50 #define MUL16(a, b) ((a) * (b))
52 #define CMAC(pre, pim, are, aim, bre, bim) \
54 pre += (MUL16(are, bre) - MUL16(aim, bim)); \
55 pim += (MUL16(are, bim) + MUL16(bre, aim)); \
60 #define REF_SCALE(x, bits) (x)
64 #define REF_SCALE(x, bits) (x)
68 #define REF_SCALE(x, bits) ((x) / (1 << (bits)))
78 int i,
n = 1 << nbits;
84 for (i = 0; i < (n / 2); i++) {
85 double alpha = 2 *
M_PI * (float) i / (
float)
n;
86 double c1 = cos(alpha),
s1 = sin(alpha);
101 for (i = 0; i <
n; i++) {
102 double tmp_re = 0, tmp_im = 0;
104 for (j = 0; j <
n; j++) {
106 int k = (i * j) & (n - 1);
114 CMAC(tmp_re, tmp_im, c, s, q->
re, q->
im);
125 int i, k,
n = 1 << nbits;
127 for (i = 0; i <
n; i++) {
129 for (k = 0; k < n / 2; k++) {
130 int a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
131 double f = cos(
M_PI * a / (
double) (2 * n));
141 int i, k, n = 1 << nbits;
144 for (k = 0; k < n / 2; k++) {
146 for (i = 0; i <
n; i++) {
147 double a = (2 *
M_PI * (2 * i + 1 + n / 2) * (2 * k + 1) / (4 *
n));
148 s += input[i] * cos(a);
159 int i, k, n = 1 << nbits;
162 for (i = 0; i <
n; i++) {
163 double s = 0.5 * input[0];
164 for (k = 1; k <
n; k++) {
165 double a =
M_PI * k * (i + 0.5) /
n;
166 s += input[k] * cos(
a);
168 output[i] = 2 * s /
n;
174 int i, k, n = 1 << nbits;
177 for (k = 0; k <
n; k++) {
179 for (i = 0; i <
n; i++) {
180 double a =
M_PI * k * (i + 0.5) /
n;
181 s += input[i] * cos(
a);
197 double error = 0, max = 0;
199 for (i = 0; i <
n; i++) {
200 double e = fabsf(tab1[i] - (tab2[i] / scale)) /
RANGE;
203 i, tab1[i], tab2[i]);
217 "usage: fft-test [-h] [-s] [-i] [-n b]\n"
218 "-h print this help\n"
223 "-i inverse transform test\n"
224 "-n b set the transform size to 2^b\n"
225 "-f x set scale factor for output data of (I)MDCT to x\n");
239 int main(
int argc,
char **argv)
250 int do_speed = 0, do_inverse = 0;
251 int fft_nbits = 9, fft_size;
258 int c =
getopt(argc, argv,
"hsimrdn:f:c:");
299 fft_size = 1 << fft_nbits;
305 if (!(tab && tab1 && tab_ref && tab2))
358 for (i = 0; i < fft_size; i++) {
370 imdct_ref(&tab_ref->
re, &tab1->
re, fft_nbits);
374 mdct_ref(&tab_ref->
re, &tab1->
re, fft_nbits);
376 err =
check_diff(&tab_ref->
re, tab2, fft_size / 2, scale);
381 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
385 fft_ref(tab_ref, tab1, fft_nbits);
392 int fft_size_2 = fft_size >> 1;
395 tab1[fft_size_2].
im = 0;
396 for (i = 1; i < fft_size_2; i++) {
397 tab1[fft_size_2 + i].
re = tab1[fft_size_2 - i].
re;
398 tab1[fft_size_2 + i].
im = -tab1[fft_size_2 - i].
im;
401 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
402 tab2[1] = tab1[fft_size_2].
re;
405 fft_ref(tab_ref, tab1, fft_nbits);
406 for (i = 0; i < fft_size; i++) {
412 for (i = 0; i < fft_size; i++) {
413 tab2[i] = tab1[i].
re;
417 fft_ref(tab_ref, tab1, fft_nbits);
418 tab_ref[0].
im = tab_ref[fft_size_2].
re;
426 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
429 idct_ref(&tab_ref->
re, &tab1->
re, fft_nbits);
431 dct_ref(&tab_ref->
re, &tab1->
re, fft_nbits);
449 for (it = 0; it < nb_its; it++) {
458 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
463 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
467 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
474 if (duration >= 1000000)
479 "time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
480 (
double) duration / nb_its,
481 (
double) duration / 1000000.0,
516 printf(
"Error: %d.\n", err);