {
199  *buf += strlen(value_type)+1;
200  *variable_buffer_data_size = get_header_variable_length(buf, buf_end);
201  if (!*variable_buffer_data_size)
202  av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
203  return 1;
204  }
205  *buf -= strlen(value_name)+1;
206  av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name);
207  }
208  return -1;
209 }
210 
211 static void predictor(uint8_t *src, int size)
212 {
213  uint8_t *t = src + 1;
214  uint8_t *stop = src + size;
215 
216  while (t < stop) {
217  int d = (int)t[-1] + (int)t[0] - 128;
218  t[0] = d;
219  ++t;
220  }
221 }
222 
223 static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
224 {
225  const int8_t *t1 = src;
226  const int8_t *t2 = src + (size + 1) / 2;
227  int8_t *s = dst;
228  int8_t *stop = s + size;
229 
230  while (1) {
231  if (s < stop)
232  *(s++) = *(t1++);
233  else
234  break;
235 
236  if (s < stop)
237  *(s++) = *(t2++);
238  else
239  break;
240  }
241 }
242 
243 static int zip_uncompress(const uint8_t *src, int compressed_size,
244  int uncompressed_size, EXRThreadData *td)
245 {
246  unsigned long dest_len = uncompressed_size;
247 
248  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
249  dest_len != uncompressed_size)
250  return AVERROR(EINVAL);
251 
252  predictor(td->tmp, uncompressed_size);
253  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
254 
255  return 0;
256 }
257 
258 static int rle_uncompress(const uint8_t *src, int compressed_size,
259  int uncompressed_size, EXRThreadData *td)
260 {
261  int8_t *d = (int8_t *)td->tmp;
262  const int8_t *s = (const int8_t *)src;
263  int ssize = compressed_size;
264  int dsize = uncompressed_size;
265  int8_t *dend = d + dsize;
266  int count;
267 
268  while (ssize > 0) {
269  count = *s++;
270 
271  if (count < 0) {
272  count = -count;
273 
274  if ((dsize -= count ) < 0 ||
275  (ssize -= count + 1) < 0)
276  return -1;
277 
278  while (count--)
279  *d++ = *s++;
280  } else {
281  count++;
282 
283  if ((dsize -= count) < 0 ||
284  (ssize -= 2 ) < 0)
285  return -1;
286 
287  while (count--)
288  *d++ = *s;
289 
290  s++;
291  }
292  }
293 
294  if (dend != d)
295  return AVERROR_INVALIDDATA;
296 
297  predictor(td->tmp, uncompressed_size);
298  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
299 
300  return 0;
301 }
302 
303 #define USHORT_RANGE (1 << 16)
304 #define BITMAP_SIZE (1 << 13)
305 
306 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
307 {
308  int i, k = 0;
309 
310  for (i = 0; i < USHORT_RANGE; i++) {
311  if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
312  lut[k++] = i;
313  }
314 
315  i = k - 1;
316 
317  memset(lut + k, 0, (USHORT_RANGE - k) * 2);
318 
319  return i;
320 }
321 
322 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
323 {
324  int i;
325 
326  for (i = 0; i < dsize; ++i)
327  dst[i] = lut[dst[i]];
328 }
329 
330 #define HUF_ENCBITS 16 // literal (value) bit length
331 #define HUF_DECBITS 14 // decoding bit size (>= 8)
332 
333 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
334 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
335 #define HUF_DECMASK (HUF_DECSIZE - 1)
336 
337 typedef struct HufDec {
338  int len;
339  int lit;
340  int *p;
341 } HufDec;
342 
343 static void huf_canonical_code_table(uint64_t *hcode)
344 {
345  uint64_t c, n[59] = { 0 };
346  int i;
347 
348  for (i = 0; i < HUF_ENCSIZE; ++i)
349  n[hcode[i]] += 1;
350 
351  c = 0;
352  for (i = 58; i > 0; --i) {
353  uint64_t nc = ((c + n[i]) >> 1);
354  n[i] = c;
355  c = nc;
356  }
357 
358  for (i = 0; i < HUF_ENCSIZE; ++i) {
359  int l = hcode[i];
360 
361  if (l > 0)
362  hcode[i] = l | (n[l]++ << 6);
363  }
364 }
365 
366 #define SHORT_ZEROCODE_RUN 59
367 #define LONG_ZEROCODE_RUN 63
368 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
369 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
370 
372  int32_t im, int32_t iM, uint64_t *hcode)
373 {
374  GetBitContext gbit;
375 
377 
378  for (; im <= iM; im++) {
379  uint64_t l = hcode[im] = get_bits(&gbit, 6);
380 
381  if (l == LONG_ZEROCODE_RUN) {
382  int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
383 
384  if (im + zerun > iM + 1)
385  return AVERROR_INVALIDDATA;
386 
387  while (zerun--)
388  hcode[im++] = 0;
389 
390  im--;
391  } else if (l >= (uint64_t) SHORT_ZEROCODE_RUN) {
392  int zerun = l - SHORT_ZEROCODE_RUN + 2;
393 
394  if (im + zerun > iM + 1)
395  return AVERROR_INVALIDDATA;
396 
397  while (zerun--)
398  hcode[im++] = 0;
399 
400  im--;
401  }
402  }
403 
404  bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
406 
407  return 0;
408 }
409 
410 static int huf_build_dec_table(const uint64_t *hcode, int im,
411  int iM, HufDec *hdecod)
412 {
413  for (; im <= iM; im++) {
414  uint64_t c = hcode[im] >> 6;
415  int i, l = hcode[im] & 63;
416 
417  if (c >> l)
418  return AVERROR_INVALIDDATA;
419 
420  if (l > HUF_DECBITS) {
421  HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
422  if (pl->len)
423  return AVERROR_INVALIDDATA;
424 
425  pl->lit++;
426 
427  pl->p = av_realloc_f(pl->p, pl->lit, sizeof(int));
428  if (!pl->p)
429  return AVERROR(ENOMEM);
430 
431  pl->p[pl->lit - 1] = im;
432  } else if (l) {
433  HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
434 
435  for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
436  if (pl->len || pl->p)
437  return AVERROR_INVALIDDATA;
438  pl->len = l;
439  pl->lit = im;
440  }
441  }
442  }
443 
444  return 0;
445 }
446 
447 #define get_char(c, lc, gb) { \
448  c = (c << 8) | bytestream2_get_byte(gb); \
449  lc += 8; \
450 }
451 
452 #define get_code(po, rlc, c, lc, gb, out, oe) { \
453  if (po == rlc) { \
454  if (lc < 8) \
455  get_char(c, lc, gb); \
456  lc -= 8; \
457  \
458  cs = c >> lc; \
459  \
460  if (out + cs > oe) \
461  return AVERROR_INVALIDDATA; \
462  \
463  s = out[-1]; \
464  \
465  while (cs-- > 0) \
466  *out++ = s; \
467  } else if (out < oe) { \
468  *out++ = po; \
469  } else { \
470  return AVERROR_INVALIDDATA; \
471  } \
472 }
473 
474 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
475  GetByteContext *gb, int nbits,
476  int rlc, int no, uint16_t *out)
477 {
478  uint64_t c = 0;
479  uint16_t *outb = out;
480  uint16_t *oe = out + no;
481  const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
482  uint8_t cs, s;
483  int i, lc = 0;
484 
485  while (gb->buffer < ie) {
486  get_char(c, lc, gb);
487 
488  while (lc >= HUF_DECBITS) {
489  const HufDec pl = hdecod[(c >> (lc-HUF_DECBITS)) & HUF_DECMASK];
490 
491  if (pl.len) {
492  lc -= pl.len;
493  get_code(pl.lit, rlc, c, lc, gb, out, oe);
494  } else {
495  int j;
496 
497  if (!pl.p)
498  return AVERROR_INVALIDDATA;
499 
500  for (j = 0; j < pl.lit; j++) {
501  int l = hcode[pl.p[j]] & 63;
502 
503  while (lc < l && bytestream2_get_bytes_left(gb) > 0)
504  get_char(c, lc, gb);
505 
506  if (lc >= l) {
507  if ((hcode[pl.p[j]] >> 6) ==
508  ((c >> (lc - l)) & ((1LL << l) - 1))) {
509  lc -= l;
510  get_code(pl.p[j], rlc, c, lc, gb, out, oe);
511  break;
512  }
513  }
514  }
515 
516  if (j == pl.lit)
517  return AVERROR_INVALIDDATA;
518  }
519  }
520  }
521 
522  i = (8 - nbits) & 7;
523  c >>= i;
524  lc -= i;
525 
526  while (lc > 0) {
527  const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
528 
529  if (pl.len) {
530  lc -= pl.len;
531  get_code(pl.lit, rlc, c, lc, gb, out, oe);
532  } else {
533  return AVERROR_INVALIDDATA;
534  }
535  }
536 
537  if (out - outb != no)
538  return AVERROR_INVALIDDATA;
539  return 0;
540 }
541 
543  uint16_t *dst, int dst_size)
544 {
545  int32_t src_size, im, iM;
546  uint32_t nBits;
547  uint64_t *freq;
548  HufDec *hdec;
549  int ret, i;
550 
551  src_size = bytestream2_get_le32(gb);
552  im = bytestream2_get_le32(gb);
553  iM = bytestream2_get_le32(gb);
554  bytestream2_skip(gb, 4);
555  nBits = bytestream2_get_le32(gb);
556  if (im < 0 || im >= HUF_ENCSIZE ||
557  iM < 0 || iM >= HUF_ENCSIZE ||
558  src_size < 0)
559  return AVERROR_INVALIDDATA;
560 
561  bytestream2_skip(gb, 4);
562 
563  freq = av_calloc(HUF_ENCSIZE, sizeof(*freq));
564  hdec = av_calloc(HUF_DECSIZE, sizeof(*hdec));
565  if (!freq || !hdec) {
566  ret = AVERROR(ENOMEM);
567  goto fail;
568  }
569 
570  if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
571  goto fail;
572 
573  if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
574  ret = AVERROR_INVALIDDATA;
575  goto fail;
576  }
577 
578  if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
579  goto fail;
580  ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
581 
582 fail:
583  for (i = 0; i < HUF_DECSIZE; i++) {
584  if (hdec)
585  av_freep(&hdec[i].p);
586  }
587 
588  av_free(freq);
589  av_free(hdec);
590 
591  return ret;
592 }
593 
594 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
595 {
596  int16_t ls = l;
597  int16_t hs = h;
598  int hi = hs;
599  int ai = ls + (hi & 1) + (hi >> 1);
600  int16_t as = ai;
601  int16_t bs = ai - hi;
602 
603  *a = as;
604  *b = bs;
605 }
606 
607 #define NBITS 16
608 #define A_OFFSET (1 << (NBITS - 1))
609 #define MOD_MASK ((1 << NBITS) - 1)
610 
611 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
612 {
613  int m = l;
614  int d = h;
615  int bb = (m - (d >> 1)) & MOD_MASK;
616  int aa = (d + bb - A_OFFSET) & MOD_MASK;
617  *b = bb;
618  *a = aa;
619 }
620 
621 static void wav_decode(uint16_t *in, int nx, int ox,
622  int ny, int oy, uint16_t mx)
623 {
624  int w14 = (mx < (1 << 14));
625  int n = (nx > ny) ? ny: nx;
626  int p = 1;
627  int p2;
628 
629  while (p <= n)
630  p <<= 1;
631 
632  p >>= 1;
633  p2 = p;
634  p >>= 1;
635 
636  while (p >= 1) {
637  uint16_t *py = in;
638  uint16_t *ey = in + oy * (ny - p2);
639  uint16_t i00, i01, i10, i11;
640  int oy1 = oy * p;
641  int oy2 = oy * p2;
642  int ox1 = ox * p;
643  int ox2 = ox * p2;
644 
645  for (; py <= ey; py += oy2) {
646  uint16_t *px = py;
647  uint16_t *ex = py + ox * (nx - p2);
648 
649  for (; px <= ex; px += ox2) {
650  uint16_t *p01 = px + ox1;
651  uint16_t *p10 = px + oy1;
652  uint16_t *p11 = p10 + ox1;
653 
654  if (w14) {
655  wdec14(*px, *p10, &i00, &i10);
656  wdec14(*p01, *p11, &i01, &i11);
657  wdec14(i00, i01, px, p01);
658  wdec14(i10, i11, p10, p11);
659  } else {
660  wdec16(*px, *p10, &i00, &i10);
661  wdec16(*p01, *p11, &i01, &i11);
662  wdec16(i00, i01, px, p01);
663  wdec16(i10, i11, p10, p11);
664  }
665  }
666 
667  if (nx & p) {
668  uint16_t *p10 = px + oy1;
669 
670  if (w14)
671  wdec14(*px, *p10, &i00, p10);
672  else
673  wdec16(*px, *p10, &i00, p10);
674 
675  *px = i00;
676  }
677  }
678 
679  if (ny & p) {
680  uint16_t *px = py;
681  uint16_t *ex = py + ox * (nx - p2);
682 
683  for (; px <= ex; px += ox2) {
684  uint16_t *p01 = px + ox1;
685 
686  if (w14)
687  wdec14(*px, *p01, &i00, p01);
688  else
689  wdec16(*px, *p01, &i00, p01);
690 
691  *px = i00;
692  }
693  }
694 
695  p2 = p;
696  p >>= 1;
697  }
698 }
699 
700 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
701 {
702  GetByteContext gb;
703  uint16_t maxval, min_non_zero, max_non_zero;
704  uint16_t *ptr, *tmp = (uint16_t *)td->tmp;
705  int8_t *out;
706  int ret, i, j;
707 
708  if (!td->bitmap)
710  if (!td->lut)
711  td->lut = av_malloc(1 << 17);
712  if (!td->bitmap || !td->lut)
713  return AVERROR(ENOMEM);
714 
715  bytestream2_init(&gb, src, ssize);
716  min_non_zero = bytestream2_get_le16(&gb);
717  max_non_zero = bytestream2_get_le16(&gb);
718 
719  if (max_non_zero >= BITMAP_SIZE)
720  return AVERROR_INVALIDDATA;
721 
722  memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
723  if (min_non_zero <= max_non_zero)
724  bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
725  max_non_zero - min_non_zero + 1);
726  memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
727 
728  maxval = reverse_lut(td->bitmap, td->lut);
729 
730  ret = huf_uncompress(&gb, tmp, dsize / sizeof(int16_t));
731  if (ret)
732  return ret;
733 
734  ptr = tmp;
735  for (i = 0; i < s->nb_channels; i++) {
736  EXRChannel *channel = &s->channels[i];
737  int size = channel->pixel_type;
738 
739  for (j = 0; j < size; j++)
740  wav_decode(ptr + j, s->xdelta, size, s->ysize, s->xdelta * size, maxval);
741  ptr += s->xdelta * s->ysize * size;
742  }
743 
744  apply_lut(td->lut, tmp, dsize / sizeof(int16_t));
745 
746  out = td->uncompressed_data;
747  for (i = 0; i < s->ysize; i++) {
748  for (j = 0; j < s->nb_channels; j++) {
749  uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
750  memcpy(out, in, s->xdelta * 2);
751  out += s->xdelta * 2;
752  }
753  }
754 
755  return 0;
756 }
757 
759  int compressed_size, int uncompressed_size,
760  EXRThreadData *td)
761 {
762  unsigned long dest_len = uncompressed_size;
763  const uint8_t *in = td->tmp;
764  uint8_t *out;
765  int c, i, j;
766 
767  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
768  dest_len != uncompressed_size)
769  return AVERROR(EINVAL);
770 
771  out = td->uncompressed_data;
772  for (i = 0; i < s->ysize; i++) {
773  for (c = 0; c < s->nb_channels; c++) {
774  EXRChannel *channel = &s->channels[c];
775  const uint8_t *ptr[4];
776  uint32_t pixel = 0;
777 
778  switch (channel->pixel_type) {
779  case EXR_FLOAT:
780  ptr[0] = in;
781  ptr[1] = ptr[0] + s->xdelta;
782  ptr[2] = ptr[1] + s->xdelta;
783  in = ptr[2] + s->xdelta;
784 
785  for (j = 0; j < s->xdelta; ++j) {
786  uint32_t diff = (*(ptr[0]++) << 24) |
787  (*(ptr[1]++) << 16) |
788  (*(ptr[2]++) << 8);
789  pixel += diff;
790  bytestream_put_le32(&out, pixel);
791  }
792  break;
793  case EXR_HALF:
794  ptr[0] = in;
795  ptr[1] = ptr[0] + s->xdelta;
796  in = ptr[1] + s->xdelta;
797  for (j = 0; j < s->xdelta; j++) {
798  uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
799 
800  pixel += diff;
801  bytestream_put_le16(&out, pixel);
802  }
803  break;
804  default:
805  av_assert1(0);
806  }
807  }
808  }
809 
810  return 0;
811 }
812 
813 static int decode_block(AVCodecContext *avctx, void *tdata,
814  int jobnr, int threadnr)
815 {
816  EXRContext *s = avctx->priv_data;
817  AVFrame *const p = s->picture;
818  EXRThreadData *td = &s->thread_data[threadnr];
819  const uint8_t *channel_buffer[4] = { 0 };
820  const uint8_t *buf = s->buf;
821  uint64_t line_offset, uncompressed_size;
822  uint32_t xdelta = s->xdelta;
823  uint16_t *ptr_x;
824  uint8_t *ptr;
826  const uint8_t *src;
827  int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
828  int bxmin = s->xmin * 2 * s->desc->nb_components;
829  int i, x, buf_size = s->buf_size;
830  int av_unused ret;
831 
832  line_offset = AV_RL64(s->table + jobnr * 8);
833  // Check if the buffer has the required bytes needed from the offset
834  if (line_offset > buf_size - 8)
835  return AVERROR_INVALIDDATA;
836 
837  src = buf + line_offset + 8;
838  line = AV_RL32(src - 8);
839  if (line < s->ymin || line > s->ymax)
840  return AVERROR_INVALIDDATA;
841 
842  data_size = AV_RL32(src - 4);
843  if (data_size <= 0 || data_size > buf_size)
844  return AVERROR_INVALIDDATA;
845 
846  s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
847  uncompressed_size = s->scan_line_size * s->ysize;
848  if ((s->compr == EXR_RAW && (data_size != uncompressed_size ||
849  line_offset > buf_size - uncompressed_size)) ||
850  (s->compr != EXR_RAW && (data_size > uncompressed_size ||
851  line_offset > buf_size - data_size))) {
852  return AVERROR_INVALIDDATA;
853  }
854 
855  if (data_size < uncompressed_size) {
856  av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size);
857  av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
858  if (!td->uncompressed_data || !td->tmp)
859  return AVERROR(ENOMEM);
860 
861  switch (s->compr) {
862  case EXR_ZIP1:
863  case EXR_ZIP16:
864  ret = zip_uncompress(src, data_size, uncompressed_size, td);
865  break;
866  case EXR_PIZ:
867  ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
868  break;
869  case EXR_PXR24:
870  ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
871  break;
872  case EXR_RLE:
873  ret = rle_uncompress(src, data_size, uncompressed_size, td);
874  }
875 
876  src = td->uncompressed_data;
877  }
878 
879  channel_buffer[0] = src + xdelta * s->channel_offsets[0];
880  channel_buffer[1] = src + xdelta * s->channel_offsets[1];
881  channel_buffer[2] = src + xdelta * s->channel_offsets[2];
882  if (s->channel_offsets[3] >= 0)
883  channel_buffer[3] = src + xdelta * s->channel_offsets[3];
884 
885  ptr = p->data[0] + line * p->linesize[0];
886  for (i = 0; i < s->scan_lines_per_block && line + i <= s->ymax; i++, ptr += p->linesize[0]) {
887  const uint8_t *r, *g, *b, *a;
888 
889  r = channel_buffer[0];
890  g = channel_buffer[1];
891  b = channel_buffer[2];
892  if (channel_buffer[3])
893  a = channel_buffer[3];
894 
895  ptr_x = (uint16_t *)ptr;
896 
897  // Zero out the start if xmin is not 0
898  memset(ptr_x, 0, bxmin);
899  ptr_x += s->xmin * s->desc->nb_components;
900  if (s->pixel_type == EXR_FLOAT) {
901  // 32-bit
902  for (x = 0; x < xdelta; x++) {
903  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&r));
904  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&g));
905  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&b));
906  if (channel_buffer[3])
907  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
908  }
909  } else {
910  // 16-bit
911  for (x = 0; x < xdelta; x++) {
912  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r));
913  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g));
914  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b));
915  if (channel_buffer[3])
916  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
917  }
918  }
919 
920  // Zero out the end if xmax+1 is not w
921  memset(ptr_x, 0, axmax);
922 
923  channel_buffer[0] += s->scan_line_size;
924  channel_buffer[1] += s->scan_line_size;
925  channel_buffer[2] += s->scan_line_size;
926  if (channel_buffer[3])
927  channel_buffer[3] += s->scan_line_size;
928  }
929 
930  return 0;
931 }
932 
933 static int decode_frame(AVCodecContext *avctx,
934  void *data,
935  int *got_frame,
936  AVPacket *avpkt)
937 {
938  const uint8_t *buf = avpkt->data;
939  unsigned int buf_size = avpkt->size;
940  const uint8_t *buf_end = buf + buf_size;
941 
942  EXRContext *const s = avctx->priv_data;
943  ThreadFrame frame = { .f = data };
944  AVFrame *picture = data;
945  uint8_t *ptr;
946 
947  int i, y, magic_number, version, flags, ret;
948  int w = 0;
949  int h = 0;
950 
951  int out_line_size;
952  int scan_line_blocks;
953 
954  unsigned int current_channel_offset = 0;
955 
956  s->xmin = ~0;
957  s->xmax = ~0;
958  s->ymin = ~0;
959  s->ymax = ~0;
960  s->xdelta = ~0;
961  s->ydelta = ~0;
962  s->channel_offsets[0] = -1;
963  s->channel_offsets[1] = -1;
964  s->channel_offsets[2] = -1;
965  s->channel_offsets[3] = -1;
966  s->pixel_type = -1;
967  s->nb_channels = 0;
968  s->compr = -1;
969  s->buf = buf;
970  s->buf_size = buf_size;
971 
972  if (buf_size < 10) {
973  av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n");
974  return AVERROR_INVALIDDATA;
975  }
976 
977  magic_number = bytestream_get_le32(&buf);
978  if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian
979  av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number);
980  return AVERROR_INVALIDDATA;
981  }
982 
983  version = bytestream_get_byte(&buf);
984  if (version != 2) {
985  avpriv_report_missing_feature(avctx, "Version %d", version);
986  return AVERROR_PATCHWELCOME;
987  }
988 
989  flags = bytestream_get_le24(&buf);
990  if (flags & 0x2) {
991  avpriv_report_missing_feature(avctx, "Tile support");
992  return AVERROR_PATCHWELCOME;
993  }
994 
995  // Parse the header
996  while (buf < buf_end && buf[0]) {
997  unsigned int variable_buffer_data_size;
998  // Process the channel list
999  if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) {
1000  const uint8_t *channel_list_end;
1001  if (!variable_buffer_data_size)
1002  return AVERROR_INVALIDDATA;
1003 
1004  channel_list_end = buf + variable_buffer_data_size;
1005  while (channel_list_end - buf >= 19) {
1006  EXRChannel *channel;
1007  enum ExrPixelType current_pixel_type;
1008  int channel_index = -1;
1009  int xsub, ysub;
1010 
1011  const char* b = buf;
1012 
1013  if ( strcmp( s->layer, "" ) != 0 ) {
1014  if ( strncmp( b, s->layer, strlen(s->layer) ) == 0 ) {
1015  b += strlen(s->layer);
1016  if ( *b == '.' ) ++b; /* skip dot if not given */
1017  av_log( avctx, AV_LOG_INFO, "Layer %s.%s matched\n",
1018  s->layer, b );
1019  }
1020  }
1021 
1022 
1023  if (!strcmp(b, "R")||!strcmp(b, "X")||!strcmp(b,"U"))
1024  channel_index = 0;
1025  else if (!strcmp(b, "G")||!strcmp(b, "Y")||!strcmp(b,"V"))
1026  channel_index = 1;
1027  else if (!strcmp(b, "B")||!strcmp(b, "Z")||!strcmp(b,"W"))
1028  channel_index = 2;
1029  else if (!strcmp(b, "A"))
1030  channel_index = 3;
1031  else
1032  av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf);
1033 
1034  while (bytestream_get_byte(&buf) && buf < channel_list_end)
1035  continue; /* skip */
1036 
1037  if (channel_list_end - * &buf < 4) {
1038  av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
1039  return AVERROR_INVALIDDATA;
1040  }
1041 
1042  current_pixel_type = bytestream_get_le32(&buf);
1043  if (current_pixel_type > 2) {
1044  av_log(avctx, AV_LOG_ERROR, "Unknown pixel type\n");
1045  return AVERROR_INVALIDDATA;
1046  }
1047 
1048  buf += 4;
1049  xsub = bytestream_get_le32(&buf);
1050  ysub = bytestream_get_le32(&buf);
1051  if (xsub != 1 || ysub != 1) {
1052  avpriv_report_missing_feature(avctx, "Subsampling %dx%d", xsub, ysub);
1053  return AVERROR_PATCHWELCOME;
1054  }
1055 
1056  if (channel_index >= 0) {
1057  if (s->pixel_type != -1 && s->pixel_type != current_pixel_type) {
1058  av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n");
1059  return AVERROR_INVALIDDATA;
1060  }
1061  s->pixel_type = current_pixel_type;
1062  s->channel_offsets[channel_index] = current_channel_offset;
1063  }
1064 
1065  s->channels = av_realloc_f(s->channels, ++s->nb_channels, sizeof(EXRChannel));
1066  if (!s->channels)
1067  return AVERROR(ENOMEM);
1068  channel = &s->channels[s->nb_channels - 1];
1069  channel->pixel_type = current_pixel_type;
1070  channel->xsub = xsub;
1071  channel->ysub = ysub;
1072 
1073  current_channel_offset += 1 << current_pixel_type;
1074  }
1075 
1076  /* Check if all channels are set with an offset or if the channels
1077  * are causing an overflow */
1078 
1079  if (FFMIN3(s->channel_offsets[0],
1080  s->channel_offsets[1],
1081  s->channel_offsets[2]) < 0) {
1082  if (s->channel_offsets[0] < 0)
1083  av_log(avctx, AV_LOG_ERROR, "Missing red channel\n");
1084  if (s->channel_offsets[1] < 0)
1085  av_log(avctx, AV_LOG_ERROR, "Missing green channel\n");
1086  if (s->channel_offsets[2] < 0)
1087  av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n");
1088  return AVERROR_INVALIDDATA;
1089  }
1090 
1091  buf = channel_list_end;
1092  continue;
1093  } else if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) {
1094  if (!variable_buffer_data_size)
1095  return AVERROR_INVALIDDATA;
1096 
1097  s->xmin = AV_RL32(buf);
1098  s->ymin = AV_RL32(buf + 4);
1099  s->xmax = AV_RL32(buf + 8);
1100  s->ymax = AV_RL32(buf + 12);
1101  s->xdelta = (s->xmax - s->xmin) + 1;
1102  s->ydelta = (s->ymax - s->ymin) + 1;
1103 
1104  buf += variable_buffer_data_size;
1105  continue;
1106  } else if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) {
1107  if (!variable_buffer_data_size)
1108  return AVERROR_INVALIDDATA;
1109 
1110  w = AV_RL32(buf + 8) + 1;
1111  h = AV_RL32(buf + 12) + 1;
1112 
1113  buf += variable_buffer_data_size;
1114  continue;
1115  } else if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) {
1116  if (!variable_buffer_data_size)
1117  return AVERROR_INVALIDDATA;
1118 
1119  av_log(avctx, AV_LOG_DEBUG, "line order : %d\n", *buf);
1120  if (*buf > 2) {
1121  av_log(avctx, AV_LOG_ERROR, "Unknown line order\n");
1122  return AVERROR_INVALIDDATA;
1123  }
1124 
1125  buf += variable_buffer_data_size;
1126  continue;
1127  } else if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) {
1128  if (!variable_buffer_data_size)
1129  return AVERROR_INVALIDDATA;
1130 
1131  avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255);
1132 
1133  buf += variable_buffer_data_size;
1134  continue;
1135  } else if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) {
1136  if (!variable_buffer_data_size)
1137  return AVERROR_INVALIDDATA;
1138 
1139  if (s->compr == -1)
1140  s->compr = *buf;
1141  else
1142  av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n");
1143 
1144  buf += variable_buffer_data_size;
1145  continue;
1146  }
1147 
1148  // Check if there is enough bytes for a header
1149  if (buf_end - buf <= 9) {
1150  av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
1151  return AVERROR_INVALIDDATA;
1152  }
1153 
1154  // Process unknown variables
1155  for (i = 0; i < 2; i++) {
1156  // Skip variable name/type
1157  while (++buf < buf_end)
1158  if (buf[0] == 0x0)
1159  break;
1160  }
1161  buf++;
1162  // Skip variable length
1163  if (buf_end - buf >= 5) {
1164  variable_buffer_data_size = get_header_variable_length(&buf, buf_end);
1165  if (!variable_buffer_data_size) {
1166  av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
1167  return AVERROR_INVALIDDATA;
1168  }
1169  buf += variable_buffer_data_size;
1170  }
1171  }
1172 
1173  if (s->compr == -1) {
1174  av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n");
1175  return AVERROR_INVALIDDATA;
1176  }
1177 
1178  if (buf >= buf_end) {
1179  av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n");
1180  return AVERROR_INVALIDDATA;
1181  }
1182  buf++;
1183 
1184  switch (s->pixel_type) {
1185  case EXR_FLOAT:
1186  case EXR_HALF:
1187  if (s->channel_offsets[3] >= 0)
1188  avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1189  else
1190  avctx->pix_fmt = AV_PIX_FMT_RGB48;
1191  break;
1192  case EXR_UINT:
1193  avpriv_request_sample(avctx, "32-bit unsigned int");
1194  return AVERROR_PATCHWELCOME;
1195  default:
1196  av_log(avctx, AV_LOG_ERROR, "Missing channel list\n");
1197  return AVERROR_INVALIDDATA;
1198  }
1199 
1200  switch (s->compr) {
1201  case EXR_RAW:
1202  case EXR_RLE:
1203  case EXR_ZIP1:
1204  s->scan_lines_per_block = 1;
1205  break;
1206  case EXR_PXR24:
1207  case EXR_ZIP16:
1208  s->scan_lines_per_block = 16;
1209  break;
1210  case EXR_PIZ:
1211  s->scan_lines_per_block = 32;
1212  break;
1213  default:
1214  avpriv_report_missing_feature(avctx, "Compression %d", s->compr);
1215  return AVERROR_PATCHWELCOME;
1216  }
1217 
1218  // Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size
1219  if (s->xmin > s->xmax ||
1220  s->ymin > s->ymax ||
1221  s->xdelta != s->xmax - s->xmin + 1 ||
1222  s->xmax >= w || s->ymax >= h) {
1223  av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n");
1224  return AVERROR_INVALIDDATA;
1225  }
1226 
1227  if ((ret = ff_set_dimensions(avctx, w, h)) < 0)
1228  return ret;
1229 
1230  s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1231  out_line_size = avctx->width * 2 * s->desc->nb_components;
1232  s->scan_line_size = s->xdelta * current_channel_offset;
1233  scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block;
1234 
1235  if (s->compr != EXR_RAW) {
1236  size_t thread_data_size, prev_size;
1237  EXRThreadData *m;
1238 
1239  prev_size = s->thread_data_size;
1240  if (av_size_mult(avctx->thread_count, sizeof(EXRThreadData), &thread_data_size))
1241  return AVERROR(EINVAL);
1242 
1243  m = av_fast_realloc(s->thread_data, &s->thread_data_size, thread_data_size);
1244  if (!m)
1245  return AVERROR(ENOMEM);
1246  s->thread_data = m;
1247  memset(s->thread_data + prev_size, 0, s->thread_data_size - prev_size);
1248  }
1249 
1250  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1251  return ret;
1252 
1253  if (buf_end - buf < scan_line_blocks * 8)
1254  return AVERROR_INVALIDDATA;
1255  s->table = buf;
1256  ptr = picture->data[0];
1257 
1258  // Zero out the start if ymin is not 0
1259  for (y = 0; y < s->ymin; y++) {
1260  memset(ptr, 0, out_line_size);
1261  ptr += picture->linesize[0];
1262  }
1263 
1264  s->picture = picture;
1265  avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
1266 
1267  // Zero out the end if ymax+1 is not h
1268  for (y = s->ymax + 1; y < avctx->height; y++) {
1269  memset(ptr, 0, out_line_size);
1270  ptr += picture->linesize[0];
1271  }
1272 
1273  picture->pict_type = AV_PICTURE_TYPE_I;
1274  *got_frame = 1;
1275 
1276  return buf_size;
1277 }
1278 
1280 {
1281  EXRContext *s = avctx->priv_data;
1282  int i;
1283 
1284  for (i = 0; i < s->thread_data_size / sizeof(EXRThreadData); i++) {
1285  EXRThreadData *td = &s->thread_data[i];
1287  av_freep(&td->tmp);
1288  av_freep(&td->bitmap);
1289  av_freep(&td->lut);
1290  }
1291 
1292  av_freep(&s->thread_data);
1293  s->thread_data_size = 0;
1294  av_freep(&s->channels);
1295 
1296  return 0;
1297 }
1298 
1300  .name = "exr",
1301  .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1302  .type = AVMEDIA_TYPE_VIDEO,
1303  .id = AV_CODEC_ID_EXR,
1304  .priv_data_size = sizeof(EXRContext),
1305  .close = decode_end,
1306  .decode = decode_frame,
1308  .priv_class = &exr_class,
1309 };