FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vf_lut3d.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013 Clément Bœsch
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * 3D Lookup table filter
24  */
25 
26 #include "libavutil/opt.h"
27 #include "libavutil/file.h"
28 #include "libavutil/intreadwrite.h"
29 #include "libavutil/avassert.h"
30 #include "libavutil/pixdesc.h"
31 #include "libavutil/avstring.h"
32 #include "avfilter.h"
33 #include "drawutils.h"
34 #include "dualinput.h"
35 #include "formats.h"
36 #include "internal.h"
37 #include "video.h"
38 
39 #define R 0
40 #define G 1
41 #define B 2
42 #define A 3
43 
49 };
50 
51 struct rgbvec {
52  float r, g, b;
53 };
54 
55 /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT
56  * of 512x512 (64x64x64) */
57 #define MAX_LEVEL 64
58 
59 typedef struct LUT3DContext {
60  const AVClass *class;
62  char *file;
64  int step;
67  int lutsize;
68 #if CONFIG_HALDCLUT_FILTER
69  uint8_t clut_rgba_map[4];
70  int clut_step;
71  int clut_is16bit;
72  int clut_width;
73  FFDualInputContext dinput;
74 #endif
75 } LUT3DContext;
76 
77 typedef struct ThreadData {
78  AVFrame *in, *out;
79 } ThreadData;
80 
81 #define OFFSET(x) offsetof(LUT3DContext, x)
82 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
83 #define COMMON_OPTIONS \
84  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \
85  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
86  { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
87  { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
88  { NULL }
89 
90 static inline float lerpf(float v0, float v1, float f)
91 {
92  return v0 + (v1 - v0) * f;
93 }
94 
95 static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
96 {
97  struct rgbvec v = {
98  lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
99  };
100  return v;
101 }
102 
103 #define NEAR(x) ((int)((x) + .5))
104 #define PREV(x) ((int)(x))
105 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
106 
107 /**
108  * Get the nearest defined point
109  */
110 static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
111  const struct rgbvec *s)
112 {
113  return lut3d->lut[NEAR(s->r)][NEAR(s->g)][NEAR(s->b)];
114 }
115 
116 /**
117  * Interpolate using the 8 vertices of a cube
118  * @see https://en.wikipedia.org/wiki/Trilinear_interpolation
119  */
120 static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
121  const struct rgbvec *s)
122 {
123  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
124  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
125  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
126  const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
127  const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
128  const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
129  const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
130  const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
131  const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
132  const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
133  const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
134  const struct rgbvec c00 = lerp(&c000, &c100, d.r);
135  const struct rgbvec c10 = lerp(&c010, &c110, d.r);
136  const struct rgbvec c01 = lerp(&c001, &c101, d.r);
137  const struct rgbvec c11 = lerp(&c011, &c111, d.r);
138  const struct rgbvec c0 = lerp(&c00, &c10, d.g);
139  const struct rgbvec c1 = lerp(&c01, &c11, d.g);
140  const struct rgbvec c = lerp(&c0, &c1, d.b);
141  return c;
142 }
143 
144 /**
145  * Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
146  * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
147  */
148 static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
149  const struct rgbvec *s)
150 {
151  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
152  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
153  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
154  const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
155  const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
156  struct rgbvec c;
157  if (d.r > d.g) {
158  if (d.g > d.b) {
159  const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
160  const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
161  c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
162  c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
163  c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
164  } else if (d.r > d.b) {
165  const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
166  const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
167  c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
168  c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
169  c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
170  } else {
171  const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
172  const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
173  c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
174  c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
175  c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
176  }
177  } else {
178  if (d.b > d.g) {
179  const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
180  const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
181  c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
182  c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
183  c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
184  } else if (d.b > d.r) {
185  const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
186  const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
187  c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
188  c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
189  c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
190  } else {
191  const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
192  const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
193  c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
194  c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
195  c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
196  }
197  }
198  return c;
199 }
200 
201 #define DEFINE_INTERP_FUNC(name, nbits) \
202 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
203 { \
204  int x, y; \
205  const LUT3DContext *lut3d = ctx->priv; \
206  const ThreadData *td = arg; \
207  const AVFrame *in = td->in; \
208  const AVFrame *out = td->out; \
209  const int direct = out == in; \
210  const int step = lut3d->step; \
211  const uint8_t r = lut3d->rgba_map[R]; \
212  const uint8_t g = lut3d->rgba_map[G]; \
213  const uint8_t b = lut3d->rgba_map[B]; \
214  const uint8_t a = lut3d->rgba_map[A]; \
215  const int slice_start = (in->height * jobnr ) / nb_jobs; \
216  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
217  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
218  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
219  const float scale = (1. / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \
220  \
221  for (y = slice_start; y < slice_end; y++) { \
222  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
223  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
224  for (x = 0; x < in->width * step; x += step) { \
225  const struct rgbvec scaled_rgb = {src[x + r] * scale, \
226  src[x + g] * scale, \
227  src[x + b] * scale}; \
228  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
229  dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
230  dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
231  dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
232  if (!direct && step == 4) \
233  dst[x + a] = src[x + a]; \
234  } \
235  dstrow += out->linesize[0]; \
236  srcrow += in ->linesize[0]; \
237  } \
238  return 0; \
239 }
240 
241 DEFINE_INTERP_FUNC(nearest, 8)
242 DEFINE_INTERP_FUNC(trilinear, 8)
243 DEFINE_INTERP_FUNC(tetrahedral, 8)
244 
245 DEFINE_INTERP_FUNC(nearest, 16)
246 DEFINE_INTERP_FUNC(trilinear, 16)
247 DEFINE_INTERP_FUNC(tetrahedral, 16)
248 
249 #define MAX_LINE_SIZE 512
250 
251 static int skip_line(const char *p)
252 {
253  while (*p && av_isspace(*p))
254  p++;
255  return !*p || *p == '#';
256 }
257 
258 #define NEXT_LINE(loop_cond) do { \
259  if (!fgets(line, sizeof(line), f)) { \
260  av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
261  return AVERROR_INVALIDDATA; \
262  } \
263 } while (loop_cond)
264 
265 /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
266  * directive; seems to be generated by Davinci */
267 static int parse_dat(AVFilterContext *ctx, FILE *f)
268 {
269  LUT3DContext *lut3d = ctx->priv;
270  char line[MAX_LINE_SIZE];
271  int i, j, k, size;
272 
273  lut3d->lutsize = size = 33;
274 
275  NEXT_LINE(skip_line(line));
276  if (!strncmp(line, "3DLUTSIZE ", 10)) {
277  size = strtol(line + 10, NULL, 0);
279  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
280  return AVERROR(EINVAL);
281  }
282  lut3d->lutsize = size;
283  NEXT_LINE(skip_line(line));
284  }
285  for (k = 0; k < size; k++) {
286  for (j = 0; j < size; j++) {
287  for (i = 0; i < size; i++) {
288  struct rgbvec *vec = &lut3d->lut[k][j][i];
289  if (k != 0 || j != 0 || i != 0)
290  NEXT_LINE(skip_line(line));
291  if (sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
292  return AVERROR_INVALIDDATA;
293  }
294  }
295  }
296  return 0;
297 }
298 
299 /* Iridas format */
300 static int parse_cube(AVFilterContext *ctx, FILE *f)
301 {
302  LUT3DContext *lut3d = ctx->priv;
303  char line[MAX_LINE_SIZE];
304  float min[3] = {0.0, 0.0, 0.0};
305  float max[3] = {1.0, 1.0, 1.0};
306 
307  while (fgets(line, sizeof(line), f)) {
308  if (!strncmp(line, "LUT_3D_SIZE ", 12)) {
309  int i, j, k;
310  const int size = strtol(line + 12, NULL, 0);
311 
313  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
314  return AVERROR(EINVAL);
315  }
316  lut3d->lutsize = size;
317  for (k = 0; k < size; k++) {
318  for (j = 0; j < size; j++) {
319  for (i = 0; i < size; i++) {
320  struct rgbvec *vec = &lut3d->lut[i][j][k];
321 
322  do {
323  NEXT_LINE(0);
324  if (!strncmp(line, "DOMAIN_", 7)) {
325  float *vals = NULL;
326  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
327  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
328  if (!vals)
329  return AVERROR_INVALIDDATA;
330  sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
331  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
332  min[0], min[1], min[2], max[0], max[1], max[2]);
333  continue;
334  }
335  } while (skip_line(line));
336  if (sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
337  return AVERROR_INVALIDDATA;
338  vec->r *= max[0] - min[0];
339  vec->g *= max[1] - min[1];
340  vec->b *= max[2] - min[2];
341  }
342  }
343  }
344  break;
345  }
346  }
347  return 0;
348 }
349 
350 /* Assume 17x17x17 LUT with a 16-bit depth
351  * FIXME: it seems there are various 3dl formats */
352 static int parse_3dl(AVFilterContext *ctx, FILE *f)
353 {
354  char line[MAX_LINE_SIZE];
355  LUT3DContext *lut3d = ctx->priv;
356  int i, j, k;
357  const int size = 17;
358  const float scale = 16*16*16;
359 
360  lut3d->lutsize = size;
361  NEXT_LINE(skip_line(line));
362  for (k = 0; k < size; k++) {
363  for (j = 0; j < size; j++) {
364  for (i = 0; i < size; i++) {
365  int r, g, b;
366  struct rgbvec *vec = &lut3d->lut[k][j][i];
367 
368  NEXT_LINE(skip_line(line));
369  if (sscanf(line, "%d %d %d", &r, &g, &b) != 3)
370  return AVERROR_INVALIDDATA;
371  vec->r = r / scale;
372  vec->g = g / scale;
373  vec->b = b / scale;
374  }
375  }
376  }
377  return 0;
378 }
379 
380 /* Pandora format */
381 static int parse_m3d(AVFilterContext *ctx, FILE *f)
382 {
383  LUT3DContext *lut3d = ctx->priv;
384  float scale;
385  int i, j, k, size, in = -1, out = -1;
386  char line[MAX_LINE_SIZE];
387  uint8_t rgb_map[3] = {0, 1, 2};
388 
389  while (fgets(line, sizeof(line), f)) {
390  if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0);
391  else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
392  else if (!strncmp(line, "values", 6)) {
393  const char *p = line + 6;
394 #define SET_COLOR(id) do { \
395  while (av_isspace(*p)) \
396  p++; \
397  switch (*p) { \
398  case 'r': rgb_map[id] = 0; break; \
399  case 'g': rgb_map[id] = 1; break; \
400  case 'b': rgb_map[id] = 2; break; \
401  } \
402  while (*p && !av_isspace(*p)) \
403  p++; \
404 } while (0)
405  SET_COLOR(0);
406  SET_COLOR(1);
407  SET_COLOR(2);
408  break;
409  }
410  }
411 
412  if (in == -1 || out == -1) {
413  av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
414  return AVERROR_INVALIDDATA;
415  }
416  if (in < 2 || out < 2 ||
419  av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
420  return AVERROR_INVALIDDATA;
421  }
422  for (size = 1; size*size*size < in; size++);
423  lut3d->lutsize = size;
424  scale = 1. / (out - 1);
425 
426  for (k = 0; k < size; k++) {
427  for (j = 0; j < size; j++) {
428  for (i = 0; i < size; i++) {
429  struct rgbvec *vec = &lut3d->lut[k][j][i];
430  float val[3];
431 
432  NEXT_LINE(0);
433  if (sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
434  return AVERROR_INVALIDDATA;
435  vec->r = val[rgb_map[0]] * scale;
436  vec->g = val[rgb_map[1]] * scale;
437  vec->b = val[rgb_map[2]] * scale;
438  }
439  }
440  }
441  return 0;
442 }
443 
444 static void set_identity_matrix(LUT3DContext *lut3d, int size)
445 {
446  int i, j, k;
447  const float c = 1. / (size - 1);
448 
449  lut3d->lutsize = size;
450  for (k = 0; k < size; k++) {
451  for (j = 0; j < size; j++) {
452  for (i = 0; i < size; i++) {
453  struct rgbvec *vec = &lut3d->lut[k][j][i];
454  vec->r = k * c;
455  vec->g = j * c;
456  vec->b = i * c;
457  }
458  }
459  }
460 }
461 
463 {
464  static const enum AVPixelFormat pix_fmts[] = {
473  };
475  return 0;
476 }
477 
478 static int config_input(AVFilterLink *inlink)
479 {
480  int is16bit = 0;
481  LUT3DContext *lut3d = inlink->dst->priv;
482  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
483 
484  switch (inlink->format) {
485  case AV_PIX_FMT_RGB48:
486  case AV_PIX_FMT_BGR48:
487  case AV_PIX_FMT_RGBA64:
488  case AV_PIX_FMT_BGRA64:
489  is16bit = 1;
490  }
491 
492  ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
493  lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
494 
495 #define SET_FUNC(name) do { \
496  if (is16bit) lut3d->interp = interp_16_##name; \
497  else lut3d->interp = interp_8_##name; \
498 } while (0)
499 
500  switch (lut3d->interpolation) {
501  case INTERPOLATE_NEAREST: SET_FUNC(nearest); break;
502  case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break;
503  case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break;
504  default:
505  av_assert0(0);
506  }
507 
508  return 0;
509 }
510 
512 {
513  AVFilterContext *ctx = inlink->dst;
514  LUT3DContext *lut3d = ctx->priv;
515  AVFilterLink *outlink = inlink->dst->outputs[0];
516  AVFrame *out;
517  ThreadData td;
518 
519  if (av_frame_is_writable(in)) {
520  out = in;
521  } else {
522  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
523  if (!out) {
524  av_frame_free(&in);
525  return NULL;
526  }
527  av_frame_copy_props(out, in);
528  }
529 
530  td.in = in;
531  td.out = out;
532  ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ctx->graph->nb_threads));
533 
534  if (out != in)
535  av_frame_free(&in);
536 
537  return out;
538 }
539 
540 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
541 {
542  AVFilterLink *outlink = inlink->dst->outputs[0];
543  AVFrame *out = apply_lut(inlink, in);
544  if (!out)
545  return AVERROR(ENOMEM);
546  return ff_filter_frame(outlink, out);
547 }
548 
549 #if CONFIG_LUT3D_FILTER
550 static const AVOption lut3d_options[] = {
551  { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
553 };
554 
555 AVFILTER_DEFINE_CLASS(lut3d);
556 
557 static av_cold int lut3d_init(AVFilterContext *ctx)
558 {
559  int ret;
560  FILE *f;
561  const char *ext;
562  LUT3DContext *lut3d = ctx->priv;
563 
564  if (!lut3d->file) {
565  set_identity_matrix(lut3d, 32);
566  return 0;
567  }
568 
569  f = fopen(lut3d->file, "r");
570  if (!f) {
571  ret = AVERROR(errno);
572  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
573  return ret;
574  }
575 
576  ext = strrchr(lut3d->file, '.');
577  if (!ext) {
578  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
579  ret = AVERROR_INVALIDDATA;
580  goto end;
581  }
582  ext++;
583 
584  if (!av_strcasecmp(ext, "dat")) {
585  ret = parse_dat(ctx, f);
586  } else if (!av_strcasecmp(ext, "3dl")) {
587  ret = parse_3dl(ctx, f);
588  } else if (!av_strcasecmp(ext, "cube")) {
589  ret = parse_cube(ctx, f);
590  } else if (!av_strcasecmp(ext, "m3d")) {
591  ret = parse_m3d(ctx, f);
592  } else {
593  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
594  ret = AVERROR(EINVAL);
595  }
596 
597  if (!ret && !lut3d->lutsize) {
598  av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
599  ret = AVERROR_INVALIDDATA;
600  }
601 
602 end:
603  fclose(f);
604  return ret;
605 }
606 
607 static const AVFilterPad lut3d_inputs[] = {
608  {
609  .name = "default",
610  .type = AVMEDIA_TYPE_VIDEO,
611  .filter_frame = filter_frame,
612  .config_props = config_input,
613  },
614  { NULL }
615 };
616 
617 static const AVFilterPad lut3d_outputs[] = {
618  {
619  .name = "default",
620  .type = AVMEDIA_TYPE_VIDEO,
621  },
622  { NULL }
623 };
624 
625 AVFilter ff_vf_lut3d = {
626  .name = "lut3d",
627  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
628  .priv_size = sizeof(LUT3DContext),
629  .init = lut3d_init,
631  .inputs = lut3d_inputs,
632  .outputs = lut3d_outputs,
633  .priv_class = &lut3d_class,
635 };
636 #endif
637 
638 #if CONFIG_HALDCLUT_FILTER
639 
640 static void update_clut(LUT3DContext *lut3d, const AVFrame *frame)
641 {
642  const uint8_t *data = frame->data[0];
643  const int linesize = frame->linesize[0];
644  const int w = lut3d->clut_width;
645  const int step = lut3d->clut_step;
646  const uint8_t *rgba_map = lut3d->clut_rgba_map;
647  const int level = lut3d->lutsize;
648 
649 #define LOAD_CLUT(nbits) do { \
650  int i, j, k, x = 0, y = 0; \
651  \
652  for (k = 0; k < level; k++) { \
653  for (j = 0; j < level; j++) { \
654  for (i = 0; i < level; i++) { \
655  const uint##nbits##_t *src = (const uint##nbits##_t *) \
656  (data + y*linesize + x*step); \
657  struct rgbvec *vec = &lut3d->lut[i][j][k]; \
658  vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
659  vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
660  vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
661  if (++x == w) { \
662  x = 0; \
663  y++; \
664  } \
665  } \
666  } \
667  } \
668 } while (0)
669 
670  if (!lut3d->clut_is16bit) LOAD_CLUT(8);
671  else LOAD_CLUT(16);
672 }
673 
674 
675 static int config_output(AVFilterLink *outlink)
676 {
677  AVFilterContext *ctx = outlink->src;
678  LUT3DContext *lut3d = ctx->priv;
679  int ret;
680 
681  outlink->w = ctx->inputs[0]->w;
682  outlink->h = ctx->inputs[0]->h;
683  outlink->time_base = ctx->inputs[0]->time_base;
684  if ((ret = ff_dualinput_init(ctx, &lut3d->dinput)) < 0)
685  return ret;
686  return 0;
687 }
688 
689 static int filter_frame_hald(AVFilterLink *inlink, AVFrame *inpicref)
690 {
691  LUT3DContext *s = inlink->dst->priv;
692  return ff_dualinput_filter_frame(&s->dinput, inlink, inpicref);
693 }
694 
695 static int request_frame(AVFilterLink *outlink)
696 {
697  LUT3DContext *s = outlink->src->priv;
698  return ff_dualinput_request_frame(&s->dinput, outlink);
699 }
700 
701 static int config_clut(AVFilterLink *inlink)
702 {
703  int size, level, w, h;
704  AVFilterContext *ctx = inlink->dst;
705  LUT3DContext *lut3d = ctx->priv;
706  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
707 
708  lut3d->clut_is16bit = 0;
709  switch (inlink->format) {
710  case AV_PIX_FMT_RGB48:
711  case AV_PIX_FMT_BGR48:
712  case AV_PIX_FMT_RGBA64:
713  case AV_PIX_FMT_BGRA64:
714  lut3d->clut_is16bit = 1;
715  }
716 
717  lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
718  ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
719 
720  if (inlink->w > inlink->h)
721  av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
722  "Hald CLUT will be ignored\n", inlink->w - inlink->h);
723  else if (inlink->w < inlink->h)
724  av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
725  "Hald CLUT will be ignored\n", inlink->h - inlink->w);
726  lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
727 
728  for (level = 1; level*level*level < w; level++);
729  size = level*level*level;
730  if (size != w) {
731  av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
732  return AVERROR_INVALIDDATA;
733  }
734  av_assert0(w == h && w == size);
735  level *= level;
736  if (level > MAX_LEVEL) {
737  const int max_clut_level = sqrt(MAX_LEVEL);
738  const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
739  av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
740  "(maximum level is %d, or %dx%d CLUT)\n",
741  max_clut_level, max_clut_size, max_clut_size);
742  return AVERROR(EINVAL);
743  }
744  lut3d->lutsize = level;
745 
746  return 0;
747 }
748 
749 static AVFrame *update_apply_clut(AVFilterContext *ctx, AVFrame *main,
750  const AVFrame *second)
751 {
752  AVFilterLink *inlink = ctx->inputs[0];
753  update_clut(ctx->priv, second);
754  return apply_lut(inlink, main);
755 }
756 
757 static av_cold int haldclut_init(AVFilterContext *ctx)
758 {
759  LUT3DContext *lut3d = ctx->priv;
760  lut3d->dinput.process = update_apply_clut;
761  return 0;
762 }
763 
764 static av_cold void haldclut_uninit(AVFilterContext *ctx)
765 {
766  LUT3DContext *lut3d = ctx->priv;
767  ff_dualinput_uninit(&lut3d->dinput);
768 }
769 
770 static const AVOption haldclut_options[] = {
771  { "shortest", "force termination when the shortest input terminates", OFFSET(dinput.shortest), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS },
772  { "repeatlast", "continue applying the last clut after eos", OFFSET(dinput.repeatlast), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS },
774 };
775 
776 AVFILTER_DEFINE_CLASS(haldclut);
777 
778 static const AVFilterPad haldclut_inputs[] = {
779  {
780  .name = "main",
781  .type = AVMEDIA_TYPE_VIDEO,
782  .filter_frame = filter_frame_hald,
783  .config_props = config_input,
784  },{
785  .name = "clut",
786  .type = AVMEDIA_TYPE_VIDEO,
787  .filter_frame = filter_frame_hald,
788  .config_props = config_clut,
789  },
790  { NULL }
791 };
792 
793 static const AVFilterPad haldclut_outputs[] = {
794  {
795  .name = "default",
796  .type = AVMEDIA_TYPE_VIDEO,
797  .request_frame = request_frame,
798  .config_props = config_output,
799  },
800  { NULL }
801 };
802 
803 AVFilter ff_vf_haldclut = {
804  .name = "haldclut",
805  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
806  .priv_size = sizeof(LUT3DContext),
807  .init = haldclut_init,
808  .uninit = haldclut_uninit,
810  .inputs = haldclut_inputs,
811  .outputs = haldclut_outputs,
812  .priv_class = &haldclut_class,
814 };
815 #endif