FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
exr.c
Go to the documentation of this file.
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2009 Jimmy Christensen
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * OpenEXR decoder
25  * @author Jimmy Christensen
26  *
27  * For more information on the OpenEXR format, visit:
28  * http://openexr.com/
29  *
30  * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
31  * exr_half2float() is credited to Aaftab Munshi; Dan Ginsburg, Dave Shreiner.
32  *
33  */
34 
35 #include <zlib.h>
36 #include <float.h>
37 
38 #include "libavutil/imgutils.h"
39 #include "libavutil/opt.h"
40 #include "libavutil/intfloat.h"
41 
42 #include "avcodec.h"
43 #include "bytestream.h"
44 #include "get_bits.h"
45 #include "internal.h"
46 #include "mathops.h"
47 #include "thread.h"
48 
49 enum ExrCompr {
59 };
60 
66 };
67 
68 typedef struct EXRChannel {
69  int xsub, ysub;
71 } EXRChannel;
72 
73 typedef struct EXRThreadData {
76 
78  int tmp_size;
79 
81  uint16_t *lut;
83 
84 typedef struct EXRContext {
85  AVClass *class;
88 
91  int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
93 
94  int w, h;
95  uint32_t xmax, xmin;
96  uint32_t ymax, ymin;
97  uint32_t xdelta, ydelta;
98  int ysize;
99 
100  uint64_t scan_line_size;
102 
104  const uint8_t *buf;
105  int buf_size;
106 
109 
111 
112  const char *layer;
113 
114  float gamma;
115 
116  uint16_t gamma_table[65536];
117 
118 } EXRContext;
119 
120 /* -15 stored using a single precision bias of 127 */
121 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
122 /* max exponent value in single precision that will be converted
123  * to Inf or Nan when stored as a half-float */
124 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
125 
126 /* 255 is the max exponent biased value */
127 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
128 
129 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
130 
131 /*
132  * Convert a half float as a uint16_t into a full float.
133  *
134  * @param hf half float as uint16_t
135  *
136  * @return float value
137  */
138 static union av_intfloat32 exr_half2float(uint16_t hf)
139 {
140  unsigned int sign = (unsigned int)(hf >> 15);
141  unsigned int mantissa = (unsigned int)(hf & ((1 << 10) - 1));
142  unsigned int exp = (unsigned int)(hf & HALF_FLOAT_MAX_BIASED_EXP);
143  union av_intfloat32 f;
144 
145  if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
146  // we have a half-float NaN or Inf
147  // half-float NaNs will be converted to a single precision NaN
148  // half-float Infs will be converted to a single precision Inf
149  exp = FLOAT_MAX_BIASED_EXP;
150  if (mantissa)
151  mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
152  } else if (exp == 0x0) {
153  // convert half-float zero/denorm to single precision value
154  if (mantissa) {
155  mantissa <<= 1;
157  // check for leading 1 in denorm mantissa
158  while ((mantissa & (1 << 10))) {
159  // for every leading 0, decrement single precision exponent by 1
160  // and shift half-float mantissa value to the left
161  mantissa <<= 1;
162  exp -= (1 << 23);
163  }
164  // clamp the mantissa to 10-bits
165  mantissa &= ((1 << 10) - 1);
166  // shift left to generate single-precision mantissa of 23-bits
167  mantissa <<= 13;
168  }
169  } else {
170  // shift left to generate single-precision mantissa of 23-bits
171  mantissa <<= 13;
172  // generate single precision biased exponent value
173  exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
174  }
175 
176  f.i = (sign << 31) | exp | mantissa;
177 
178  return f;
179 }
180 
181 
182 /**
183  * Convert from 32-bit float as uint32_t to uint16_t.
184  *
185  * @param v 32-bit float
186  *
187  * @return normalized 16-bit unsigned int
188  */
189 static inline uint16_t exr_flt2uint(uint32_t v)
190 {
191  unsigned int exp = v >> 23;
192  // "HACK": negative values result in exp< 0, so clipping them to 0
193  // is also handled by this condition, avoids explicit check for sign bit.
194  if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
195  return 0;
196  if (exp >= 127)
197  return 0xffff;
198  v &= 0x007fffff;
199  return (v + (1 << 23)) >> (127 + 7 - exp);
200 }
201 
202 /**
203  * Convert from 16-bit float as uint16_t to uint16_t.
204  *
205  * @param v 16-bit float
206  *
207  * @return normalized 16-bit unsigned int
208  */
209 static inline uint16_t exr_halflt2uint(uint16_t v)
210 {
211  unsigned exp = 14 - (v >> 10);
212  if (exp >= 14) {
213  if (exp == 14)
214  return (v >> 9) & 1;
215  else
216  return (v & 0x8000) ? 0 : 0xffff;
217  }
218  v <<= 6;
219  return (v + (1 << 16)) >> (exp + 1);
220 }
221 
222 static void predictor(uint8_t *src, int size)
223 {
224  uint8_t *t = src + 1;
225  uint8_t *stop = src + size;
226 
227  while (t < stop) {
228  int d = (int) t[-1] + (int) t[0] - 128;
229  t[0] = d;
230  ++t;
231  }
232 }
233 
234 static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
235 {
236  const int8_t *t1 = src;
237  const int8_t *t2 = src + (size + 1) / 2;
238  int8_t *s = dst;
239  int8_t *stop = s + size;
240 
241  while (1) {
242  if (s < stop)
243  *(s++) = *(t1++);
244  else
245  break;
246 
247  if (s < stop)
248  *(s++) = *(t2++);
249  else
250  break;
251  }
252 }
253 
254 static int zip_uncompress(const uint8_t *src, int compressed_size,
255  int uncompressed_size, EXRThreadData *td)
256 {
257  unsigned long dest_len = uncompressed_size;
258 
259  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
260  dest_len != uncompressed_size)
261  return AVERROR_INVALIDDATA;
262 
263  predictor(td->tmp, uncompressed_size);
264  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
265 
266  return 0;
267 }
268 
269 static int rle_uncompress(const uint8_t *src, int compressed_size,
270  int uncompressed_size, EXRThreadData *td)
271 {
272  uint8_t *d = td->tmp;
273  const int8_t *s = src;
274  int ssize = compressed_size;
275  int dsize = uncompressed_size;
276  uint8_t *dend = d + dsize;
277  int count;
278 
279  while (ssize > 0) {
280  count = *s++;
281 
282  if (count < 0) {
283  count = -count;
284 
285  if ((dsize -= count) < 0 ||
286  (ssize -= count + 1) < 0)
287  return AVERROR_INVALIDDATA;
288 
289  while (count--)
290  *d++ = *s++;
291  } else {
292  count++;
293 
294  if ((dsize -= count) < 0 ||
295  (ssize -= 2) < 0)
296  return AVERROR_INVALIDDATA;
297 
298  while (count--)
299  *d++ = *s;
300 
301  s++;
302  }
303  }
304 
305  if (dend != d)
306  return AVERROR_INVALIDDATA;
307 
308  predictor(td->tmp, uncompressed_size);
309  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
310 
311  return 0;
312 }
313 
314 #define USHORT_RANGE (1 << 16)
315 #define BITMAP_SIZE (1 << 13)
316 
317 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
318 {
319  int i, k = 0;
320 
321  for (i = 0; i < USHORT_RANGE; i++)
322  if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
323  lut[k++] = i;
324 
325  i = k - 1;
326 
327  memset(lut + k, 0, (USHORT_RANGE - k) * 2);
328 
329  return i;
330 }
331 
332 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
333 {
334  int i;
335 
336  for (i = 0; i < dsize; ++i)
337  dst[i] = lut[dst[i]];
338 }
339 
340 #define HUF_ENCBITS 16 // literal (value) bit length
341 #define HUF_DECBITS 14 // decoding bit size (>= 8)
342 
343 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
344 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
345 #define HUF_DECMASK (HUF_DECSIZE - 1)
346 
347 typedef struct HufDec {
348  int len;
349  int lit;
350  int *p;
351 } HufDec;
352 
353 static void huf_canonical_code_table(uint64_t *hcode)
354 {
355  uint64_t c, n[59] = { 0 };
356  int i;
357 
358  for (i = 0; i < HUF_ENCSIZE; ++i)
359  n[hcode[i]] += 1;
360 
361  c = 0;
362  for (i = 58; i > 0; --i) {
363  uint64_t nc = ((c + n[i]) >> 1);
364  n[i] = c;
365  c = nc;
366  }
367 
368  for (i = 0; i < HUF_ENCSIZE; ++i) {
369  int l = hcode[i];
370 
371  if (l > 0)
372  hcode[i] = l | (n[l]++ << 6);
373  }
374 }
375 
376 #define SHORT_ZEROCODE_RUN 59
377 #define LONG_ZEROCODE_RUN 63
378 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
379 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
380 
382  int32_t im, int32_t iM, uint64_t *hcode)
383 {
384  GetBitContext gbit;
385 
387 
388  for (; im <= iM; im++) {
389  uint64_t l = hcode[im] = get_bits(&gbit, 6);
390 
391  if (l == LONG_ZEROCODE_RUN) {
392  int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
393 
394  if (im + zerun > iM + 1)
395  return AVERROR_INVALIDDATA;
396 
397  while (zerun--)
398  hcode[im++] = 0;
399 
400  im--;
401  } else if (l >= SHORT_ZEROCODE_RUN) {
402  int zerun = l - SHORT_ZEROCODE_RUN + 2;
403 
404  if (im + zerun > iM + 1)
405  return AVERROR_INVALIDDATA;
406 
407  while (zerun--)
408  hcode[im++] = 0;
409 
410  im--;
411  }
412  }
413 
414  bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
416 
417  return 0;
418 }
419 
420 static int huf_build_dec_table(const uint64_t *hcode, int im,
421  int iM, HufDec *hdecod)
422 {
423  for (; im <= iM; im++) {
424  uint64_t c = hcode[im] >> 6;
425  int i, l = hcode[im] & 63;
426 
427  if (c >> l)
428  return AVERROR_INVALIDDATA;
429 
430  if (l > HUF_DECBITS) {
431  HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
432  if (pl->len)
433  return AVERROR_INVALIDDATA;
434 
435  pl->lit++;
436 
437  pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
438  if (!pl->p)
439  return AVERROR(ENOMEM);
440 
441  pl->p[pl->lit - 1] = im;
442  } else if (l) {
443  HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
444 
445  for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
446  if (pl->len || pl->p)
447  return AVERROR_INVALIDDATA;
448  pl->len = l;
449  pl->lit = im;
450  }
451  }
452  }
453 
454  return 0;
455 }
456 
457 #define get_char(c, lc, gb) \
458 { \
459  c = (c << 8) | bytestream2_get_byte(gb); \
460  lc += 8; \
461 }
462 
463 #define get_code(po, rlc, c, lc, gb, out, oe) \
464 { \
465  if (po == rlc) { \
466  if (lc < 8) \
467  get_char(c, lc, gb); \
468  lc -= 8; \
469  \
470  cs = c >> lc; \
471  \
472  if (out + cs > oe) \
473  return AVERROR_INVALIDDATA; \
474  \
475  s = out[-1]; \
476  \
477  while (cs-- > 0) \
478  *out++ = s; \
479  } else if (out < oe) { \
480  *out++ = po; \
481  } else { \
482  return AVERROR_INVALIDDATA; \
483  } \
484 }
485 
486 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
487  GetByteContext *gb, int nbits,
488  int rlc, int no, uint16_t *out)
489 {
490  uint64_t c = 0;
491  uint16_t *outb = out;
492  uint16_t *oe = out + no;
493  const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
494  uint8_t cs, s;
495  int i, lc = 0;
496 
497  while (gb->buffer < ie) {
498  get_char(c, lc, gb);
499 
500  while (lc >= HUF_DECBITS) {
501  const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
502 
503  if (pl.len) {
504  lc -= pl.len;
505  get_code(pl.lit, rlc, c, lc, gb, out, oe);
506  } else {
507  int j;
508 
509  if (!pl.p)
510  return AVERROR_INVALIDDATA;
511 
512  for (j = 0; j < pl.lit; j++) {
513  int l = hcode[pl.p[j]] & 63;
514 
515  while (lc < l && bytestream2_get_bytes_left(gb) > 0)
516  get_char(c, lc, gb);
517 
518  if (lc >= l) {
519  if ((hcode[pl.p[j]] >> 6) ==
520  ((c >> (lc - l)) & ((1LL << l) - 1))) {
521  lc -= l;
522  get_code(pl.p[j], rlc, c, lc, gb, out, oe);
523  break;
524  }
525  }
526  }
527 
528  if (j == pl.lit)
529  return AVERROR_INVALIDDATA;
530  }
531  }
532  }
533 
534  i = (8 - nbits) & 7;
535  c >>= i;
536  lc -= i;
537 
538  while (lc > 0) {
539  const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
540 
541  if (pl.len) {
542  lc -= pl.len;
543  get_code(pl.lit, rlc, c, lc, gb, out, oe);
544  } else {
545  return AVERROR_INVALIDDATA;
546  }
547  }
548 
549  if (out - outb != no)
550  return AVERROR_INVALIDDATA;
551  return 0;
552 }
553 
555  uint16_t *dst, int dst_size)
556 {
557  int32_t src_size, im, iM;
558  uint32_t nBits;
559  uint64_t *freq;
560  HufDec *hdec;
561  int ret, i;
562 
563  src_size = bytestream2_get_le32(gb);
564  im = bytestream2_get_le32(gb);
565  iM = bytestream2_get_le32(gb);
566  bytestream2_skip(gb, 4);
567  nBits = bytestream2_get_le32(gb);
568  if (im < 0 || im >= HUF_ENCSIZE ||
569  iM < 0 || iM >= HUF_ENCSIZE ||
570  src_size < 0)
571  return AVERROR_INVALIDDATA;
572 
573  bytestream2_skip(gb, 4);
574 
575  freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
576  hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
577  if (!freq || !hdec) {
578  ret = AVERROR(ENOMEM);
579  goto fail;
580  }
581 
582  if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
583  goto fail;
584 
585  if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
586  ret = AVERROR_INVALIDDATA;
587  goto fail;
588  }
589 
590  if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
591  goto fail;
592  ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
593 
594 fail:
595  for (i = 0; i < HUF_DECSIZE; i++)
596  if (hdec)
597  av_freep(&hdec[i].p);
598 
599  av_free(freq);
600  av_free(hdec);
601 
602  return ret;
603 }
604 
605 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
606 {
607  int16_t ls = l;
608  int16_t hs = h;
609  int hi = hs;
610  int ai = ls + (hi & 1) + (hi >> 1);
611  int16_t as = ai;
612  int16_t bs = ai - hi;
613 
614  *a = as;
615  *b = bs;
616 }
617 
618 #define NBITS 16
619 #define A_OFFSET (1 << (NBITS - 1))
620 #define MOD_MASK ((1 << NBITS) - 1)
621 
622 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
623 {
624  int m = l;
625  int d = h;
626  int bb = (m - (d >> 1)) & MOD_MASK;
627  int aa = (d + bb - A_OFFSET) & MOD_MASK;
628  *b = bb;
629  *a = aa;
630 }
631 
632 static void wav_decode(uint16_t *in, int nx, int ox,
633  int ny, int oy, uint16_t mx)
634 {
635  int w14 = (mx < (1 << 14));
636  int n = (nx > ny) ? ny : nx;
637  int p = 1;
638  int p2;
639 
640  while (p <= n)
641  p <<= 1;
642 
643  p >>= 1;
644  p2 = p;
645  p >>= 1;
646 
647  while (p >= 1) {
648  uint16_t *py = in;
649  uint16_t *ey = in + oy * (ny - p2);
650  uint16_t i00, i01, i10, i11;
651  int oy1 = oy * p;
652  int oy2 = oy * p2;
653  int ox1 = ox * p;
654  int ox2 = ox * p2;
655 
656  for (; py <= ey; py += oy2) {
657  uint16_t *px = py;
658  uint16_t *ex = py + ox * (nx - p2);
659 
660  for (; px <= ex; px += ox2) {
661  uint16_t *p01 = px + ox1;
662  uint16_t *p10 = px + oy1;
663  uint16_t *p11 = p10 + ox1;
664 
665  if (w14) {
666  wdec14(*px, *p10, &i00, &i10);
667  wdec14(*p01, *p11, &i01, &i11);
668  wdec14(i00, i01, px, p01);
669  wdec14(i10, i11, p10, p11);
670  } else {
671  wdec16(*px, *p10, &i00, &i10);
672  wdec16(*p01, *p11, &i01, &i11);
673  wdec16(i00, i01, px, p01);
674  wdec16(i10, i11, p10, p11);
675  }
676  }
677 
678  if (nx & p) {
679  uint16_t *p10 = px + oy1;
680 
681  if (w14)
682  wdec14(*px, *p10, &i00, p10);
683  else
684  wdec16(*px, *p10, &i00, p10);
685 
686  *px = i00;
687  }
688  }
689 
690  if (ny & p) {
691  uint16_t *px = py;
692  uint16_t *ex = py + ox * (nx - p2);
693 
694  for (; px <= ex; px += ox2) {
695  uint16_t *p01 = px + ox1;
696 
697  if (w14)
698  wdec14(*px, *p01, &i00, p01);
699  else
700  wdec16(*px, *p01, &i00, p01);
701 
702  *px = i00;
703  }
704  }
705 
706  p2 = p;
707  p >>= 1;
708  }
709 }
710 
711 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
712  int dsize, EXRThreadData *td)
713 {
714  GetByteContext gb;
715  uint16_t maxval, min_non_zero, max_non_zero;
716  uint16_t *ptr;
717  uint16_t *tmp = (uint16_t *)td->tmp;
718  uint8_t *out;
719  int ret, i, j;
720 
721  if (!td->bitmap)
723  if (!td->lut)
724  td->lut = av_malloc(1 << 17);
725  if (!td->bitmap || !td->lut) {
726  av_freep(&td->bitmap);
727  av_freep(&td->lut);
728  return AVERROR(ENOMEM);
729  }
730 
731  bytestream2_init(&gb, src, ssize);
732  min_non_zero = bytestream2_get_le16(&gb);
733  max_non_zero = bytestream2_get_le16(&gb);
734 
735  if (max_non_zero >= BITMAP_SIZE)
736  return AVERROR_INVALIDDATA;
737 
738  memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
739  if (min_non_zero <= max_non_zero)
740  bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
741  max_non_zero - min_non_zero + 1);
742  memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
743 
744  maxval = reverse_lut(td->bitmap, td->lut);
745 
746  ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
747  if (ret)
748  return ret;
749 
750  ptr = tmp;
751  for (i = 0; i < s->nb_channels; i++) {
752  EXRChannel *channel = &s->channels[i];
753  int size = channel->pixel_type;
754 
755  for (j = 0; j < size; j++)
756  wav_decode(ptr + j, s->xdelta, size, s->ysize,
757  s->xdelta * size, maxval);
758  ptr += s->xdelta * s->ysize * size;
759  }
760 
761  apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
762 
763  out = td->uncompressed_data;
764  for (i = 0; i < s->ysize; i++)
765  for (j = 0; j < s->nb_channels; j++) {
766  uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
767  memcpy(out, in, s->xdelta * 2);
768  out += s->xdelta * 2;
769  }
770 
771  return 0;
772 }
773 
775  int compressed_size, int uncompressed_size,
776  EXRThreadData *td)
777 {
778  unsigned long dest_len = uncompressed_size;
779  const uint8_t *in = td->tmp;
780  uint8_t *out;
781  int c, i, j;
782 
783  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
784  dest_len != uncompressed_size)
785  return AVERROR_INVALIDDATA;
786 
787  out = td->uncompressed_data;
788  for (i = 0; i < s->ysize; i++)
789  for (c = 0; c < s->nb_channels; c++) {
790  EXRChannel *channel = &s->channels[c];
791  const uint8_t *ptr[4];
792  uint32_t pixel = 0;
793 
794  switch (channel->pixel_type) {
795  case EXR_FLOAT:
796  ptr[0] = in;
797  ptr[1] = ptr[0] + s->xdelta;
798  ptr[2] = ptr[1] + s->xdelta;
799  in = ptr[2] + s->xdelta;
800 
801  for (j = 0; j < s->xdelta; ++j) {
802  uint32_t diff = (*(ptr[0]++) << 24) |
803  (*(ptr[1]++) << 16) |
804  (*(ptr[2]++) << 8);
805  pixel += diff;
806  bytestream_put_le32(&out, pixel);
807  }
808  break;
809  case EXR_HALF:
810  ptr[0] = in;
811  ptr[1] = ptr[0] + s->xdelta;
812  in = ptr[1] + s->xdelta;
813  for (j = 0; j < s->xdelta; j++) {
814  uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
815 
816  pixel += diff;
817  bytestream_put_le16(&out, pixel);
818  }
819  break;
820  default:
821  return AVERROR_INVALIDDATA;
822  }
823  }
824 
825  return 0;
826 }
827 
828 static int decode_block(AVCodecContext *avctx, void *tdata,
829  int jobnr, int threadnr)
830 {
831  EXRContext *s = avctx->priv_data;
832  AVFrame *const p = s->picture;
833  EXRThreadData *td = &s->thread_data[threadnr];
834  const uint8_t *channel_buffer[4] = { 0 };
835  const uint8_t *buf = s->buf;
836  uint64_t line_offset, uncompressed_size;
837  uint32_t xdelta = s->xdelta;
838  uint16_t *ptr_x;
839  uint8_t *ptr;
840  uint32_t data_size, line;
841  const uint8_t *src;
842  int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
843  int bxmin = s->xmin * 2 * s->desc->nb_components;
844  int i, x, buf_size = s->buf_size;
845  int ret;
846  float one_gamma = 1.0f / s->gamma;
847 
848  line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
849  // Check if the buffer has the required bytes needed from the offset
850  if (line_offset > buf_size - 8)
851  return AVERROR_INVALIDDATA;
852 
853  src = buf + line_offset + 8;
854  line = AV_RL32(src - 8);
855  if (line < s->ymin || line > s->ymax)
856  return AVERROR_INVALIDDATA;
857 
858  data_size = AV_RL32(src - 4);
859  if (data_size <= 0 || data_size > buf_size)
860  return AVERROR_INVALIDDATA;
861 
862  s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
863  uncompressed_size = s->scan_line_size * s->ysize;
864  if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
865  line_offset > buf_size - uncompressed_size)) ||
866  (s->compression != EXR_RAW && (data_size > uncompressed_size ||
867  line_offset > buf_size - data_size))) {
868  return AVERROR_INVALIDDATA;
869  }
870 
871  if (data_size < uncompressed_size) {
873  &td->uncompressed_size, uncompressed_size);
874  av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
875  if (!td->uncompressed_data || !td->tmp)
876  return AVERROR(ENOMEM);
877 
878  ret = AVERROR_INVALIDDATA;
879  switch (s->compression) {
880  case EXR_ZIP1:
881  case EXR_ZIP16:
882  ret = zip_uncompress(src, data_size, uncompressed_size, td);
883  break;
884  case EXR_PIZ:
885  ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
886  break;
887  case EXR_PXR24:
888  ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
889  break;
890  case EXR_RLE:
891  ret = rle_uncompress(src, data_size, uncompressed_size, td);
892  }
893  if (ret < 0) {
894  av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
895  return ret;
896  }
897  src = td->uncompressed_data;
898  }
899 
900  channel_buffer[0] = src + xdelta * s->channel_offsets[0];
901  channel_buffer[1] = src + xdelta * s->channel_offsets[1];
902  channel_buffer[2] = src + xdelta * s->channel_offsets[2];
903  if (s->channel_offsets[3] >= 0)
904  channel_buffer[3] = src + xdelta * s->channel_offsets[3];
905 
906  ptr = p->data[0] + line * p->linesize[0];
907  for (i = 0;
908  i < s->scan_lines_per_block && line + i <= s->ymax;
909  i++, ptr += p->linesize[0]) {
910  const uint8_t *r, *g, *b, *a;
911 
912  r = channel_buffer[0];
913  g = channel_buffer[1];
914  b = channel_buffer[2];
915  if (channel_buffer[3])
916  a = channel_buffer[3];
917 
918  ptr_x = (uint16_t *) ptr;
919 
920  // Zero out the start if xmin is not 0
921  memset(ptr_x, 0, bxmin);
922  ptr_x += s->xmin * s->desc->nb_components;
923  if (s->pixel_type == EXR_FLOAT) {
924  // 32-bit
925  for (x = 0; x < xdelta; x++) {
926  union av_intfloat32 t;
927  t.i = bytestream_get_le32(&r);
928  if ( t.f > 0.0f ) /* avoid negative values */
929  t.f = powf(t.f, one_gamma);
930  *ptr_x++ = exr_flt2uint(t.i);
931 
932  t.i = bytestream_get_le32(&g);
933  if ( t.f > 0.0f )
934  t.f = powf(t.f, one_gamma);
935  *ptr_x++ = exr_flt2uint(t.i);
936 
937  t.i = bytestream_get_le32(&b);
938  if ( t.f > 0.0f )
939  t.f = powf(t.f, one_gamma);
940  *ptr_x++ = exr_flt2uint(t.i);
941  if (channel_buffer[3])
942  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
943  }
944  } else {
945  // 16-bit
946  for (x = 0; x < xdelta; x++) {
947  *ptr_x++ = s->gamma_table[bytestream_get_le16(&r)];
948  *ptr_x++ = s->gamma_table[bytestream_get_le16(&g)];
949  *ptr_x++ = s->gamma_table[bytestream_get_le16(&b)];
950  if (channel_buffer[3])
951  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
952  }
953  }
954 
955  // Zero out the end if xmax+1 is not w
956  memset(ptr_x, 0, axmax);
957 
958  channel_buffer[0] += s->scan_line_size;
959  channel_buffer[1] += s->scan_line_size;
960  channel_buffer[2] += s->scan_line_size;
961  if (channel_buffer[3])
962  channel_buffer[3] += s->scan_line_size;
963  }
964 
965  return 0;
966 }
967 
968 /**
969  * Check if the variable name corresponds to its data type.
970  *
971  * @param s the EXRContext
972  * @param value_name name of the variable to check
973  * @param value_type type of the variable to check
974  * @param minimum_length minimum length of the variable data
975  *
976  * @return bytes to read containing variable data
977  * -1 if variable is not found
978  * 0 if buffer ended prematurely
979  */
981  const char *value_name,
982  const char *value_type,
983  unsigned int minimum_length)
984 {
985  int var_size = -1;
986 
987  if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
988  !strcmp(s->gb.buffer, value_name)) {
989  // found value_name, jump to value_type (null terminated strings)
990  s->gb.buffer += strlen(value_name) + 1;
991  if (!strcmp(s->gb.buffer, value_type)) {
992  s->gb.buffer += strlen(value_type) + 1;
993  var_size = bytestream2_get_le32(&s->gb);
994  // don't go read past boundaries
995  if (var_size > bytestream2_get_bytes_left(&s->gb))
996  var_size = 0;
997  } else {
998  // value_type not found, reset the buffer
999  s->gb.buffer -= strlen(value_name) + 1;
1001  "Unknown data type %s for header variable %s.\n",
1002  value_type, value_name);
1003  }
1004  }
1005 
1006  return var_size;
1007 }
1008 
1010 {
1011  int current_channel_offset = 0;
1012  int magic_number, version, flags, i;
1013 
1014  if (bytestream2_get_bytes_left(&s->gb) < 10) {
1015  av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1016  return AVERROR_INVALIDDATA;
1017  }
1018 
1019  magic_number = bytestream2_get_le32(&s->gb);
1020  if (magic_number != 20000630) {
1021  /* As per documentation of OpenEXR, it is supposed to be
1022  * int 20000630 little-endian */
1023  av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1024  return AVERROR_INVALIDDATA;
1025  }
1026 
1027  version = bytestream2_get_byte(&s->gb);
1028  if (version != 2) {
1029  avpriv_report_missing_feature(s->avctx, "Version %d", version);
1030  return AVERROR_PATCHWELCOME;
1031  }
1032 
1033  flags = bytestream2_get_le24(&s->gb);
1034  if (flags & 0x02) {
1035  avpriv_report_missing_feature(s->avctx, "Tile support");
1036  return AVERROR_PATCHWELCOME;
1037  }
1038 
1039  // Parse the header
1040  while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1041  int var_size;
1042  if ((var_size = check_header_variable(s, "channels",
1043  "chlist", 38)) >= 0) {
1044  GetByteContext ch_gb;
1045  if (!var_size)
1046  return AVERROR_INVALIDDATA;
1047 
1048  bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1049 
1050  while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1051  EXRChannel *channel;
1052  enum ExrPixelType current_pixel_type;
1053  int channel_index = -1;
1054  int xsub, ysub;
1055 
1056  if (strcmp(s->layer, "") != 0) {
1057  if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1058  ch_gb.buffer += strlen(s->layer);
1059  if (*ch_gb.buffer == '.')
1060  ch_gb.buffer++; /* skip dot if not given */
1061  av_log(s->avctx, AV_LOG_INFO,
1062  "Layer %s.%s matched.\n", s->layer, ch_gb.buffer);
1063  }
1064  }
1065 
1066  if (!strcmp(ch_gb.buffer, "R") ||
1067  !strcmp(ch_gb.buffer, "X") ||
1068  !strcmp(ch_gb.buffer, "U"))
1069  channel_index = 0;
1070  else if (!strcmp(ch_gb.buffer, "G") ||
1071  !strcmp(ch_gb.buffer, "Y") ||
1072  !strcmp(ch_gb.buffer, "V"))
1073  channel_index = 1;
1074  else if (!strcmp(ch_gb.buffer, "B") ||
1075  !strcmp(ch_gb.buffer, "Z") ||
1076  !strcmp(ch_gb.buffer, "W"))
1077  channel_index = 2;
1078  else if (!strcmp(ch_gb.buffer, "A"))
1079  channel_index = 3;
1080  else
1082  "Unsupported channel %.256s.\n", ch_gb.buffer);
1083 
1084  /* skip until you get a 0 */
1085  while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1086  bytestream2_get_byte(&ch_gb))
1087  continue;
1088 
1089  if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1090  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1091  return AVERROR_INVALIDDATA;
1092  }
1093 
1094  current_pixel_type = bytestream2_get_le32(&ch_gb);
1095  if (current_pixel_type >= EXR_UNKNOWN) {
1097  "Pixel type %d.\n",
1098  current_pixel_type);
1099  return AVERROR_PATCHWELCOME;
1100  }
1101 
1102  bytestream2_skip(&ch_gb, 4);
1103  xsub = bytestream2_get_le32(&ch_gb);
1104  ysub = bytestream2_get_le32(&ch_gb);
1105  if (xsub != 1 || ysub != 1) {
1107  "Subsampling %dx%d",
1108  xsub, ysub);
1109  return AVERROR_PATCHWELCOME;
1110  }
1111 
1112  if (channel_index >= 0) {
1113  if (s->pixel_type != EXR_UNKNOWN &&
1114  s->pixel_type != current_pixel_type) {
1116  "RGB channels not of the same depth.\n");
1117  return AVERROR_INVALIDDATA;
1118  }
1119  s->pixel_type = current_pixel_type;
1120  s->channel_offsets[channel_index] = current_channel_offset;
1121  }
1122 
1123  s->channels = av_realloc(s->channels,
1124  ++s->nb_channels * sizeof(EXRChannel));
1125  if (!s->channels)
1126  return AVERROR(ENOMEM);
1127  channel = &s->channels[s->nb_channels - 1];
1128  channel->pixel_type = current_pixel_type;
1129  channel->xsub = xsub;
1130  channel->ysub = ysub;
1131 
1132  current_channel_offset += 1 << current_pixel_type;
1133  }
1134 
1135  /* Check if all channels are set with an offset or if the channels
1136  * are causing an overflow */
1137  if (FFMIN3(s->channel_offsets[0],
1138  s->channel_offsets[1],
1139  s->channel_offsets[2]) < 0) {
1140  if (s->channel_offsets[0] < 0)
1141  av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1142  if (s->channel_offsets[1] < 0)
1143  av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1144  if (s->channel_offsets[2] < 0)
1145  av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1146  return AVERROR_INVALIDDATA;
1147  }
1148 
1149  // skip one last byte and update main gb
1150  s->gb.buffer = ch_gb.buffer + 1;
1151  continue;
1152  } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1153  31)) >= 0) {
1154  if (!var_size)
1155  return AVERROR_INVALIDDATA;
1156 
1157  s->xmin = bytestream2_get_le32(&s->gb);
1158  s->ymin = bytestream2_get_le32(&s->gb);
1159  s->xmax = bytestream2_get_le32(&s->gb);
1160  s->ymax = bytestream2_get_le32(&s->gb);
1161  s->xdelta = (s->xmax - s->xmin) + 1;
1162  s->ydelta = (s->ymax - s->ymin) + 1;
1163 
1164  continue;
1165  } else if ((var_size = check_header_variable(s, "displayWindow",
1166  "box2i", 34)) >= 0) {
1167  if (!var_size)
1168  return AVERROR_INVALIDDATA;
1169 
1170  bytestream2_skip(&s->gb, 8);
1171  s->w = bytestream2_get_le32(&s->gb) + 1;
1172  s->h = bytestream2_get_le32(&s->gb) + 1;
1173 
1174  continue;
1175  } else if ((var_size = check_header_variable(s, "lineOrder",
1176  "lineOrder", 25)) >= 0) {
1177  int line_order;
1178  if (!var_size)
1179  return AVERROR_INVALIDDATA;
1180 
1181  line_order = bytestream2_get_byte(&s->gb);
1182  av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1183  if (line_order > 2) {
1184  av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1185  return AVERROR_INVALIDDATA;
1186  }
1187 
1188  continue;
1189  } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1190  "float", 31)) >= 0) {
1191  if (!var_size)
1192  return AVERROR_INVALIDDATA;
1193 
1194  ff_set_sar(s->avctx,
1195  av_d2q(av_int2float(bytestream2_get_le32(&s->gb)), 255));
1196 
1197  continue;
1198  } else if ((var_size = check_header_variable(s, "compression",
1199  "compression", 29)) >= 0) {
1200  if (!var_size)
1201  return AVERROR_INVALIDDATA;
1202 
1203  if (s->compression == EXR_UNKN)
1204  s->compression = bytestream2_get_byte(&s->gb);
1205  else
1207  "Found more than one compression attribute.\n");
1208 
1209  continue;
1210  }
1211 
1212  // Check if there are enough bytes for a header
1213  if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1214  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1215  return AVERROR_INVALIDDATA;
1216  }
1217 
1218  // Process unknown variables
1219  for (i = 0; i < 2; i++) // value_name and value_type
1220  while (bytestream2_get_byte(&s->gb) != 0);
1221 
1222  // Skip variable length
1223  bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1224  }
1225 
1226  if (s->compression == EXR_UNKN) {
1227  av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1228  return AVERROR_INVALIDDATA;
1229  }
1230  s->scan_line_size = s->xdelta * current_channel_offset;
1231 
1232  if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1233  av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1234  return AVERROR_INVALIDDATA;
1235  }
1236 
1237  // aaand we are done
1238  bytestream2_skip(&s->gb, 1);
1239  return 0;
1240 }
1241 
1242 static int decode_frame(AVCodecContext *avctx, void *data,
1243  int *got_frame, AVPacket *avpkt)
1244 {
1245  EXRContext *s = avctx->priv_data;
1246  ThreadFrame frame = { .f = data };
1247  AVFrame *picture = data;
1248  uint8_t *ptr;
1249 
1250  int y, ret;
1251  int out_line_size;
1252  int scan_line_blocks;
1253 
1254  bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1255 
1256  if ((ret = decode_header(s)) < 0)
1257  return ret;
1258 
1259  switch (s->pixel_type) {
1260  case EXR_FLOAT:
1261  case EXR_HALF:
1262  if (s->channel_offsets[3] >= 0)
1263  avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1264  else
1265  avctx->pix_fmt = AV_PIX_FMT_RGB48;
1266  break;
1267  case EXR_UINT:
1268  avpriv_request_sample(avctx, "32-bit unsigned int");
1269  return AVERROR_PATCHWELCOME;
1270  default:
1271  av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1272  return AVERROR_INVALIDDATA;
1273  }
1274 
1275  switch (s->compression) {
1276  case EXR_RAW:
1277  case EXR_RLE:
1278  case EXR_ZIP1:
1279  s->scan_lines_per_block = 1;
1280  break;
1281  case EXR_PXR24:
1282  case EXR_ZIP16:
1283  s->scan_lines_per_block = 16;
1284  break;
1285  case EXR_PIZ:
1286  s->scan_lines_per_block = 32;
1287  break;
1288  default:
1289  avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1290  return AVERROR_PATCHWELCOME;
1291  }
1292 
1293  /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1294  * the actual image size. */
1295  if (s->xmin > s->xmax ||
1296  s->ymin > s->ymax ||
1297  s->xdelta != s->xmax - s->xmin + 1 ||
1298  s->xmax >= s->w ||
1299  s->ymax >= s->h) {
1300  av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1301  return AVERROR_INVALIDDATA;
1302  }
1303 
1304  if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1305  return ret;
1306 
1307  s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1308  if (!s->desc)
1309  return AVERROR_INVALIDDATA;
1310  out_line_size = avctx->width * 2 * s->desc->nb_components;
1311  scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1313 
1314  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1315  return ret;
1316 
1317  if (bytestream2_get_bytes_left(&s->gb) < scan_line_blocks * 8)
1318  return AVERROR_INVALIDDATA;
1319 
1320  // save pointer we are going to use in decode_block
1321  s->buf = avpkt->data;
1322  s->buf_size = avpkt->size;
1323  ptr = picture->data[0];
1324 
1325  // Zero out the start if ymin is not 0
1326  for (y = 0; y < s->ymin; y++) {
1327  memset(ptr, 0, out_line_size);
1328  ptr += picture->linesize[0];
1329  }
1330 
1331  s->picture = picture;
1332  avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
1333 
1334  // Zero out the end if ymax+1 is not h
1335  for (y = s->ymax + 1; y < avctx->height; y++) {
1336  memset(ptr, 0, out_line_size);
1337  ptr += picture->linesize[0];
1338  }
1339 
1340  picture->pict_type = AV_PICTURE_TYPE_I;
1341  *got_frame = 1;
1342 
1343  return avpkt->size;
1344 }
1345 
1347 {
1348  uint32_t i;
1349  union av_intfloat32 t;
1350  EXRContext *s = avctx->priv_data;
1351  float one_gamma = 1.0f / s->gamma;
1352 
1353  s->avctx = avctx;
1354  s->xmin = ~0;
1355  s->xmax = ~0;
1356  s->ymin = ~0;
1357  s->ymax = ~0;
1358  s->xdelta = ~0;
1359  s->ydelta = ~0;
1360  s->channel_offsets[0] = -1;
1361  s->channel_offsets[1] = -1;
1362  s->channel_offsets[2] = -1;
1363  s->channel_offsets[3] = -1;
1364  s->pixel_type = EXR_UNKNOWN;
1365  s->compression = EXR_UNKN;
1366  s->nb_channels = 0;
1367  s->w = 0;
1368  s->h = 0;
1369 
1370  if ( one_gamma > 0.9999f && one_gamma < 1.0001f ) {
1371  for ( i = 0; i < 65536; ++i ) {
1372  s->gamma_table[i] = exr_halflt2uint(i);
1373  }
1374  } else {
1375  for ( i = 0; i < 65536; ++i ) {
1376  t = exr_half2float(i);
1377  /* If negative value we reuse half value */
1378  if ( t.f <= 0.0f ) {
1379  s->gamma_table[i] = exr_halflt2uint(i);
1380  } else {
1381  t.f = powf(t.f, one_gamma);
1382  s->gamma_table[i] = exr_flt2uint(t.i);
1383  }
1384  }
1385  }
1386 
1387  // allocate thread data, used for non EXR_RAW compreesion types
1388  s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1389  if (!s->thread_data)
1390  return AVERROR_INVALIDDATA;
1391 
1392  return 0;
1393 }
1394 
1396 { EXRContext *s = avctx->priv_data;
1397 
1398  // allocate thread data, used for non EXR_RAW compreesion types
1400  if (!s->thread_data)
1401  return AVERROR_INVALIDDATA;
1402 
1403  return 0;
1404 }
1405 
1407 {
1408  EXRContext *s = avctx->priv_data;
1409  int i;
1410  for (i = 0; i < avctx->thread_count; i++) {
1411  EXRThreadData *td = &s->thread_data[i];
1413  av_freep(&td->tmp);
1414  av_freep(&td->bitmap);
1415  av_freep(&td->lut);
1416  }
1417 
1418  av_freep(&s->thread_data);
1419  av_freep(&s->channels);
1420 
1421  return 0;
1422 }
1423 
1424 #define OFFSET(x) offsetof(EXRContext, x)
1425 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1426 static const AVOption options[] = {
1427  { "layer", "Set the decoding layer", OFFSET(layer),
1428  AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1429  { "gamma", "Set the float gamma value when decoding (experimental/unsupported)", OFFSET(gamma),
1430  AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1431  { NULL },
1432 };
1433 
1434 static const AVClass exr_class = {
1435  .class_name = "EXR",
1436  .item_name = av_default_item_name,
1437  .option = options,
1438  .version = LIBAVUTIL_VERSION_INT,
1439 };
1440 
1442  .name = "exr",
1443  .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1444  .type = AVMEDIA_TYPE_VIDEO,
1445  .id = AV_CODEC_ID_EXR,
1446  .priv_data_size = sizeof(EXRContext),
1447  .init = decode_init,
1449  .close = decode_end,
1450  .decode = decode_frame,
1451  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS |
1453  .priv_class = &exr_class,
1454 };