FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
proresdec2.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010-2011 Maxim Poliakovski
3  * Copyright (c) 2010-2011 Elvis Presley
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Known FOURCCs: 'apch' (HQ), 'apcn' (SD), 'apcs' (LT), 'acpo' (Proxy), 'ap4h' (4444)
25  */
26 
27 //#define DEBUG
28 
29 #define LONG_BITSTREAM_READER
30 
31 #include "avcodec.h"
32 #include "get_bits.h"
33 #include "internal.h"
34 #include "simple_idct.h"
35 #include "proresdec.h"
36 #include "proresdata.h"
37 
38 static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
39 {
40  int i;
41  for (i = 0; i < 64; i++)
42  dst[i] = permutation[src[i]];
43 }
44 
46 {
47  ProresContext *ctx = avctx->priv_data;
48  uint8_t idct_permutation[64];
49 
50  avctx->bits_per_raw_sample = 10;
51 
52  ff_dsputil_init(&ctx->dsp, avctx);
53  ff_proresdsp_init(&ctx->prodsp, avctx);
54 
55  ff_init_scantable_permutation(idct_permutation,
57 
58  permute(ctx->progressive_scan, ff_prores_progressive_scan, idct_permutation);
59  permute(ctx->interlaced_scan, ff_prores_interlaced_scan, idct_permutation);
60 
61  return 0;
62 }
63 
64 static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
65  const int data_size, AVCodecContext *avctx)
66 {
67  int hdr_size, width, height, flags;
68  int version;
69  const uint8_t *ptr;
70 
71  hdr_size = AV_RB16(buf);
72  av_dlog(avctx, "header size %d\n", hdr_size);
73  if (hdr_size > data_size) {
74  av_log(avctx, AV_LOG_ERROR, "error, wrong header size\n");
75  return AVERROR_INVALIDDATA;
76  }
77 
78  version = AV_RB16(buf + 2);
79  av_dlog(avctx, "%.4s version %d\n", buf+4, version);
80  if (version > 1) {
81  av_log(avctx, AV_LOG_ERROR, "unsupported version: %d\n", version);
82  return AVERROR_PATCHWELCOME;
83  }
84 
85  width = AV_RB16(buf + 8);
86  height = AV_RB16(buf + 10);
87  if (width != avctx->width || height != avctx->height) {
88  av_log(avctx, AV_LOG_ERROR, "picture resolution change: %dx%d -> %dx%d\n",
89  avctx->width, avctx->height, width, height);
90  return AVERROR_PATCHWELCOME;
91  }
92 
93  ctx->frame_type = (buf[12] >> 2) & 3;
94  ctx->alpha_info = buf[17] & 0xf;
95 
96  if (ctx->alpha_info > 2) {
97  av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
98  return AVERROR_INVALIDDATA;
99  }
100  if (avctx->skip_alpha) ctx->alpha_info = 0;
101 
102  av_dlog(avctx, "frame type %d\n", ctx->frame_type);
103 
104  if (ctx->frame_type == 0) {
105  ctx->scan = ctx->progressive_scan; // permuted
106  } else {
107  ctx->scan = ctx->interlaced_scan; // permuted
108  ctx->frame->interlaced_frame = 1;
109  ctx->frame->top_field_first = ctx->frame_type == 1;
110  }
111 
112  if (ctx->alpha_info) {
113  avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUVA444P10 : AV_PIX_FMT_YUVA422P10;
114  } else {
115  avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUV444P10 : AV_PIX_FMT_YUV422P10;
116  }
117 
118  ptr = buf + 20;
119  flags = buf[19];
120  av_dlog(avctx, "flags %x\n", flags);
121 
122  if (flags & 2) {
123  if(buf + data_size - ptr < 64) {
124  av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
125  return AVERROR_INVALIDDATA;
126  }
127  permute(ctx->qmat_luma, ctx->prodsp.idct_permutation, ptr);
128  ptr += 64;
129  } else {
130  memset(ctx->qmat_luma, 4, 64);
131  }
132 
133  if (flags & 1) {
134  if(buf + data_size - ptr < 64) {
135  av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
136  return AVERROR_INVALIDDATA;
137  }
138  permute(ctx->qmat_chroma, ctx->prodsp.idct_permutation, ptr);
139  } else {
140  memset(ctx->qmat_chroma, 4, 64);
141  }
142 
143  return hdr_size;
144 }
145 
146 static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
147 {
148  ProresContext *ctx = avctx->priv_data;
149  int i, hdr_size, slice_count;
150  unsigned pic_data_size;
151  int log2_slice_mb_width, log2_slice_mb_height;
152  int slice_mb_count, mb_x, mb_y;
153  const uint8_t *data_ptr, *index_ptr;
154 
155  hdr_size = buf[0] >> 3;
156  if (hdr_size < 8 || hdr_size > buf_size) {
157  av_log(avctx, AV_LOG_ERROR, "error, wrong picture header size\n");
158  return AVERROR_INVALIDDATA;
159  }
160 
161  pic_data_size = AV_RB32(buf + 1);
162  if (pic_data_size > buf_size) {
163  av_log(avctx, AV_LOG_ERROR, "error, wrong picture data size\n");
164  return AVERROR_INVALIDDATA;
165  }
166 
167  log2_slice_mb_width = buf[7] >> 4;
168  log2_slice_mb_height = buf[7] & 0xF;
169  if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
170  av_log(avctx, AV_LOG_ERROR, "unsupported slice resolution: %dx%d\n",
171  1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
172  return AVERROR_INVALIDDATA;
173  }
174 
175  ctx->mb_width = (avctx->width + 15) >> 4;
176  if (ctx->frame_type)
177  ctx->mb_height = (avctx->height + 31) >> 5;
178  else
179  ctx->mb_height = (avctx->height + 15) >> 4;
180 
181  slice_count = AV_RB16(buf + 5);
182 
183  if (ctx->slice_count != slice_count || !ctx->slices) {
184  av_freep(&ctx->slices);
185  ctx->slices = av_mallocz(slice_count * sizeof(*ctx->slices));
186  if (!ctx->slices)
187  return AVERROR(ENOMEM);
188  ctx->slice_count = slice_count;
189  }
190 
191  if (!slice_count)
192  return AVERROR(EINVAL);
193 
194  if (hdr_size + slice_count*2 > buf_size) {
195  av_log(avctx, AV_LOG_ERROR, "error, wrong slice count\n");
196  return AVERROR_INVALIDDATA;
197  }
198 
199  // parse slice information
200  index_ptr = buf + hdr_size;
201  data_ptr = index_ptr + slice_count*2;
202 
203  slice_mb_count = 1 << log2_slice_mb_width;
204  mb_x = 0;
205  mb_y = 0;
206 
207  for (i = 0; i < slice_count; i++) {
208  SliceContext *slice = &ctx->slices[i];
209 
210  slice->data = data_ptr;
211  data_ptr += AV_RB16(index_ptr + i*2);
212 
213  while (ctx->mb_width - mb_x < slice_mb_count)
214  slice_mb_count >>= 1;
215 
216  slice->mb_x = mb_x;
217  slice->mb_y = mb_y;
218  slice->mb_count = slice_mb_count;
219  slice->data_size = data_ptr - slice->data;
220 
221  if (slice->data_size < 6) {
222  av_log(avctx, AV_LOG_ERROR, "error, wrong slice data size\n");
223  return AVERROR_INVALIDDATA;
224  }
225 
226  mb_x += slice_mb_count;
227  if (mb_x == ctx->mb_width) {
228  slice_mb_count = 1 << log2_slice_mb_width;
229  mb_x = 0;
230  mb_y++;
231  }
232  if (data_ptr > buf + buf_size) {
233  av_log(avctx, AV_LOG_ERROR, "error, slice out of bounds\n");
234  return AVERROR_INVALIDDATA;
235  }
236  }
237 
238  if (mb_x || mb_y != ctx->mb_height) {
239  av_log(avctx, AV_LOG_ERROR, "error wrong mb count y %d h %d\n",
240  mb_y, ctx->mb_height);
241  return AVERROR_INVALIDDATA;
242  }
243 
244  return pic_data_size;
245 }
246 
247 #define DECODE_CODEWORD(val, codebook) \
248  do { \
249  unsigned int rice_order, exp_order, switch_bits; \
250  unsigned int q, buf, bits; \
251  \
252  UPDATE_CACHE(re, gb); \
253  buf = GET_CACHE(re, gb); \
254  \
255  /* number of bits to switch between rice and exp golomb */ \
256  switch_bits = codebook & 3; \
257  rice_order = codebook >> 5; \
258  exp_order = (codebook >> 2) & 7; \
259  \
260  q = 31 - av_log2(buf); \
261  \
262  if (q > switch_bits) { /* exp golomb */ \
263  bits = exp_order - switch_bits + (q<<1); \
264  val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
265  ((switch_bits + 1) << rice_order); \
266  SKIP_BITS(re, gb, bits); \
267  } else if (rice_order) { \
268  SKIP_BITS(re, gb, q+1); \
269  val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
270  SKIP_BITS(re, gb, rice_order); \
271  } else { \
272  val = q; \
273  SKIP_BITS(re, gb, q+1); \
274  } \
275  } while (0)
276 
277 #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
278 
279 #define FIRST_DC_CB 0xB8
280 
281 static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
282 
284  int blocks_per_slice)
285 {
286  int16_t prev_dc;
287  int code, i, sign;
288 
289  OPEN_READER(re, gb);
290 
292  prev_dc = TOSIGNED(code);
293  out[0] = prev_dc;
294 
295  out += 64; // dc coeff for the next block
296 
297  code = 5;
298  sign = 0;
299  for (i = 1; i < blocks_per_slice; i++, out += 64) {
300  DECODE_CODEWORD(code, dc_codebook[FFMIN(code, 6U)]);
301  if(code) sign ^= -(code & 1);
302  else sign = 0;
303  prev_dc += (((code + 1) >> 1) ^ sign) - sign;
304  out[0] = prev_dc;
305  }
306  CLOSE_READER(re, gb);
307 }
308 
309 // adaptive codebook switching lut according to previous run/level values
310 static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
311 static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
312 
314  int16_t *out, int blocks_per_slice)
315 {
316  ProresContext *ctx = avctx->priv_data;
317  int block_mask, sign;
318  unsigned pos, run, level;
319  int max_coeffs, i, bits_left;
320  int log2_block_count = av_log2(blocks_per_slice);
321 
322  OPEN_READER(re, gb);
323  UPDATE_CACHE(re, gb); \
324  run = 4;
325  level = 2;
326 
327  max_coeffs = 64 << log2_block_count;
328  block_mask = blocks_per_slice - 1;
329 
330  for (pos = block_mask;;) {
331  bits_left = gb->size_in_bits - re_index;
332  if (!bits_left || (bits_left < 32 && !SHOW_UBITS(re, gb, bits_left)))
333  break;
334 
335  DECODE_CODEWORD(run, run_to_cb[FFMIN(run, 15)]);
336  pos += run + 1;
337  if (pos >= max_coeffs) {
338  av_log(avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", pos, max_coeffs);
339  return AVERROR_INVALIDDATA;
340  }
341 
342  DECODE_CODEWORD(level, lev_to_cb[FFMIN(level, 9)]);
343  level += 1;
344 
345  i = pos >> log2_block_count;
346 
347  sign = SHOW_SBITS(re, gb, 1);
348  SKIP_BITS(re, gb, 1);
349  out[((pos & block_mask) << 6) + ctx->scan[i]] = ((level ^ sign) - sign);
350  }
351 
352  CLOSE_READER(re, gb);
353  return 0;
354 }
355 
357  uint16_t *dst, int dst_stride,
358  const uint8_t *buf, unsigned buf_size,
359  const int16_t *qmat)
360 {
361  ProresContext *ctx = avctx->priv_data;
362  LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
363  int16_t *block;
364  GetBitContext gb;
365  int i, blocks_per_slice = slice->mb_count<<2;
366  int ret;
367 
368  for (i = 0; i < blocks_per_slice; i++)
369  ctx->dsp.clear_block(blocks+(i<<6));
370 
371  init_get_bits(&gb, buf, buf_size << 3);
372 
373  decode_dc_coeffs(&gb, blocks, blocks_per_slice);
374  if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0)
375  return ret;
376 
377  block = blocks;
378  for (i = 0; i < slice->mb_count; i++) {
379  ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
380  ctx->prodsp.idct_put(dst +8, dst_stride, block+(1<<6), qmat);
381  ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride, block+(2<<6), qmat);
382  ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride, block+(3<<6), qmat);
383  block += 4*64;
384  dst += 16;
385  }
386  return 0;
387 }
388 
390  uint16_t *dst, int dst_stride,
391  const uint8_t *buf, unsigned buf_size,
392  const int16_t *qmat, int log2_blocks_per_mb)
393 {
394  ProresContext *ctx = avctx->priv_data;
395  LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
396  int16_t *block;
397  GetBitContext gb;
398  int i, j, blocks_per_slice = slice->mb_count << log2_blocks_per_mb;
399  int ret;
400 
401  for (i = 0; i < blocks_per_slice; i++)
402  ctx->dsp.clear_block(blocks+(i<<6));
403 
404  init_get_bits(&gb, buf, buf_size << 3);
405 
406  decode_dc_coeffs(&gb, blocks, blocks_per_slice);
407  if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0)
408  return ret;
409 
410  block = blocks;
411  for (i = 0; i < slice->mb_count; i++) {
412  for (j = 0; j < log2_blocks_per_mb; j++) {
413  ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
414  ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride, block+(1<<6), qmat);
415  block += 2*64;
416  dst += 8;
417  }
418  }
419  return 0;
420 }
421 
422 static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
423  const int num_bits)
424 {
425  const int mask = (1 << num_bits) - 1;
426  int i, idx, val, alpha_val;
427 
428  idx = 0;
429  alpha_val = mask;
430  do {
431  do {
432  if (get_bits1(gb)) {
433  val = get_bits(gb, num_bits);
434  } else {
435  int sign;
436  val = get_bits(gb, num_bits == 16 ? 7 : 4);
437  sign = val & 1;
438  val = (val + 2) >> 1;
439  if (sign)
440  val = -val;
441  }
442  alpha_val = (alpha_val + val) & mask;
443  if (num_bits == 16) {
444  dst[idx++] = alpha_val >> 6;
445  } else {
446  dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
447  }
448  if (idx >= num_coeffs)
449  break;
450  } while (get_bits_left(gb)>0 && get_bits1(gb));
451  val = get_bits(gb, 4);
452  if (!val)
453  val = get_bits(gb, 11);
454  if (idx + val > num_coeffs)
455  val = num_coeffs - idx;
456  if (num_bits == 16) {
457  for (i = 0; i < val; i++)
458  dst[idx++] = alpha_val >> 6;
459  } else {
460  for (i = 0; i < val; i++)
461  dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
462 
463  }
464  } while (idx < num_coeffs);
465 }
466 
467 /**
468  * Decode alpha slice plane.
469  */
471  uint16_t *dst, int dst_stride,
472  const uint8_t *buf, int buf_size,
473  int blocks_per_slice)
474 {
475  GetBitContext gb;
476  int i;
477  LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
478  int16_t *block;
479 
480  for (i = 0; i < blocks_per_slice<<2; i++)
481  ctx->dsp.clear_block(blocks+(i<<6));
482 
483  init_get_bits(&gb, buf, buf_size << 3);
484 
485  if (ctx->alpha_info == 2) {
486  unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
487  } else {
488  unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
489  }
490 
491  block = blocks;
492  for (i = 0; i < 16; i++) {
493  memcpy(dst, block, 16 * blocks_per_slice * sizeof(*dst));
494  dst += dst_stride >> 1;
495  block += 16 * blocks_per_slice;
496  }
497 }
498 
499 static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
500 {
501  ProresContext *ctx = avctx->priv_data;
502  SliceContext *slice = &ctx->slices[jobnr];
503  const uint8_t *buf = slice->data;
504  AVFrame *pic = ctx->frame;
505  int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
506  int luma_stride, chroma_stride;
507  int y_data_size, u_data_size, v_data_size, a_data_size;
508  uint8_t *dest_y, *dest_u, *dest_v, *dest_a;
509  int16_t qmat_luma_scaled[64];
510  int16_t qmat_chroma_scaled[64];
511  int mb_x_shift;
512  int ret;
513 
514  slice->ret = -1;
515  //av_log(avctx, AV_LOG_INFO, "slice %d mb width %d mb x %d y %d\n",
516  // jobnr, slice->mb_count, slice->mb_x, slice->mb_y);
517 
518  // slice header
519  hdr_size = buf[0] >> 3;
520  qscale = av_clip(buf[1], 1, 224);
521  qscale = qscale > 128 ? qscale - 96 << 2: qscale;
522  y_data_size = AV_RB16(buf + 2);
523  u_data_size = AV_RB16(buf + 4);
524  v_data_size = slice->data_size - y_data_size - u_data_size - hdr_size;
525  if (hdr_size > 7) v_data_size = AV_RB16(buf + 6);
526  a_data_size = slice->data_size - y_data_size - u_data_size -
527  v_data_size - hdr_size;
528 
529  if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
530  || hdr_size+y_data_size+u_data_size+v_data_size > slice->data_size){
531  av_log(avctx, AV_LOG_ERROR, "invalid plane data size\n");
532  return AVERROR_INVALIDDATA;
533  }
534 
535  buf += hdr_size;
536 
537  for (i = 0; i < 64; i++) {
538  qmat_luma_scaled [i] = ctx->qmat_luma [i] * qscale;
539  qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * qscale;
540  }
541 
542  if (ctx->frame_type == 0) {
543  luma_stride = pic->linesize[0];
544  chroma_stride = pic->linesize[1];
545  } else {
546  luma_stride = pic->linesize[0] << 1;
547  chroma_stride = pic->linesize[1] << 1;
548  }
549 
550  if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || avctx->pix_fmt == AV_PIX_FMT_YUVA444P10) {
551  mb_x_shift = 5;
552  log2_chroma_blocks_per_mb = 2;
553  } else {
554  mb_x_shift = 4;
555  log2_chroma_blocks_per_mb = 1;
556  }
557 
558  dest_y = pic->data[0] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
559  dest_u = pic->data[1] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
560  dest_v = pic->data[2] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
561  dest_a = pic->data[3] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
562 
563  if (ctx->frame_type && ctx->first_field ^ ctx->frame->top_field_first) {
564  dest_y += pic->linesize[0];
565  dest_u += pic->linesize[1];
566  dest_v += pic->linesize[2];
567  dest_a += pic->linesize[3];
568  }
569 
570  ret = decode_slice_luma(avctx, slice, (uint16_t*)dest_y, luma_stride,
571  buf, y_data_size, qmat_luma_scaled);
572  if (ret < 0)
573  return ret;
574 
575  if (!(avctx->flags & CODEC_FLAG_GRAY)) {
576  ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_u, chroma_stride,
577  buf + y_data_size, u_data_size,
578  qmat_chroma_scaled, log2_chroma_blocks_per_mb);
579  if (ret < 0)
580  return ret;
581 
582  ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_v, chroma_stride,
583  buf + y_data_size + u_data_size, v_data_size,
584  qmat_chroma_scaled, log2_chroma_blocks_per_mb);
585  if (ret < 0)
586  return ret;
587  }
588  /* decode alpha plane if available */
589  if (ctx->alpha_info && pic->data[3] && a_data_size)
590  decode_slice_alpha(ctx, (uint16_t*)dest_a, luma_stride,
591  buf + y_data_size + u_data_size + v_data_size,
592  a_data_size, slice->mb_count);
593 
594  slice->ret = 0;
595  return 0;
596 }
597 
598 static int decode_picture(AVCodecContext *avctx)
599 {
600  ProresContext *ctx = avctx->priv_data;
601  int i;
602 
603  avctx->execute2(avctx, decode_slice_thread, NULL, NULL, ctx->slice_count);
604 
605  for (i = 0; i < ctx->slice_count; i++)
606  if (ctx->slices[i].ret < 0)
607  return ctx->slices[i].ret;
608 
609  return 0;
610 }
611 
612 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
613  AVPacket *avpkt)
614 {
615  ProresContext *ctx = avctx->priv_data;
616  AVFrame *frame = data;
617  const uint8_t *buf = avpkt->data;
618  int buf_size = avpkt->size;
619  int frame_hdr_size, pic_size, ret;
620 
621  if (buf_size < 28 || AV_RL32(buf + 4) != AV_RL32("icpf")) {
622  av_log(avctx, AV_LOG_ERROR, "invalid frame header\n");
623  return AVERROR_INVALIDDATA;
624  }
625 
626  ctx->frame = frame;
628  ctx->frame->key_frame = 1;
629  ctx->first_field = 1;
630 
631  buf += 8;
632  buf_size -= 8;
633 
634  frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
635  if (frame_hdr_size < 0)
636  return frame_hdr_size;
637 
638  buf += frame_hdr_size;
639  buf_size -= frame_hdr_size;
640 
641  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
642  return ret;
643 
645  pic_size = decode_picture_header(avctx, buf, buf_size);
646  if (pic_size < 0) {
647  av_log(avctx, AV_LOG_ERROR, "error decoding picture header\n");
648  return pic_size;
649  }
650 
651  if ((ret = decode_picture(avctx)) < 0) {
652  av_log(avctx, AV_LOG_ERROR, "error decoding picture\n");
653  return ret;
654  }
655 
656  buf += pic_size;
657  buf_size -= pic_size;
658 
659  if (ctx->frame_type && buf_size > 0 && ctx->first_field) {
660  ctx->first_field = 0;
661  goto decode_picture;
662  }
663 
664  *got_frame = 1;
665 
666  return avpkt->size;
667 }
668 
670 {
671  ProresContext *ctx = avctx->priv_data;
672 
673  av_freep(&ctx->slices);
674 
675  return 0;
676 }
677 
679  .name = "prores",
680  .long_name = NULL_IF_CONFIG_SMALL("ProRes"),
681  .type = AVMEDIA_TYPE_VIDEO,
682  .id = AV_CODEC_ID_PRORES,
683  .priv_data_size = sizeof(ProresContext),
684  .init = decode_init,
685  .close = decode_close,
686  .decode = decode_frame,
687  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
688 };