FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vp3.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2003-2004 The FFmpeg Project
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * On2 VP3 Video Decoder
24  *
25  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26  * For more information about the VP3 coding process, visit:
27  * http://wiki.multimedia.cx/index.php?title=On2_VP3
28  *
29  * Theora decoder by Alex Beregszaszi
30  */
31 
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 
36 #include "libavutil/imgutils.h"
37 
38 #include "avcodec.h"
39 #include "get_bits.h"
40 #include "hpeldsp.h"
41 #include "internal.h"
42 #include "mathops.h"
43 #include "thread.h"
44 #include "videodsp.h"
45 #include "vp3data.h"
46 #include "vp3dsp.h"
47 #include "xiph.h"
48 
49 #define FRAGMENT_PIXELS 8
50 
51 // FIXME split things out into their own arrays
52 typedef struct Vp3Fragment {
53  int16_t dc;
56 } Vp3Fragment;
57 
58 #define SB_NOT_CODED 0
59 #define SB_PARTIALLY_CODED 1
60 #define SB_FULLY_CODED 2
61 
62 // This is the maximum length of a single long bit run that can be encoded
63 // for superblock coding or block qps. Theora special-cases this to read a
64 // bit instead of flipping the current bit to allow for runs longer than 4129.
65 #define MAXIMUM_LONG_BIT_RUN 4129
66 
67 #define MODE_INTER_NO_MV 0
68 #define MODE_INTRA 1
69 #define MODE_INTER_PLUS_MV 2
70 #define MODE_INTER_LAST_MV 3
71 #define MODE_INTER_PRIOR_LAST 4
72 #define MODE_USING_GOLDEN 5
73 #define MODE_GOLDEN_MV 6
74 #define MODE_INTER_FOURMV 7
75 #define CODING_MODE_COUNT 8
76 
77 /* special internal mode */
78 #define MODE_COPY 8
79 
80 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
81 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
82 
83 
84 /* There are 6 preset schemes, plus a free-form scheme */
85 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
86  /* scheme 1: Last motion vector dominates */
91 
92  /* scheme 2 */
97 
98  /* scheme 3 */
103 
104  /* scheme 4 */
109 
110  /* scheme 5: No motion vector dominates */
115 
116  /* scheme 6 */
121 };
122 
123 static const uint8_t hilbert_offset[16][2] = {
124  { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
125  { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
126  { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
127  { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
128 };
129 
130 #define MIN_DEQUANT_VAL 2
131 
132 typedef struct Vp3DecodeContext {
135  int version;
136  int width, height;
141  int keyframe;
147  DECLARE_ALIGNED(16, int16_t, block)[64];
151 
152  int qps[3];
153  int nqps;
154  int last_qps[3];
155 
165  unsigned char *superblock_coding;
166 
170 
174 
177  int data_offset[3];
178 
179  int8_t (*motion_val[2])[2];
180 
181  /* tables */
182  uint16_t coded_dc_scale_factor[64];
183  uint32_t coded_ac_scale_factor[64];
186  uint8_t qr_size[2][3][64];
187  uint16_t qr_base[2][3][64];
188 
189  /**
190  * This is a list of all tokens in bitstream order. Reordering takes place
191  * by pulling from each level during IDCT. As a consequence, IDCT must be
192  * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
193  * otherwise. The 32 different tokens with up to 12 bits of extradata are
194  * collapsed into 3 types, packed as follows:
195  * (from the low to high bits)
196  *
197  * 2 bits: type (0,1,2)
198  * 0: EOB run, 14 bits for run length (12 needed)
199  * 1: zero run, 7 bits for run length
200  * 7 bits for the next coefficient (3 needed)
201  * 2: coefficient, 14 bits (11 needed)
202  *
203  * Coefficients are signed, so are packed in the highest bits for automatic
204  * sign extension.
205  */
206  int16_t *dct_tokens[3][64];
207  int16_t *dct_tokens_base;
208 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
209 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
210 #define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
211 
212  /**
213  * number of blocks that contain DCT coefficients at
214  * the given level or higher
215  */
216  int num_coded_frags[3][64];
218 
219  /* this is a list of indexes into the all_fragments array indicating
220  * which of the fragments are coded */
222 
223  VLC dc_vlc[16];
228 
233 
234  /* these arrays need to be on 16-byte boundaries since SSE2 operations
235  * index into them */
236  DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
237 
238  /* This table contains superblock_count * 16 entries. Each set of 16
239  * numbers corresponds to the fragment indexes 0..15 of the superblock.
240  * An entry will be -1 to indicate that no entry corresponds to that
241  * index. */
243 
244  /* This is an array that indicates how a particular macroblock
245  * is coded. */
246  unsigned char *macroblock_coding;
247 
249 
250  /* Huffman decode */
251  int hti;
252  unsigned int hbits;
253  int entries;
255  uint32_t huffman_table[80][32][2];
256 
260 
261 /************************************************************************
262  * VP3 specific functions
263  ************************************************************************/
264 
265 static av_cold void free_tables(AVCodecContext *avctx)
266 {
267  Vp3DecodeContext *s = avctx->priv_data;
268 
270  av_freep(&s->all_fragments);
275  av_freep(&s->motion_val[0]);
276  av_freep(&s->motion_val[1]);
277 }
278 
279 static void vp3_decode_flush(AVCodecContext *avctx)
280 {
281  Vp3DecodeContext *s = avctx->priv_data;
282 
283  if (s->golden_frame.f)
285  if (s->last_frame.f)
287  if (s->current_frame.f)
289 }
290 
292 {
293  Vp3DecodeContext *s = avctx->priv_data;
294  int i;
295 
296  free_tables(avctx);
298 
299  s->theora_tables = 0;
300 
301  /* release all frames */
302  vp3_decode_flush(avctx);
306 
307  if (avctx->internal->is_copy)
308  return 0;
309 
310  for (i = 0; i < 16; i++) {
311  ff_free_vlc(&s->dc_vlc[i]);
312  ff_free_vlc(&s->ac_vlc_1[i]);
313  ff_free_vlc(&s->ac_vlc_2[i]);
314  ff_free_vlc(&s->ac_vlc_3[i]);
315  ff_free_vlc(&s->ac_vlc_4[i]);
316  }
317 
322 
323  return 0;
324 }
325 
326 /**
327  * This function sets up all of the various blocks mappings:
328  * superblocks <-> fragments, macroblocks <-> fragments,
329  * superblocks <-> macroblocks
330  *
331  * @return 0 is successful; returns 1 if *anything* went wrong.
332  */
334 {
335  int sb_x, sb_y, plane;
336  int x, y, i, j = 0;
337 
338  for (plane = 0; plane < 3; plane++) {
339  int sb_width = plane ? s->c_superblock_width
340  : s->y_superblock_width;
341  int sb_height = plane ? s->c_superblock_height
342  : s->y_superblock_height;
343  int frag_width = s->fragment_width[!!plane];
344  int frag_height = s->fragment_height[!!plane];
345 
346  for (sb_y = 0; sb_y < sb_height; sb_y++)
347  for (sb_x = 0; sb_x < sb_width; sb_x++)
348  for (i = 0; i < 16; i++) {
349  x = 4 * sb_x + hilbert_offset[i][0];
350  y = 4 * sb_y + hilbert_offset[i][1];
351 
352  if (x < frag_width && y < frag_height)
353  s->superblock_fragments[j++] = s->fragment_start[plane] +
354  y * frag_width + x;
355  else
356  s->superblock_fragments[j++] = -1;
357  }
358  }
359 
360  return 0; /* successful path out */
361 }
362 
363 /*
364  * This function sets up the dequantization tables used for a particular
365  * frame.
366  */
367 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
368 {
369  int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
370  int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
371  int i, plane, inter, qri, bmi, bmj, qistart;
372 
373  for (inter = 0; inter < 2; inter++) {
374  for (plane = 0; plane < 3; plane++) {
375  int sum = 0;
376  for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
377  sum += s->qr_size[inter][plane][qri];
378  if (s->qps[qpi] <= sum)
379  break;
380  }
381  qistart = sum - s->qr_size[inter][plane][qri];
382  bmi = s->qr_base[inter][plane][qri];
383  bmj = s->qr_base[inter][plane][qri + 1];
384  for (i = 0; i < 64; i++) {
385  int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
386  2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
387  s->qr_size[inter][plane][qri]) /
388  (2 * s->qr_size[inter][plane][qri]);
389 
390  int qmin = 8 << (inter + !i);
391  int qscale = i ? ac_scale_factor : dc_scale_factor;
392 
393  s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
394  av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
395  }
396  /* all DC coefficients use the same quant so as not to interfere
397  * with DC prediction */
398  s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
399  }
400  }
401 }
402 
403 /*
404  * This function initializes the loop filter boundary limits if the frame's
405  * quality index is different from the previous frame's.
406  *
407  * The filter_limit_values may not be larger than 127.
408  */
410 {
411  int *bounding_values = s->bounding_values_array + 127;
412  int filter_limit;
413  int x;
414  int value;
415 
416  filter_limit = s->filter_limit_values[s->qps[0]];
417  av_assert0(filter_limit < 128U);
418 
419  /* set up the bounding values */
420  memset(s->bounding_values_array, 0, 256 * sizeof(int));
421  for (x = 0; x < filter_limit; x++) {
422  bounding_values[-x] = -x;
423  bounding_values[x] = x;
424  }
425  for (x = value = filter_limit; x < 128 && value; x++, value--) {
426  bounding_values[ x] = value;
427  bounding_values[-x] = -value;
428  }
429  if (value)
430  bounding_values[128] = value;
431  bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
432 }
433 
434 /*
435  * This function unpacks all of the superblock/macroblock/fragment coding
436  * information from the bitstream.
437  */
439 {
440  int superblock_starts[3] = {
442  };
443  int bit = 0;
444  int current_superblock = 0;
445  int current_run = 0;
446  int num_partial_superblocks = 0;
447 
448  int i, j;
449  int current_fragment;
450  int plane;
451 
452  if (s->keyframe) {
454  } else {
455  /* unpack the list of partially-coded superblocks */
456  bit = get_bits1(gb) ^ 1;
457  current_run = 0;
458 
459  while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
460  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
461  bit = get_bits1(gb);
462  else
463  bit ^= 1;
464 
465  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
466  6, 2) + 1;
467  if (current_run == 34)
468  current_run += get_bits(gb, 12);
469 
470  if (current_superblock + current_run > s->superblock_count) {
472  "Invalid partially coded superblock run length\n");
473  return -1;
474  }
475 
476  memset(s->superblock_coding + current_superblock, bit, current_run);
477 
478  current_superblock += current_run;
479  if (bit)
480  num_partial_superblocks += current_run;
481  }
482 
483  /* unpack the list of fully coded superblocks if any of the blocks were
484  * not marked as partially coded in the previous step */
485  if (num_partial_superblocks < s->superblock_count) {
486  int superblocks_decoded = 0;
487 
488  current_superblock = 0;
489  bit = get_bits1(gb) ^ 1;
490  current_run = 0;
491 
492  while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
493  get_bits_left(gb) > 0) {
494  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
495  bit = get_bits1(gb);
496  else
497  bit ^= 1;
498 
499  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
500  6, 2) + 1;
501  if (current_run == 34)
502  current_run += get_bits(gb, 12);
503 
504  for (j = 0; j < current_run; current_superblock++) {
505  if (current_superblock >= s->superblock_count) {
507  "Invalid fully coded superblock run length\n");
508  return -1;
509  }
510 
511  /* skip any superblocks already marked as partially coded */
512  if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
513  s->superblock_coding[current_superblock] = 2 * bit;
514  j++;
515  }
516  }
517  superblocks_decoded += current_run;
518  }
519  }
520 
521  /* if there were partial blocks, initialize bitstream for
522  * unpacking fragment codings */
523  if (num_partial_superblocks) {
524  current_run = 0;
525  bit = get_bits1(gb);
526  /* toggle the bit because as soon as the first run length is
527  * fetched the bit will be toggled again */
528  bit ^= 1;
529  }
530  }
531 
532  /* figure out which fragments are coded; iterate through each
533  * superblock (all planes) */
534  s->total_num_coded_frags = 0;
536 
537  for (plane = 0; plane < 3; plane++) {
538  int sb_start = superblock_starts[plane];
539  int sb_end = sb_start + (plane ? s->c_superblock_count
540  : s->y_superblock_count);
541  int num_coded_frags = 0;
542 
543  for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
544  /* iterate through all 16 fragments in a superblock */
545  for (j = 0; j < 16; j++) {
546  /* if the fragment is in bounds, check its coding status */
547  current_fragment = s->superblock_fragments[i * 16 + j];
548  if (current_fragment != -1) {
549  int coded = s->superblock_coding[i];
550 
551  if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
552  /* fragment may or may not be coded; this is the case
553  * that cares about the fragment coding runs */
554  if (current_run-- == 0) {
555  bit ^= 1;
556  current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
557  }
558  coded = bit;
559  }
560 
561  if (coded) {
562  /* default mode; actual mode will be decoded in
563  * the next phase */
564  s->all_fragments[current_fragment].coding_method =
566  s->coded_fragment_list[plane][num_coded_frags++] =
567  current_fragment;
568  } else {
569  /* not coded; copy this fragment from the prior frame */
570  s->all_fragments[current_fragment].coding_method =
571  MODE_COPY;
572  }
573  }
574  }
575  }
576  s->total_num_coded_frags += num_coded_frags;
577  for (i = 0; i < 64; i++)
578  s->num_coded_frags[plane][i] = num_coded_frags;
579  if (plane < 2)
580  s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
581  num_coded_frags;
582  }
583  return 0;
584 }
585 
586 /*
587  * This function unpacks all the coding mode data for individual macroblocks
588  * from the bitstream.
589  */
591 {
592  int i, j, k, sb_x, sb_y;
593  int scheme;
594  int current_macroblock;
595  int current_fragment;
596  int coding_mode;
597  int custom_mode_alphabet[CODING_MODE_COUNT];
598  const int *alphabet;
599  Vp3Fragment *frag;
600 
601  if (s->keyframe) {
602  for (i = 0; i < s->fragment_count; i++)
604  } else {
605  /* fetch the mode coding scheme for this frame */
606  scheme = get_bits(gb, 3);
607 
608  /* is it a custom coding scheme? */
609  if (scheme == 0) {
610  for (i = 0; i < 8; i++)
611  custom_mode_alphabet[i] = MODE_INTER_NO_MV;
612  for (i = 0; i < 8; i++)
613  custom_mode_alphabet[get_bits(gb, 3)] = i;
614  alphabet = custom_mode_alphabet;
615  } else
616  alphabet = ModeAlphabet[scheme - 1];
617 
618  /* iterate through all of the macroblocks that contain 1 or more
619  * coded fragments */
620  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
621  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
622  if (get_bits_left(gb) <= 0)
623  return -1;
624 
625  for (j = 0; j < 4; j++) {
626  int mb_x = 2 * sb_x + (j >> 1);
627  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
628  current_macroblock = mb_y * s->macroblock_width + mb_x;
629 
630  if (mb_x >= s->macroblock_width ||
631  mb_y >= s->macroblock_height)
632  continue;
633 
634 #define BLOCK_X (2 * mb_x + (k & 1))
635 #define BLOCK_Y (2 * mb_y + (k >> 1))
636  /* coding modes are only stored if the macroblock has
637  * at least one luma block coded, otherwise it must be
638  * INTER_NO_MV */
639  for (k = 0; k < 4; k++) {
640  current_fragment = BLOCK_Y *
641  s->fragment_width[0] + BLOCK_X;
642  if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
643  break;
644  }
645  if (k == 4) {
646  s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
647  continue;
648  }
649 
650  /* mode 7 means get 3 bits for each coding mode */
651  if (scheme == 7)
652  coding_mode = get_bits(gb, 3);
653  else
654  coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
655 
656  s->macroblock_coding[current_macroblock] = coding_mode;
657  for (k = 0; k < 4; k++) {
658  frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
659  if (frag->coding_method != MODE_COPY)
660  frag->coding_method = coding_mode;
661  }
662 
663 #define SET_CHROMA_MODES \
664  if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
665  frag[s->fragment_start[1]].coding_method = coding_mode; \
666  if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
667  frag[s->fragment_start[2]].coding_method = coding_mode;
668 
669  if (s->chroma_y_shift) {
670  frag = s->all_fragments + mb_y *
671  s->fragment_width[1] + mb_x;
673  } else if (s->chroma_x_shift) {
674  frag = s->all_fragments +
675  2 * mb_y * s->fragment_width[1] + mb_x;
676  for (k = 0; k < 2; k++) {
678  frag += s->fragment_width[1];
679  }
680  } else {
681  for (k = 0; k < 4; k++) {
682  frag = s->all_fragments +
683  BLOCK_Y * s->fragment_width[1] + BLOCK_X;
685  }
686  }
687  }
688  }
689  }
690  }
691 
692  return 0;
693 }
694 
695 /*
696  * This function unpacks all the motion vectors for the individual
697  * macroblocks from the bitstream.
698  */
700 {
701  int j, k, sb_x, sb_y;
702  int coding_mode;
703  int motion_x[4];
704  int motion_y[4];
705  int last_motion_x = 0;
706  int last_motion_y = 0;
707  int prior_last_motion_x = 0;
708  int prior_last_motion_y = 0;
709  int current_macroblock;
710  int current_fragment;
711  int frag;
712 
713  if (s->keyframe)
714  return 0;
715 
716  /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
717  coding_mode = get_bits1(gb);
718 
719  /* iterate through all of the macroblocks that contain 1 or more
720  * coded fragments */
721  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
722  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
723  if (get_bits_left(gb) <= 0)
724  return -1;
725 
726  for (j = 0; j < 4; j++) {
727  int mb_x = 2 * sb_x + (j >> 1);
728  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
729  current_macroblock = mb_y * s->macroblock_width + mb_x;
730 
731  if (mb_x >= s->macroblock_width ||
732  mb_y >= s->macroblock_height ||
733  s->macroblock_coding[current_macroblock] == MODE_COPY)
734  continue;
735 
736  switch (s->macroblock_coding[current_macroblock]) {
737  case MODE_INTER_PLUS_MV:
738  case MODE_GOLDEN_MV:
739  /* all 6 fragments use the same motion vector */
740  if (coding_mode == 0) {
741  motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
742  motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
743  } else {
744  motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
745  motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
746  }
747 
748  /* vector maintenance, only on MODE_INTER_PLUS_MV */
749  if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
750  prior_last_motion_x = last_motion_x;
751  prior_last_motion_y = last_motion_y;
752  last_motion_x = motion_x[0];
753  last_motion_y = motion_y[0];
754  }
755  break;
756 
757  case MODE_INTER_FOURMV:
758  /* vector maintenance */
759  prior_last_motion_x = last_motion_x;
760  prior_last_motion_y = last_motion_y;
761 
762  /* fetch 4 vectors from the bitstream, one for each
763  * Y fragment, then average for the C fragment vectors */
764  for (k = 0; k < 4; k++) {
765  current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
766  if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
767  if (coding_mode == 0) {
768  motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
769  motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
770  } else {
771  motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
772  motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
773  }
774  last_motion_x = motion_x[k];
775  last_motion_y = motion_y[k];
776  } else {
777  motion_x[k] = 0;
778  motion_y[k] = 0;
779  }
780  }
781  break;
782 
783  case MODE_INTER_LAST_MV:
784  /* all 6 fragments use the last motion vector */
785  motion_x[0] = last_motion_x;
786  motion_y[0] = last_motion_y;
787 
788  /* no vector maintenance (last vector remains the
789  * last vector) */
790  break;
791 
793  /* all 6 fragments use the motion vector prior to the
794  * last motion vector */
795  motion_x[0] = prior_last_motion_x;
796  motion_y[0] = prior_last_motion_y;
797 
798  /* vector maintenance */
799  prior_last_motion_x = last_motion_x;
800  prior_last_motion_y = last_motion_y;
801  last_motion_x = motion_x[0];
802  last_motion_y = motion_y[0];
803  break;
804 
805  default:
806  /* covers intra, inter without MV, golden without MV */
807  motion_x[0] = 0;
808  motion_y[0] = 0;
809 
810  /* no vector maintenance */
811  break;
812  }
813 
814  /* assign the motion vectors to the correct fragments */
815  for (k = 0; k < 4; k++) {
816  current_fragment =
817  BLOCK_Y * s->fragment_width[0] + BLOCK_X;
818  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
819  s->motion_val[0][current_fragment][0] = motion_x[k];
820  s->motion_val[0][current_fragment][1] = motion_y[k];
821  } else {
822  s->motion_val[0][current_fragment][0] = motion_x[0];
823  s->motion_val[0][current_fragment][1] = motion_y[0];
824  }
825  }
826 
827  if (s->chroma_y_shift) {
828  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
829  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
830  motion_x[2] + motion_x[3], 2);
831  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
832  motion_y[2] + motion_y[3], 2);
833  }
834  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
835  motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
836  frag = mb_y * s->fragment_width[1] + mb_x;
837  s->motion_val[1][frag][0] = motion_x[0];
838  s->motion_val[1][frag][1] = motion_y[0];
839  } else if (s->chroma_x_shift) {
840  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
841  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
842  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
843  motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
844  motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
845  } else {
846  motion_x[1] = motion_x[0];
847  motion_y[1] = motion_y[0];
848  }
849  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
850  motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
851 
852  frag = 2 * mb_y * s->fragment_width[1] + mb_x;
853  for (k = 0; k < 2; k++) {
854  s->motion_val[1][frag][0] = motion_x[k];
855  s->motion_val[1][frag][1] = motion_y[k];
856  frag += s->fragment_width[1];
857  }
858  } else {
859  for (k = 0; k < 4; k++) {
860  frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
861  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
862  s->motion_val[1][frag][0] = motion_x[k];
863  s->motion_val[1][frag][1] = motion_y[k];
864  } else {
865  s->motion_val[1][frag][0] = motion_x[0];
866  s->motion_val[1][frag][1] = motion_y[0];
867  }
868  }
869  }
870  }
871  }
872  }
873 
874  return 0;
875 }
876 
878 {
879  int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
880  int num_blocks = s->total_num_coded_frags;
881 
882  for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
883  i = blocks_decoded = num_blocks_at_qpi = 0;
884 
885  bit = get_bits1(gb) ^ 1;
886  run_length = 0;
887 
888  do {
889  if (run_length == MAXIMUM_LONG_BIT_RUN)
890  bit = get_bits1(gb);
891  else
892  bit ^= 1;
893 
894  run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
895  if (run_length == 34)
896  run_length += get_bits(gb, 12);
897  blocks_decoded += run_length;
898 
899  if (!bit)
900  num_blocks_at_qpi += run_length;
901 
902  for (j = 0; j < run_length; i++) {
903  if (i >= s->total_num_coded_frags)
904  return -1;
905 
906  if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
907  s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
908  j++;
909  }
910  }
911  } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
912 
913  num_blocks -= num_blocks_at_qpi;
914  }
915 
916  return 0;
917 }
918 
919 /*
920  * This function is called by unpack_dct_coeffs() to extract the VLCs from
921  * the bitstream. The VLCs encode tokens which are used to unpack DCT
922  * data. This function unpacks all the VLCs for either the Y plane or both
923  * C planes, and is called for DC coefficients or different AC coefficient
924  * levels (since different coefficient types require different VLC tables.
925  *
926  * This function returns a residual eob run. E.g, if a particular token gave
927  * instructions to EOB the next 5 fragments and there were only 2 fragments
928  * left in the current fragment range, 3 would be returned so that it could
929  * be passed into the next call to this same function.
930  */
932  VLC *table, int coeff_index,
933  int plane,
934  int eob_run)
935 {
936  int i, j = 0;
937  int token;
938  int zero_run = 0;
939  int16_t coeff = 0;
940  int bits_to_get;
941  int blocks_ended;
942  int coeff_i = 0;
943  int num_coeffs = s->num_coded_frags[plane][coeff_index];
944  int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
945 
946  /* local references to structure members to avoid repeated deferences */
947  int *coded_fragment_list = s->coded_fragment_list[plane];
948  Vp3Fragment *all_fragments = s->all_fragments;
949  VLC_TYPE(*vlc_table)[2] = table->table;
950 
951  if (num_coeffs < 0)
953  "Invalid number of coefficents at level %d\n", coeff_index);
954 
955  if (eob_run > num_coeffs) {
956  coeff_i =
957  blocks_ended = num_coeffs;
958  eob_run -= num_coeffs;
959  } else {
960  coeff_i =
961  blocks_ended = eob_run;
962  eob_run = 0;
963  }
964 
965  // insert fake EOB token to cover the split between planes or zzi
966  if (blocks_ended)
967  dct_tokens[j++] = blocks_ended << 2;
968 
969  while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
970  /* decode a VLC into a token */
971  token = get_vlc2(gb, vlc_table, 11, 3);
972  /* use the token to get a zero run, a coefficient, and an eob run */
973  if ((unsigned) token <= 6U) {
974  eob_run = eob_run_base[token];
975  if (eob_run_get_bits[token])
976  eob_run += get_bits(gb, eob_run_get_bits[token]);
977 
978  // record only the number of blocks ended in this plane,
979  // any spill will be recorded in the next plane.
980  if (eob_run > num_coeffs - coeff_i) {
981  dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
982  blocks_ended += num_coeffs - coeff_i;
983  eob_run -= num_coeffs - coeff_i;
984  coeff_i = num_coeffs;
985  } else {
986  dct_tokens[j++] = TOKEN_EOB(eob_run);
987  blocks_ended += eob_run;
988  coeff_i += eob_run;
989  eob_run = 0;
990  }
991  } else if (token >= 0) {
992  bits_to_get = coeff_get_bits[token];
993  if (bits_to_get)
994  bits_to_get = get_bits(gb, bits_to_get);
995  coeff = coeff_tables[token][bits_to_get];
996 
997  zero_run = zero_run_base[token];
998  if (zero_run_get_bits[token])
999  zero_run += get_bits(gb, zero_run_get_bits[token]);
1000 
1001  if (zero_run) {
1002  dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1003  } else {
1004  // Save DC into the fragment structure. DC prediction is
1005  // done in raster order, so the actual DC can't be in with
1006  // other tokens. We still need the token in dct_tokens[]
1007  // however, or else the structure collapses on itself.
1008  if (!coeff_index)
1009  all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1010 
1011  dct_tokens[j++] = TOKEN_COEFF(coeff);
1012  }
1013 
1014  if (coeff_index + zero_run > 64) {
1016  "Invalid zero run of %d with %d coeffs left\n",
1017  zero_run, 64 - coeff_index);
1018  zero_run = 64 - coeff_index;
1019  }
1020 
1021  // zero runs code multiple coefficients,
1022  // so don't try to decode coeffs for those higher levels
1023  for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1024  s->num_coded_frags[plane][i]--;
1025  coeff_i++;
1026  } else {
1027  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1028  return -1;
1029  }
1030  }
1031 
1032  if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1033  av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1034 
1035  // decrement the number of blocks that have higher coefficients for each
1036  // EOB run at this level
1037  if (blocks_ended)
1038  for (i = coeff_index + 1; i < 64; i++)
1039  s->num_coded_frags[plane][i] -= blocks_ended;
1040 
1041  // setup the next buffer
1042  if (plane < 2)
1043  s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1044  else if (coeff_index < 63)
1045  s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1046 
1047  return eob_run;
1048 }
1049 
1051  int first_fragment,
1052  int fragment_width,
1053  int fragment_height);
1054 /*
1055  * This function unpacks all of the DCT coefficient data from the
1056  * bitstream.
1057  */
1059 {
1060  int i;
1061  int dc_y_table;
1062  int dc_c_table;
1063  int ac_y_table;
1064  int ac_c_table;
1065  int residual_eob_run = 0;
1066  VLC *y_tables[64];
1067  VLC *c_tables[64];
1068 
1069  s->dct_tokens[0][0] = s->dct_tokens_base;
1070 
1071  /* fetch the DC table indexes */
1072  dc_y_table = get_bits(gb, 4);
1073  dc_c_table = get_bits(gb, 4);
1074 
1075  /* unpack the Y plane DC coefficients */
1076  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1077  0, residual_eob_run);
1078  if (residual_eob_run < 0)
1079  return residual_eob_run;
1080 
1081  /* reverse prediction of the Y-plane DC coefficients */
1083 
1084  /* unpack the C plane DC coefficients */
1085  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1086  1, residual_eob_run);
1087  if (residual_eob_run < 0)
1088  return residual_eob_run;
1089  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1090  2, residual_eob_run);
1091  if (residual_eob_run < 0)
1092  return residual_eob_run;
1093 
1094  /* reverse prediction of the C-plane DC coefficients */
1095  if (!(s->avctx->flags & CODEC_FLAG_GRAY)) {
1097  s->fragment_width[1], s->fragment_height[1]);
1099  s->fragment_width[1], s->fragment_height[1]);
1100  }
1101 
1102  /* fetch the AC table indexes */
1103  ac_y_table = get_bits(gb, 4);
1104  ac_c_table = get_bits(gb, 4);
1105 
1106  /* build tables of AC VLC tables */
1107  for (i = 1; i <= 5; i++) {
1108  y_tables[i] = &s->ac_vlc_1[ac_y_table];
1109  c_tables[i] = &s->ac_vlc_1[ac_c_table];
1110  }
1111  for (i = 6; i <= 14; i++) {
1112  y_tables[i] = &s->ac_vlc_2[ac_y_table];
1113  c_tables[i] = &s->ac_vlc_2[ac_c_table];
1114  }
1115  for (i = 15; i <= 27; i++) {
1116  y_tables[i] = &s->ac_vlc_3[ac_y_table];
1117  c_tables[i] = &s->ac_vlc_3[ac_c_table];
1118  }
1119  for (i = 28; i <= 63; i++) {
1120  y_tables[i] = &s->ac_vlc_4[ac_y_table];
1121  c_tables[i] = &s->ac_vlc_4[ac_c_table];
1122  }
1123 
1124  /* decode all AC coefficents */
1125  for (i = 1; i <= 63; i++) {
1126  residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1127  0, residual_eob_run);
1128  if (residual_eob_run < 0)
1129  return residual_eob_run;
1130 
1131  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1132  1, residual_eob_run);
1133  if (residual_eob_run < 0)
1134  return residual_eob_run;
1135  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1136  2, residual_eob_run);
1137  if (residual_eob_run < 0)
1138  return residual_eob_run;
1139  }
1140 
1141  return 0;
1142 }
1143 
1144 /*
1145  * This function reverses the DC prediction for each coded fragment in
1146  * the frame. Much of this function is adapted directly from the original
1147  * VP3 source code.
1148  */
1149 #define COMPATIBLE_FRAME(x) \
1150  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1151 #define DC_COEFF(u) s->all_fragments[u].dc
1152 
1154  int first_fragment,
1155  int fragment_width,
1156  int fragment_height)
1157 {
1158 #define PUL 8
1159 #define PU 4
1160 #define PUR 2
1161 #define PL 1
1162 
1163  int x, y;
1164  int i = first_fragment;
1165 
1166  int predicted_dc;
1167 
1168  /* DC values for the left, up-left, up, and up-right fragments */
1169  int vl, vul, vu, vur;
1170 
1171  /* indexes for the left, up-left, up, and up-right fragments */
1172  int l, ul, u, ur;
1173 
1174  /*
1175  * The 6 fields mean:
1176  * 0: up-left multiplier
1177  * 1: up multiplier
1178  * 2: up-right multiplier
1179  * 3: left multiplier
1180  */
1181  static const int predictor_transform[16][4] = {
1182  { 0, 0, 0, 0 },
1183  { 0, 0, 0, 128 }, // PL
1184  { 0, 0, 128, 0 }, // PUR
1185  { 0, 0, 53, 75 }, // PUR|PL
1186  { 0, 128, 0, 0 }, // PU
1187  { 0, 64, 0, 64 }, // PU |PL
1188  { 0, 128, 0, 0 }, // PU |PUR
1189  { 0, 0, 53, 75 }, // PU |PUR|PL
1190  { 128, 0, 0, 0 }, // PUL
1191  { 0, 0, 0, 128 }, // PUL|PL
1192  { 64, 0, 64, 0 }, // PUL|PUR
1193  { 0, 0, 53, 75 }, // PUL|PUR|PL
1194  { 0, 128, 0, 0 }, // PUL|PU
1195  { -104, 116, 0, 116 }, // PUL|PU |PL
1196  { 24, 80, 24, 0 }, // PUL|PU |PUR
1197  { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1198  };
1199 
1200  /* This table shows which types of blocks can use other blocks for
1201  * prediction. For example, INTRA is the only mode in this table to
1202  * have a frame number of 0. That means INTRA blocks can only predict
1203  * from other INTRA blocks. There are 2 golden frame coding types;
1204  * blocks encoding in these modes can only predict from other blocks
1205  * that were encoded with these 1 of these 2 modes. */
1206  static const unsigned char compatible_frame[9] = {
1207  1, /* MODE_INTER_NO_MV */
1208  0, /* MODE_INTRA */
1209  1, /* MODE_INTER_PLUS_MV */
1210  1, /* MODE_INTER_LAST_MV */
1211  1, /* MODE_INTER_PRIOR_MV */
1212  2, /* MODE_USING_GOLDEN */
1213  2, /* MODE_GOLDEN_MV */
1214  1, /* MODE_INTER_FOUR_MV */
1215  3 /* MODE_COPY */
1216  };
1217  int current_frame_type;
1218 
1219  /* there is a last DC predictor for each of the 3 frame types */
1220  short last_dc[3];
1221 
1222  int transform = 0;
1223 
1224  vul =
1225  vu =
1226  vur =
1227  vl = 0;
1228  last_dc[0] =
1229  last_dc[1] =
1230  last_dc[2] = 0;
1231 
1232  /* for each fragment row... */
1233  for (y = 0; y < fragment_height; y++) {
1234  /* for each fragment in a row... */
1235  for (x = 0; x < fragment_width; x++, i++) {
1236 
1237  /* reverse prediction if this block was coded */
1238  if (s->all_fragments[i].coding_method != MODE_COPY) {
1239  current_frame_type =
1240  compatible_frame[s->all_fragments[i].coding_method];
1241 
1242  transform = 0;
1243  if (x) {
1244  l = i - 1;
1245  vl = DC_COEFF(l);
1246  if (COMPATIBLE_FRAME(l))
1247  transform |= PL;
1248  }
1249  if (y) {
1250  u = i - fragment_width;
1251  vu = DC_COEFF(u);
1252  if (COMPATIBLE_FRAME(u))
1253  transform |= PU;
1254  if (x) {
1255  ul = i - fragment_width - 1;
1256  vul = DC_COEFF(ul);
1257  if (COMPATIBLE_FRAME(ul))
1258  transform |= PUL;
1259  }
1260  if (x + 1 < fragment_width) {
1261  ur = i - fragment_width + 1;
1262  vur = DC_COEFF(ur);
1263  if (COMPATIBLE_FRAME(ur))
1264  transform |= PUR;
1265  }
1266  }
1267 
1268  if (transform == 0) {
1269  /* if there were no fragments to predict from, use last
1270  * DC saved */
1271  predicted_dc = last_dc[current_frame_type];
1272  } else {
1273  /* apply the appropriate predictor transform */
1274  predicted_dc =
1275  (predictor_transform[transform][0] * vul) +
1276  (predictor_transform[transform][1] * vu) +
1277  (predictor_transform[transform][2] * vur) +
1278  (predictor_transform[transform][3] * vl);
1279 
1280  predicted_dc /= 128;
1281 
1282  /* check for outranging on the [ul u l] and
1283  * [ul u ur l] predictors */
1284  if ((transform == 15) || (transform == 13)) {
1285  if (FFABS(predicted_dc - vu) > 128)
1286  predicted_dc = vu;
1287  else if (FFABS(predicted_dc - vl) > 128)
1288  predicted_dc = vl;
1289  else if (FFABS(predicted_dc - vul) > 128)
1290  predicted_dc = vul;
1291  }
1292  }
1293 
1294  /* at long last, apply the predictor */
1295  DC_COEFF(i) += predicted_dc;
1296  /* save the DC */
1297  last_dc[current_frame_type] = DC_COEFF(i);
1298  }
1299  }
1300  }
1301 }
1302 
1303 static void apply_loop_filter(Vp3DecodeContext *s, int plane,
1304  int ystart, int yend)
1305 {
1306  int x, y;
1307  int *bounding_values = s->bounding_values_array + 127;
1308 
1309  int width = s->fragment_width[!!plane];
1310  int height = s->fragment_height[!!plane];
1311  int fragment = s->fragment_start[plane] + ystart * width;
1312  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1313  uint8_t *plane_data = s->current_frame.f->data[plane];
1314  if (!s->flipped_image)
1315  stride = -stride;
1316  plane_data += s->data_offset[plane] + 8 * ystart * stride;
1317 
1318  for (y = ystart; y < yend; y++) {
1319  for (x = 0; x < width; x++) {
1320  /* This code basically just deblocks on the edges of coded blocks.
1321  * However, it has to be much more complicated because of the
1322  * braindamaged deblock ordering used in VP3/Theora. Order matters
1323  * because some pixels get filtered twice. */
1324  if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1325  /* do not perform left edge filter for left columns frags */
1326  if (x > 0) {
1327  s->vp3dsp.h_loop_filter(
1328  plane_data + 8 * x,
1329  stride, bounding_values);
1330  }
1331 
1332  /* do not perform top edge filter for top row fragments */
1333  if (y > 0) {
1334  s->vp3dsp.v_loop_filter(
1335  plane_data + 8 * x,
1336  stride, bounding_values);
1337  }
1338 
1339  /* do not perform right edge filter for right column
1340  * fragments or if right fragment neighbor is also coded
1341  * in this frame (it will be filtered in next iteration) */
1342  if ((x < width - 1) &&
1343  (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1344  s->vp3dsp.h_loop_filter(
1345  plane_data + 8 * x + 8,
1346  stride, bounding_values);
1347  }
1348 
1349  /* do not perform bottom edge filter for bottom row
1350  * fragments or if bottom fragment neighbor is also coded
1351  * in this frame (it will be filtered in the next row) */
1352  if ((y < height - 1) &&
1353  (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1354  s->vp3dsp.v_loop_filter(
1355  plane_data + 8 * x + 8 * stride,
1356  stride, bounding_values);
1357  }
1358  }
1359 
1360  fragment++;
1361  }
1362  plane_data += 8 * stride;
1363  }
1364 }
1365 
1366 /**
1367  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1368  * for the next block in coding order
1369  */
1370 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1371  int plane, int inter, int16_t block[64])
1372 {
1373  int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1374  uint8_t *perm = s->idct_scantable;
1375  int i = 0;
1376 
1377  do {
1378  int token = *s->dct_tokens[plane][i];
1379  switch (token & 3) {
1380  case 0: // EOB
1381  if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1382  s->dct_tokens[plane][i]++;
1383  else
1384  *s->dct_tokens[plane][i] = token & ~3;
1385  goto end;
1386  case 1: // zero run
1387  s->dct_tokens[plane][i]++;
1388  i += (token >> 2) & 0x7f;
1389  if (i > 63) {
1390  av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1391  return i;
1392  }
1393  block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1394  i++;
1395  break;
1396  case 2: // coeff
1397  block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1398  s->dct_tokens[plane][i++]++;
1399  break;
1400  default: // shouldn't happen
1401  return i;
1402  }
1403  } while (i < 64);
1404  // return value is expected to be a valid level
1405  i--;
1406 end:
1407  // the actual DC+prediction is in the fragment structure
1408  block[0] = frag->dc * s->qmat[0][inter][plane][0];
1409  return i;
1410 }
1411 
1412 /**
1413  * called when all pixels up to row y are complete
1414  */
1416 {
1417  int h, cy, i;
1419 
1420  if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
1421  int y_flipped = s->flipped_image ? s->avctx->height - y : y;
1422 
1423  /* At the end of the frame, report INT_MAX instead of the height of
1424  * the frame. This makes the other threads' ff_thread_await_progress()
1425  * calls cheaper, because they don't have to clip their values. */
1427  y_flipped == s->avctx->height ? INT_MAX
1428  : y_flipped - 1,
1429  0);
1430  }
1431 
1432  if (!s->avctx->draw_horiz_band)
1433  return;
1434 
1435  h = y - s->last_slice_end;
1436  s->last_slice_end = y;
1437  y -= h;
1438 
1439  if (!s->flipped_image)
1440  y = s->avctx->height - y - h;
1441 
1442  cy = y >> s->chroma_y_shift;
1443  offset[0] = s->current_frame.f->linesize[0] * y;
1444  offset[1] = s->current_frame.f->linesize[1] * cy;
1445  offset[2] = s->current_frame.f->linesize[2] * cy;
1446  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1447  offset[i] = 0;
1448 
1449  emms_c();
1450  s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1451 }
1452 
1453 /**
1454  * Wait for the reference frame of the current fragment.
1455  * The progress value is in luma pixel rows.
1456  */
1458  int motion_y, int y)
1459 {
1461  int ref_row;
1462  int border = motion_y & 1;
1463 
1464  if (fragment->coding_method == MODE_USING_GOLDEN ||
1465  fragment->coding_method == MODE_GOLDEN_MV)
1466  ref_frame = &s->golden_frame;
1467  else
1468  ref_frame = &s->last_frame;
1469 
1470  ref_row = y + (motion_y >> 1);
1471  ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1472 
1473  ff_thread_await_progress(ref_frame, ref_row, 0);
1474 }
1475 
1476 /*
1477  * Perform the final rendering for a particular slice of data.
1478  * The slice number ranges from 0..(c_superblock_height - 1).
1479  */
1480 static void render_slice(Vp3DecodeContext *s, int slice)
1481 {
1482  int x, y, i, j, fragment;
1483  int16_t *block = s->block;
1484  int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1485  int motion_halfpel_index;
1486  uint8_t *motion_source;
1487  int plane, first_pixel;
1488 
1489  if (slice >= s->c_superblock_height)
1490  return;
1491 
1492  for (plane = 0; plane < 3; plane++) {
1493  uint8_t *output_plane = s->current_frame.f->data[plane] +
1494  s->data_offset[plane];
1495  uint8_t *last_plane = s->last_frame.f->data[plane] +
1496  s->data_offset[plane];
1497  uint8_t *golden_plane = s->golden_frame.f->data[plane] +
1498  s->data_offset[plane];
1499  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1500  int plane_width = s->width >> (plane && s->chroma_x_shift);
1501  int plane_height = s->height >> (plane && s->chroma_y_shift);
1502  int8_t(*motion_val)[2] = s->motion_val[!!plane];
1503 
1504  int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1505  int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1506  int slice_width = plane ? s->c_superblock_width
1507  : s->y_superblock_width;
1508 
1509  int fragment_width = s->fragment_width[!!plane];
1510  int fragment_height = s->fragment_height[!!plane];
1511  int fragment_start = s->fragment_start[plane];
1512 
1513  int do_await = !plane && HAVE_THREADS &&
1515 
1516  if (!s->flipped_image)
1517  stride = -stride;
1518  if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1519  continue;
1520 
1521  /* for each superblock row in the slice (both of them)... */
1522  for (; sb_y < slice_height; sb_y++) {
1523  /* for each superblock in a row... */
1524  for (sb_x = 0; sb_x < slice_width; sb_x++) {
1525  /* for each block in a superblock... */
1526  for (j = 0; j < 16; j++) {
1527  x = 4 * sb_x + hilbert_offset[j][0];
1528  y = 4 * sb_y + hilbert_offset[j][1];
1529  fragment = y * fragment_width + x;
1530 
1531  i = fragment_start + fragment;
1532 
1533  // bounds check
1534  if (x >= fragment_width || y >= fragment_height)
1535  continue;
1536 
1537  first_pixel = 8 * y * stride + 8 * x;
1538 
1539  if (do_await &&
1542  motion_val[fragment][1],
1543  (16 * y) >> s->chroma_y_shift);
1544 
1545  /* transform if this block was coded */
1546  if (s->all_fragments[i].coding_method != MODE_COPY) {
1549  motion_source = golden_plane;
1550  else
1551  motion_source = last_plane;
1552 
1553  motion_source += first_pixel;
1554  motion_halfpel_index = 0;
1555 
1556  /* sort out the motion vector if this fragment is coded
1557  * using a motion vector method */
1558  if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1560  int src_x, src_y;
1561  motion_x = motion_val[fragment][0];
1562  motion_y = motion_val[fragment][1];
1563 
1564  src_x = (motion_x >> 1) + 8 * x;
1565  src_y = (motion_y >> 1) + 8 * y;
1566 
1567  motion_halfpel_index = motion_x & 0x01;
1568  motion_source += (motion_x >> 1);
1569 
1570  motion_halfpel_index |= (motion_y & 0x01) << 1;
1571  motion_source += ((motion_y >> 1) * stride);
1572 
1573  if (src_x < 0 || src_y < 0 ||
1574  src_x + 9 >= plane_width ||
1575  src_y + 9 >= plane_height) {
1577  if (stride < 0)
1578  temp -= 8 * stride;
1579 
1580  s->vdsp.emulated_edge_mc(temp, motion_source,
1581  stride, stride,
1582  9, 9, src_x, src_y,
1583  plane_width,
1584  plane_height);
1585  motion_source = temp;
1586  }
1587  }
1588 
1589  /* first, take care of copying a block from either the
1590  * previous or the golden frame */
1591  if (s->all_fragments[i].coding_method != MODE_INTRA) {
1592  /* Note, it is possible to implement all MC cases
1593  * with put_no_rnd_pixels_l2 which would look more
1594  * like the VP3 source but this would be slower as
1595  * put_no_rnd_pixels_tab is better optimzed */
1596  if (motion_halfpel_index != 3) {
1597  s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1598  output_plane + first_pixel,
1599  motion_source, stride, 8);
1600  } else {
1601  /* d is 0 if motion_x and _y have the same sign,
1602  * else -1 */
1603  int d = (motion_x ^ motion_y) >> 31;
1604  s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
1605  motion_source - d,
1606  motion_source + stride + 1 + d,
1607  stride, 8);
1608  }
1609  }
1610 
1611  /* invert DCT and place (or add) in final output */
1612 
1613  if (s->all_fragments[i].coding_method == MODE_INTRA) {
1614  vp3_dequant(s, s->all_fragments + i,
1615  plane, 0, block);
1616  s->vp3dsp.idct_put(output_plane + first_pixel,
1617  stride,
1618  block);
1619  } else {
1620  if (vp3_dequant(s, s->all_fragments + i,
1621  plane, 1, block)) {
1622  s->vp3dsp.idct_add(output_plane + first_pixel,
1623  stride,
1624  block);
1625  } else {
1626  s->vp3dsp.idct_dc_add(output_plane + first_pixel,
1627  stride, block);
1628  }
1629  }
1630  } else {
1631  /* copy directly from the previous frame */
1632  s->hdsp.put_pixels_tab[1][0](
1633  output_plane + first_pixel,
1634  last_plane + first_pixel,
1635  stride, 8);
1636  }
1637  }
1638  }
1639 
1640  // Filter up to the last row in the superblock row
1641  if (!s->skip_loop_filter)
1642  apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
1643  FFMIN(4 * sb_y + 3, fragment_height - 1));
1644  }
1645  }
1646 
1647  /* this looks like a good place for slice dispatch... */
1648  /* algorithm:
1649  * if (slice == s->macroblock_height - 1)
1650  * dispatch (both last slice & 2nd-to-last slice);
1651  * else if (slice > 0)
1652  * dispatch (slice - 1);
1653  */
1654 
1655  vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
1656  s->height - 16));
1657 }
1658 
1659 /// Allocate tables for per-frame data in Vp3DecodeContext
1661 {
1662  Vp3DecodeContext *s = avctx->priv_data;
1663  int y_fragment_count, c_fragment_count;
1664 
1665  free_tables(avctx);
1666 
1667  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1668  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1669 
1672 
1673  s->coded_fragment_list[0] = av_mallocz_array(s->fragment_count, sizeof(int));
1674 
1676  64 * sizeof(*s->dct_tokens_base));
1677  s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
1678  s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
1679 
1680  /* work out the block mapping tables */
1681  s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
1683 
1684  if (!s->superblock_coding || !s->all_fragments ||
1685  !s->dct_tokens_base || !s->coded_fragment_list[0] ||
1687  !s->motion_val[0] || !s->motion_val[1]) {
1688  vp3_decode_end(avctx);
1689  return -1;
1690  }
1691 
1692  init_block_mapping(s);
1693 
1694  return 0;
1695 }
1696 
1698 {
1700  s->last_frame.f = av_frame_alloc();
1701  s->golden_frame.f = av_frame_alloc();
1702 
1703  if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
1705  av_frame_free(&s->last_frame.f);
1707  return AVERROR(ENOMEM);
1708  }
1709 
1710  return 0;
1711 }
1712 
1714 {
1715  Vp3DecodeContext *s = avctx->priv_data;
1716  int i, inter, plane, ret;
1717  int c_width;
1718  int c_height;
1719  int y_fragment_count, c_fragment_count;
1720 
1721  ret = init_frames(s);
1722  if (ret < 0)
1723  return ret;
1724 
1725  avctx->internal->allocate_progress = 1;
1726 
1727  if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
1728  s->version = 0;
1729  else
1730  s->version = 1;
1731 
1732  s->avctx = avctx;
1733  s->width = FFALIGN(avctx->width, 16);
1734  s->height = FFALIGN(avctx->height, 16);
1735  if (avctx->codec_id != AV_CODEC_ID_THEORA)
1736  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1739  ff_videodsp_init(&s->vdsp, 8);
1740  ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
1741 
1742  for (i = 0; i < 64; i++) {
1743 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
1744  s->idct_permutation[i] = TRANSPOSE(i);
1746 #undef TRANSPOSE
1747  }
1748 
1749  /* initialize to an impossible value which will force a recalculation
1750  * in the first frame decode */
1751  for (i = 0; i < 3; i++)
1752  s->qps[i] = -1;
1753 
1755 
1756  s->y_superblock_width = (s->width + 31) / 32;
1757  s->y_superblock_height = (s->height + 31) / 32;
1759 
1760  /* work out the dimensions for the C planes */
1761  c_width = s->width >> s->chroma_x_shift;
1762  c_height = s->height >> s->chroma_y_shift;
1763  s->c_superblock_width = (c_width + 31) / 32;
1764  s->c_superblock_height = (c_height + 31) / 32;
1766 
1770 
1771  s->macroblock_width = (s->width + 15) / 16;
1772  s->macroblock_height = (s->height + 15) / 16;
1774 
1775  s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1776  s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1777  s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
1778  s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1779 
1780  /* fragment count covers all 8x8 blocks for all 3 planes */
1781  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1782  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1783  s->fragment_count = y_fragment_count + 2 * c_fragment_count;
1784  s->fragment_start[1] = y_fragment_count;
1785  s->fragment_start[2] = y_fragment_count + c_fragment_count;
1786 
1787  if (!s->theora_tables) {
1788  for (i = 0; i < 64; i++) {
1791  s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1792  s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1793  s->base_matrix[2][i] = vp31_inter_dequant[i];
1795  }
1796 
1797  for (inter = 0; inter < 2; inter++) {
1798  for (plane = 0; plane < 3; plane++) {
1799  s->qr_count[inter][plane] = 1;
1800  s->qr_size[inter][plane][0] = 63;
1801  s->qr_base[inter][plane][0] =
1802  s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
1803  }
1804  }
1805 
1806  /* init VLC tables */
1807  for (i = 0; i < 16; i++) {
1808  /* DC histograms */
1809  init_vlc(&s->dc_vlc[i], 11, 32,
1810  &dc_bias[i][0][1], 4, 2,
1811  &dc_bias[i][0][0], 4, 2, 0);
1812 
1813  /* group 1 AC histograms */
1814  init_vlc(&s->ac_vlc_1[i], 11, 32,
1815  &ac_bias_0[i][0][1], 4, 2,
1816  &ac_bias_0[i][0][0], 4, 2, 0);
1817 
1818  /* group 2 AC histograms */
1819  init_vlc(&s->ac_vlc_2[i], 11, 32,
1820  &ac_bias_1[i][0][1], 4, 2,
1821  &ac_bias_1[i][0][0], 4, 2, 0);
1822 
1823  /* group 3 AC histograms */
1824  init_vlc(&s->ac_vlc_3[i], 11, 32,
1825  &ac_bias_2[i][0][1], 4, 2,
1826  &ac_bias_2[i][0][0], 4, 2, 0);
1827 
1828  /* group 4 AC histograms */
1829  init_vlc(&s->ac_vlc_4[i], 11, 32,
1830  &ac_bias_3[i][0][1], 4, 2,
1831  &ac_bias_3[i][0][0], 4, 2, 0);
1832  }
1833  } else {
1834  for (i = 0; i < 16; i++) {
1835  /* DC histograms */
1836  if (init_vlc(&s->dc_vlc[i], 11, 32,
1837  &s->huffman_table[i][0][1], 8, 4,
1838  &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1839  goto vlc_fail;
1840 
1841  /* group 1 AC histograms */
1842  if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1843  &s->huffman_table[i + 16][0][1], 8, 4,
1844  &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
1845  goto vlc_fail;
1846 
1847  /* group 2 AC histograms */
1848  if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1849  &s->huffman_table[i + 16 * 2][0][1], 8, 4,
1850  &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
1851  goto vlc_fail;
1852 
1853  /* group 3 AC histograms */
1854  if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1855  &s->huffman_table[i + 16 * 3][0][1], 8, 4,
1856  &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
1857  goto vlc_fail;
1858 
1859  /* group 4 AC histograms */
1860  if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1861  &s->huffman_table[i + 16 * 4][0][1], 8, 4,
1862  &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
1863  goto vlc_fail;
1864  }
1865  }
1866 
1868  &superblock_run_length_vlc_table[0][1], 4, 2,
1869  &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1870 
1871  init_vlc(&s->fragment_run_length_vlc, 5, 30,
1872  &fragment_run_length_vlc_table[0][1], 4, 2,
1873  &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1874 
1875  init_vlc(&s->mode_code_vlc, 3, 8,
1876  &mode_code_vlc_table[0][1], 2, 1,
1877  &mode_code_vlc_table[0][0], 2, 1, 0);
1878 
1879  init_vlc(&s->motion_vector_vlc, 6, 63,
1880  &motion_vector_vlc_table[0][1], 2, 1,
1881  &motion_vector_vlc_table[0][0], 2, 1, 0);
1882 
1883  return allocate_tables(avctx);
1884 
1885 vlc_fail:
1886  av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1887  return -1;
1888 }
1889 
1890 /// Release and shuffle frames after decode finishes
1891 static int update_frames(AVCodecContext *avctx)
1892 {
1893  Vp3DecodeContext *s = avctx->priv_data;
1894  int ret = 0;
1895 
1896  /* shuffle frames (last = current) */
1899  if (ret < 0)
1900  goto fail;
1901 
1902  if (s->keyframe) {
1905  }
1906 
1907 fail:
1909  return ret;
1910 }
1911 
1913 {
1915  if (src->f->data[0])
1916  return ff_thread_ref_frame(dst, src);
1917  return 0;
1918 }
1919 
1921 {
1922  int ret;
1923  if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
1924  (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
1925  (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
1926  return ret;
1927  return 0;
1928 }
1929 
1931 {
1932  Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1933  int qps_changed = 0, i, err;
1934 
1935 #define copy_fields(to, from, start_field, end_field) \
1936  memcpy(&to->start_field, &from->start_field, \
1937  (char *) &to->end_field - (char *) &to->start_field)
1938 
1939  if (!s1->current_frame.f->data[0] ||
1940  s->width != s1->width || s->height != s1->height) {
1941  if (s != s1)
1942  ref_frames(s, s1);
1943  return -1;
1944  }
1945 
1946  if (s != s1) {
1947  // init tables if the first frame hasn't been decoded
1948  if (!s->current_frame.f->data[0]) {
1949  int y_fragment_count, c_fragment_count;
1950  s->avctx = dst;
1951  err = allocate_tables(dst);
1952  if (err)
1953  return err;
1954  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1955  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1956  memcpy(s->motion_val[0], s1->motion_val[0],
1957  y_fragment_count * sizeof(*s->motion_val[0]));
1958  memcpy(s->motion_val[1], s1->motion_val[1],
1959  c_fragment_count * sizeof(*s->motion_val[1]));
1960  }
1961 
1962  // copy previous frame data
1963  if ((err = ref_frames(s, s1)) < 0)
1964  return err;
1965 
1966  s->keyframe = s1->keyframe;
1967 
1968  // copy qscale data if necessary
1969  for (i = 0; i < 3; i++) {
1970  if (s->qps[i] != s1->qps[1]) {
1971  qps_changed = 1;
1972  memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1973  }
1974  }
1975 
1976  if (s->qps[0] != s1->qps[0])
1977  memcpy(&s->bounding_values_array, &s1->bounding_values_array,
1978  sizeof(s->bounding_values_array));
1979 
1980  if (qps_changed)
1981  copy_fields(s, s1, qps, superblock_count);
1982 #undef copy_fields
1983  }
1984 
1985  return update_frames(dst);
1986 }
1987 
1989  void *data, int *got_frame,
1990  AVPacket *avpkt)
1991 {
1992  const uint8_t *buf = avpkt->data;
1993  int buf_size = avpkt->size;
1994  Vp3DecodeContext *s = avctx->priv_data;
1995  GetBitContext gb;
1996  int i, ret;
1997 
1998  init_get_bits(&gb, buf, buf_size * 8);
1999 
2000 #if CONFIG_THEORA_DECODER
2001  if (s->theora && get_bits1(&gb)) {
2002  int type = get_bits(&gb, 7);
2003  skip_bits_long(&gb, 6*8); /* "theora" */
2004 
2006  av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2007  return AVERROR_PATCHWELCOME;
2008  }
2009  if (type == 0) {
2010  vp3_decode_end(avctx);
2011  ret = theora_decode_header(avctx, &gb);
2012 
2013  if (ret < 0) {
2014  vp3_decode_end(avctx);
2015  } else
2016  ret = vp3_decode_init(avctx);
2017  return ret;
2018  } else if (type == 2) {
2019  ret = theora_decode_tables(avctx, &gb);
2020  if (ret < 0) {
2021  vp3_decode_end(avctx);
2022  } else
2023  ret = vp3_decode_init(avctx);
2024  return ret;
2025  }
2026 
2027  av_log(avctx, AV_LOG_ERROR,
2028  "Header packet passed to frame decoder, skipping\n");
2029  return -1;
2030  }
2031 #endif
2032 
2033  s->keyframe = !get_bits1(&gb);
2034  if (!s->all_fragments) {
2035  av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2036  return -1;
2037  }
2038  if (!s->theora)
2039  skip_bits(&gb, 1);
2040  for (i = 0; i < 3; i++)
2041  s->last_qps[i] = s->qps[i];
2042 
2043  s->nqps = 0;
2044  do {
2045  s->qps[s->nqps++] = get_bits(&gb, 6);
2046  } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2047  for (i = s->nqps; i < 3; i++)
2048  s->qps[i] = -1;
2049 
2050  if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2051  av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2052  s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2053 
2054  s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2055  avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2056  : AVDISCARD_NONKEY);
2057 
2058  if (s->qps[0] != s->last_qps[0])
2060 
2061  for (i = 0; i < s->nqps; i++)
2062  // reinit all dequantizers if the first one changed, because
2063  // the DC of the first quantizer must be used for all matrices
2064  if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2065  init_dequantizer(s, i);
2066 
2067  if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2068  return buf_size;
2069 
2070  s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
2072  s->current_frame.f->key_frame = s->keyframe;
2073  if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0)
2074  goto error;
2075 
2076  if (!s->edge_emu_buffer)
2077  s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
2078 
2079  if (s->keyframe) {
2080  if (!s->theora) {
2081  skip_bits(&gb, 4); /* width code */
2082  skip_bits(&gb, 4); /* height code */
2083  if (s->version) {
2084  s->version = get_bits(&gb, 5);
2085  if (avctx->frame_number == 0)
2086  av_log(s->avctx, AV_LOG_DEBUG,
2087  "VP version: %d\n", s->version);
2088  }
2089  }
2090  if (s->version || s->theora) {
2091  if (get_bits1(&gb))
2092  av_log(s->avctx, AV_LOG_ERROR,
2093  "Warning, unsupported keyframe coding type?!\n");
2094  skip_bits(&gb, 2); /* reserved? */
2095  }
2096  } else {
2097  if (!s->golden_frame.f->data[0]) {
2098  av_log(s->avctx, AV_LOG_WARNING,
2099  "vp3: first frame not a keyframe\n");
2100 
2101  s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
2102  if (ff_thread_get_buffer(avctx, &s->golden_frame,
2104  goto error;
2105  ff_thread_release_buffer(avctx, &s->last_frame);
2106  if ((ret = ff_thread_ref_frame(&s->last_frame,
2107  &s->golden_frame)) < 0)
2108  goto error;
2109  ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2110  }
2111  }
2112 
2113  memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2114  ff_thread_finish_setup(avctx);
2115 
2116  if (unpack_superblocks(s, &gb)) {
2117  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2118  goto error;
2119  }
2120  if (unpack_modes(s, &gb)) {
2121  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2122  goto error;
2123  }
2124  if (unpack_vectors(s, &gb)) {
2125  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2126  goto error;
2127  }
2128  if (unpack_block_qpis(s, &gb)) {
2129  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2130  goto error;
2131  }
2132  if (unpack_dct_coeffs(s, &gb)) {
2133  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2134  goto error;
2135  }
2136 
2137  for (i = 0; i < 3; i++) {
2138  int height = s->height >> (i && s->chroma_y_shift);
2139  if (s->flipped_image)
2140  s->data_offset[i] = 0;
2141  else
2142  s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2143  }
2144 
2145  s->last_slice_end = 0;
2146  for (i = 0; i < s->c_superblock_height; i++)
2147  render_slice(s, i);
2148 
2149  // filter the last row
2150  for (i = 0; i < 3; i++) {
2151  int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2152  apply_loop_filter(s, i, row, row + 1);
2153  }
2154  vp3_draw_horiz_band(s, s->avctx->height);
2155 
2156  if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2157  return ret;
2158  *got_frame = 1;
2159 
2160  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
2161  ret = update_frames(avctx);
2162  if (ret < 0)
2163  return ret;
2164  }
2165 
2166  return buf_size;
2167 
2168 error:
2169  ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2170 
2171  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
2172  av_frame_unref(s->current_frame.f);
2173 
2174  return -1;
2175 }
2176 
2178 {
2179  Vp3DecodeContext *s = avctx->priv_data;
2180 
2181  if (get_bits1(gb)) {
2182  int token;
2183  if (s->entries >= 32) { /* overflow */
2184  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2185  return -1;
2186  }
2187  token = get_bits(gb, 5);
2188  av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2189  s->hti, s->hbits, token, s->entries, s->huff_code_size);
2190  s->huffman_table[s->hti][token][0] = s->hbits;
2191  s->huffman_table[s->hti][token][1] = s->huff_code_size;
2192  s->entries++;
2193  } else {
2194  if (s->huff_code_size >= 32) { /* overflow */
2195  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2196  return -1;
2197  }
2198  s->huff_code_size++;
2199  s->hbits <<= 1;
2200  if (read_huffman_tree(avctx, gb))
2201  return -1;
2202  s->hbits |= 1;
2203  if (read_huffman_tree(avctx, gb))
2204  return -1;
2205  s->hbits >>= 1;
2206  s->huff_code_size--;
2207  }
2208  return 0;
2209 }
2210 
2212 {
2213  Vp3DecodeContext *s = avctx->priv_data;
2214 
2215  s->superblock_coding = NULL;
2216  s->all_fragments = NULL;
2217  s->coded_fragment_list[0] = NULL;
2218  s->dct_tokens_base = NULL;
2219  s->superblock_fragments = NULL;
2220  s->macroblock_coding = NULL;
2221  s->motion_val[0] = NULL;
2222  s->motion_val[1] = NULL;
2223  s->edge_emu_buffer = NULL;
2224 
2225  return init_frames(s);
2226 }
2227 
2228 #if CONFIG_THEORA_DECODER
2229 static const enum AVPixelFormat theora_pix_fmts[4] = {
2231 };
2232 
2233 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2234 {
2235  Vp3DecodeContext *s = avctx->priv_data;
2236  int visible_width, visible_height, colorspace;
2237  int offset_x = 0, offset_y = 0;
2238  int ret;
2239  AVRational fps, aspect;
2240 
2241  s->theora = get_bits_long(gb, 24);
2242  av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2243 
2244  /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2245  * but previous versions have the image flipped relative to vp3 */
2246  if (s->theora < 0x030200) {
2247  s->flipped_image = 1;
2248  av_log(avctx, AV_LOG_DEBUG,
2249  "Old (<alpha3) Theora bitstream, flipped image\n");
2250  }
2251 
2252  visible_width =
2253  s->width = get_bits(gb, 16) << 4;
2254  visible_height =
2255  s->height = get_bits(gb, 16) << 4;
2256 
2257  if (s->theora >= 0x030200) {
2258  visible_width = get_bits_long(gb, 24);
2259  visible_height = get_bits_long(gb, 24);
2260 
2261  offset_x = get_bits(gb, 8); /* offset x */
2262  offset_y = get_bits(gb, 8); /* offset y, from bottom */
2263  }
2264 
2265  fps.num = get_bits_long(gb, 32);
2266  fps.den = get_bits_long(gb, 32);
2267  if (fps.num && fps.den) {
2268  if (fps.num < 0 || fps.den < 0) {
2269  av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2270  return AVERROR_INVALIDDATA;
2271  }
2272  av_reduce(&avctx->time_base.num, &avctx->time_base.den,
2273  fps.den, fps.num, 1 << 30);
2274  }
2275 
2276  aspect.num = get_bits_long(gb, 24);
2277  aspect.den = get_bits_long(gb, 24);
2278  if (aspect.num && aspect.den) {
2280  &avctx->sample_aspect_ratio.den,
2281  aspect.num, aspect.den, 1 << 30);
2282  ff_set_sar(avctx, avctx->sample_aspect_ratio);
2283  }
2284 
2285  if (s->theora < 0x030200)
2286  skip_bits(gb, 5); /* keyframe frequency force */
2287  colorspace = get_bits(gb, 8);
2288  skip_bits(gb, 24); /* bitrate */
2289 
2290  skip_bits(gb, 6); /* quality hint */
2291 
2292  if (s->theora >= 0x030200) {
2293  skip_bits(gb, 5); /* keyframe frequency force */
2294  avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2295  if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2296  av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2297  return AVERROR_INVALIDDATA;
2298  }
2299  skip_bits(gb, 3); /* reserved */
2300  }
2301 
2302 // align_get_bits(gb);
2303 
2304  if (visible_width <= s->width && visible_width > s->width - 16 &&
2305  visible_height <= s->height && visible_height > s->height - 16 &&
2306  !offset_x && (offset_y == s->height - visible_height))
2307  ret = ff_set_dimensions(avctx, visible_width, visible_height);
2308  else
2309  ret = ff_set_dimensions(avctx, s->width, s->height);
2310  if (ret < 0)
2311  return ret;
2312 
2313  if (colorspace == 1)
2315  else if (colorspace == 2)
2317 
2318  if (colorspace == 1 || colorspace == 2) {
2319  avctx->colorspace = AVCOL_SPC_BT470BG;
2320  avctx->color_trc = AVCOL_TRC_BT709;
2321  }
2322 
2323  return 0;
2324 }
2325 
2326 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2327 {
2328  Vp3DecodeContext *s = avctx->priv_data;
2329  int i, n, matrices, inter, plane;
2330 
2331  if (s->theora >= 0x030200) {
2332  n = get_bits(gb, 3);
2333  /* loop filter limit values table */
2334  if (n)
2335  for (i = 0; i < 64; i++)
2336  s->filter_limit_values[i] = get_bits(gb, n);
2337  }
2338 
2339  if (s->theora >= 0x030200)
2340  n = get_bits(gb, 4) + 1;
2341  else
2342  n = 16;
2343  /* quality threshold table */
2344  for (i = 0; i < 64; i++)
2345  s->coded_ac_scale_factor[i] = get_bits(gb, n);
2346 
2347  if (s->theora >= 0x030200)
2348  n = get_bits(gb, 4) + 1;
2349  else
2350  n = 16;
2351  /* dc scale factor table */
2352  for (i = 0; i < 64; i++)
2353  s->coded_dc_scale_factor[i] = get_bits(gb, n);
2354 
2355  if (s->theora >= 0x030200)
2356  matrices = get_bits(gb, 9) + 1;
2357  else
2358  matrices = 3;
2359 
2360  if (matrices > 384) {
2361  av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2362  return -1;
2363  }
2364 
2365  for (n = 0; n < matrices; n++)
2366  for (i = 0; i < 64; i++)
2367  s->base_matrix[n][i] = get_bits(gb, 8);
2368 
2369  for (inter = 0; inter <= 1; inter++) {
2370  for (plane = 0; plane <= 2; plane++) {
2371  int newqr = 1;
2372  if (inter || plane > 0)
2373  newqr = get_bits1(gb);
2374  if (!newqr) {
2375  int qtj, plj;
2376  if (inter && get_bits1(gb)) {
2377  qtj = 0;
2378  plj = plane;
2379  } else {
2380  qtj = (3 * inter + plane - 1) / 3;
2381  plj = (plane + 2) % 3;
2382  }
2383  s->qr_count[inter][plane] = s->qr_count[qtj][plj];
2384  memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
2385  sizeof(s->qr_size[0][0]));
2386  memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
2387  sizeof(s->qr_base[0][0]));
2388  } else {
2389  int qri = 0;
2390  int qi = 0;
2391 
2392  for (;;) {
2393  i = get_bits(gb, av_log2(matrices - 1) + 1);
2394  if (i >= matrices) {
2395  av_log(avctx, AV_LOG_ERROR,
2396  "invalid base matrix index\n");
2397  return -1;
2398  }
2399  s->qr_base[inter][plane][qri] = i;
2400  if (qi >= 63)
2401  break;
2402  i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
2403  s->qr_size[inter][plane][qri++] = i;
2404  qi += i;
2405  }
2406 
2407  if (qi > 63) {
2408  av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2409  return -1;
2410  }
2411  s->qr_count[inter][plane] = qri;
2412  }
2413  }
2414  }
2415 
2416  /* Huffman tables */
2417  for (s->hti = 0; s->hti < 80; s->hti++) {
2418  s->entries = 0;
2419  s->huff_code_size = 1;
2420  if (!get_bits1(gb)) {
2421  s->hbits = 0;
2422  if (read_huffman_tree(avctx, gb))
2423  return -1;
2424  s->hbits = 1;
2425  if (read_huffman_tree(avctx, gb))
2426  return -1;
2427  }
2428  }
2429 
2430  s->theora_tables = 1;
2431 
2432  return 0;
2433 }
2434 
2435 static av_cold int theora_decode_init(AVCodecContext *avctx)
2436 {
2437  Vp3DecodeContext *s = avctx->priv_data;
2438  GetBitContext gb;
2439  int ptype;
2440  uint8_t *header_start[3];
2441  int header_len[3];
2442  int i;
2443 
2444  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2445 
2446  s->theora = 1;
2447 
2448  if (!avctx->extradata_size) {
2449  av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2450  return -1;
2451  }
2452 
2454  42, header_start, header_len) < 0) {
2455  av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2456  return -1;
2457  }
2458 
2459  for (i = 0; i < 3; i++) {
2460  if (header_len[i] <= 0)
2461  continue;
2462  init_get_bits(&gb, header_start[i], header_len[i] * 8);
2463 
2464  ptype = get_bits(&gb, 8);
2465 
2466  if (!(ptype & 0x80)) {
2467  av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2468 // return -1;
2469  }
2470 
2471  // FIXME: Check for this as well.
2472  skip_bits_long(&gb, 6 * 8); /* "theora" */
2473 
2474  switch (ptype) {
2475  case 0x80:
2476  if (theora_decode_header(avctx, &gb) < 0)
2477  return -1;
2478  break;
2479  case 0x81:
2480 // FIXME: is this needed? it breaks sometimes
2481 // theora_decode_comments(avctx, gb);
2482  break;
2483  case 0x82:
2484  if (theora_decode_tables(avctx, &gb))
2485  return -1;
2486  break;
2487  default:
2488  av_log(avctx, AV_LOG_ERROR,
2489  "Unknown Theora config packet: %d\n", ptype & ~0x80);
2490  break;
2491  }
2492  if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
2493  av_log(avctx, AV_LOG_WARNING,
2494  "%d bits left in packet %X\n",
2495  8 * header_len[i] - get_bits_count(&gb), ptype);
2496  if (s->theora < 0x030200)
2497  break;
2498  }
2499 
2500  return vp3_decode_init(avctx);
2501 }
2502 
2503 AVCodec ff_theora_decoder = {
2504  .name = "theora",
2505  .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2506  .type = AVMEDIA_TYPE_VIDEO,
2507  .id = AV_CODEC_ID_THEORA,
2508  .priv_data_size = sizeof(Vp3DecodeContext),
2509  .init = theora_decode_init,
2510  .close = vp3_decode_end,
2512  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2516  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2517 };
2518 #endif
2519 
2521  .name = "vp3",
2522  .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2523  .type = AVMEDIA_TYPE_VIDEO,
2524  .id = AV_CODEC_ID_VP3,
2525  .priv_data_size = sizeof(Vp3DecodeContext),
2526  .init = vp3_decode_init,
2527  .close = vp3_decode_end,
2529  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2533  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
2534 };