FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
huffyuvenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
5  * the algorithm used
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  *
23  * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
24  */
25 
26 /**
27  * @file
28  * huffyuv encoder
29  */
30 
31 #include "avcodec.h"
32 #include "huffyuv.h"
33 #include "huffman.h"
34 #include "huffyuvencdsp.h"
35 #include "internal.h"
36 #include "put_bits.h"
37 #include "libavutil/opt.h"
38 #include "libavutil/pixdesc.h"
39 
40 static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
41  const uint8_t *src0, const uint8_t *src1, int w)
42 {
43  if (s->bps <= 8) {
44  s->hencdsp.diff_bytes(dst, src0, src1, w);
45  } else {
46  s->llviddsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
47  }
48 }
49 
50 static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
51  const uint8_t *src, int w, int left)
52 {
53  int i;
54  if (s->bps <= 8) {
55  if (w < 32) {
56  for (i = 0; i < w; i++) {
57  const int temp = src[i];
58  dst[i] = temp - left;
59  left = temp;
60  }
61  return left;
62  } else {
63  for (i = 0; i < 16; i++) {
64  const int temp = src[i];
65  dst[i] = temp - left;
66  left = temp;
67  }
68  s->hencdsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
69  return src[w-1];
70  }
71  } else {
72  const uint16_t *src16 = (const uint16_t *)src;
73  uint16_t *dst16 = ( uint16_t *)dst;
74  if (w < 32) {
75  for (i = 0; i < w; i++) {
76  const int temp = src16[i];
77  dst16[i] = temp - left;
78  left = temp;
79  }
80  return left;
81  } else {
82  for (i = 0; i < 16; i++) {
83  const int temp = src16[i];
84  dst16[i] = temp - left;
85  left = temp;
86  }
87  s->llviddsp.diff_int16(dst16 + 16, src16 + 16, src16 + 15, s->n - 1, w - 16);
88  return src16[w-1];
89  }
90  }
91 }
92 
93 static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
94  const uint8_t *src, int w,
95  int *red, int *green, int *blue,
96  int *alpha)
97 {
98  int i;
99  int r, g, b, a;
100  r = *red;
101  g = *green;
102  b = *blue;
103  a = *alpha;
104 
105  for (i = 0; i < FFMIN(w, 4); i++) {
106  const int rt = src[i * 4 + R];
107  const int gt = src[i * 4 + G];
108  const int bt = src[i * 4 + B];
109  const int at = src[i * 4 + A];
110  dst[i * 4 + R] = rt - r;
111  dst[i * 4 + G] = gt - g;
112  dst[i * 4 + B] = bt - b;
113  dst[i * 4 + A] = at - a;
114  r = rt;
115  g = gt;
116  b = bt;
117  a = at;
118  }
119 
120  s->hencdsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
121 
122  *red = src[(w - 1) * 4 + R];
123  *green = src[(w - 1) * 4 + G];
124  *blue = src[(w - 1) * 4 + B];
125  *alpha = src[(w - 1) * 4 + A];
126 }
127 
128 static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
129  uint8_t *src, int w,
130  int *red, int *green, int *blue)
131 {
132  int i;
133  int r, g, b;
134  r = *red;
135  g = *green;
136  b = *blue;
137  for (i = 0; i < FFMIN(w, 16); i++) {
138  const int rt = src[i * 3 + 0];
139  const int gt = src[i * 3 + 1];
140  const int bt = src[i * 3 + 2];
141  dst[i * 3 + 0] = rt - r;
142  dst[i * 3 + 1] = gt - g;
143  dst[i * 3 + 2] = bt - b;
144  r = rt;
145  g = gt;
146  b = bt;
147  }
148 
149  s->hencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
150 
151  *red = src[(w - 1) * 3 + 0];
152  *green = src[(w - 1) * 3 + 1];
153  *blue = src[(w - 1) * 3 + 2];
154 }
155 
156 static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
157 {
158  if (s->bps <= 8) {
159  s->hencdsp.sub_hfyu_median_pred(dst, src1, src2, w , left, left_top);
160  } else {
161  s->llviddsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
162  }
163 }
164 
166 {
167  int i;
168  int index = 0;
169  int n = s->vlc_n;
170 
171  for (i = 0; i < n;) {
172  int val = len[i];
173  int repeat = 0;
174 
175  for (; i < n && len[i] == val && repeat < 255; i++)
176  repeat++;
177 
178  av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
179  if (repeat > 7) {
180  buf[index++] = val;
181  buf[index++] = repeat;
182  } else {
183  buf[index++] = val | (repeat << 5);
184  }
185  }
186 
187  return index;
188 }
189 
191 {
192  int i, ret;
193  int size = 0;
194  int count = 3;
195 
196  if (s->version > 2)
197  count = 1 + s->alpha + 2*s->chroma;
198 
199  for (i = 0; i < count; i++) {
200  if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
201  return ret;
202 
203  if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
204  return -1;
205  }
206 
207  size += store_table(s, s->len[i], buf + size);
208  }
209  return size;
210 }
211 
213 {
214  HYuvContext *s = avctx->priv_data;
215  int i, j;
216  int ret;
217  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
218 
219  ff_huffyuv_common_init(avctx);
221 
222  avctx->extradata = av_mallocz(3*MAX_N + 4);
223  if (!avctx->extradata)
224  return AVERROR(ENOMEM);
225  if (s->flags&CODEC_FLAG_PASS1) {
226 #define STATS_OUT_SIZE 21*MAX_N*3 + 4
227  avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
228  if (!avctx->stats_out)
229  return AVERROR(ENOMEM);
230  }
231  s->version = 2;
232 
233  avctx->coded_frame = av_frame_alloc();
234  if (!avctx->coded_frame)
235  return AVERROR(ENOMEM);
236 
238  avctx->coded_frame->key_frame = 1;
239 
240  s->bps = desc->comp[0].depth_minus1 + 1;
241  s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
242  s->chroma = desc->nb_components > 2;
243  s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
245  &s->chroma_h_shift,
246  &s->chroma_v_shift);
247 
248  switch (avctx->pix_fmt) {
249  case AV_PIX_FMT_YUV420P:
250  case AV_PIX_FMT_YUV422P:
251  if (s->width & 1) {
252  av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
253  return AVERROR(EINVAL);
254  }
255  s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
256  break;
257  case AV_PIX_FMT_YUV444P:
258  case AV_PIX_FMT_YUV410P:
259  case AV_PIX_FMT_YUV411P:
260  case AV_PIX_FMT_YUV440P:
261  case AV_PIX_FMT_GBRP:
262  case AV_PIX_FMT_GBRP9:
263  case AV_PIX_FMT_GBRP10:
264  case AV_PIX_FMT_GBRP12:
265  case AV_PIX_FMT_GBRP14:
266  case AV_PIX_FMT_GBRP16:
267  case AV_PIX_FMT_GRAY8:
268  case AV_PIX_FMT_GRAY16:
269  case AV_PIX_FMT_YUVA444P:
270  case AV_PIX_FMT_YUVA420P:
271  case AV_PIX_FMT_YUVA422P:
272  case AV_PIX_FMT_GBRAP:
273  case AV_PIX_FMT_GRAY8A:
274  case AV_PIX_FMT_YUV420P9:
279  case AV_PIX_FMT_YUV422P9:
284  case AV_PIX_FMT_YUV444P9:
298  s->version = 3;
299  break;
300  case AV_PIX_FMT_RGB32:
301  s->bitstream_bpp = 32;
302  break;
303  case AV_PIX_FMT_RGB24:
304  s->bitstream_bpp = 24;
305  break;
306  default:
307  av_log(avctx, AV_LOG_ERROR, "format not supported\n");
308  return AVERROR(EINVAL);
309  }
310  s->n = 1<<s->bps;
311  s->vlc_n = FFMIN(s->n, MAX_VLC_N);
312 
314  s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
315  s->predictor = avctx->prediction_method;
316  s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
317  if (avctx->context_model == 1) {
318  s->context = avctx->context_model;
320  av_log(avctx, AV_LOG_ERROR,
321  "context=1 is not compatible with "
322  "2 pass huffyuv encoding\n");
323  return AVERROR(EINVAL);
324  }
325  }else s->context= 0;
326 
327  if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
328  if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
329  av_log(avctx, AV_LOG_ERROR,
330  "Error: YV12 is not supported by huffyuv; use "
331  "vcodec=ffvhuff or format=422p\n");
332  return AVERROR(EINVAL);
333  }
334  if (avctx->context_model) {
335  av_log(avctx, AV_LOG_ERROR,
336  "Error: per-frame huffman tables are not supported "
337  "by huffyuv; use vcodec=ffvhuff\n");
338  return AVERROR(EINVAL);
339  }
340  if (s->version > 2) {
341  av_log(avctx, AV_LOG_ERROR,
342  "Error: ver>2 is not supported "
343  "by huffyuv; use vcodec=ffvhuff\n");
344  return AVERROR(EINVAL);
345  }
346  if (s->interlaced != ( s->height > 288 ))
347  av_log(avctx, AV_LOG_INFO,
348  "using huffyuv 2.2.0 or newer interlacing flag\n");
349  }
350 
352  av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
353  "Use vstrict=-2 / -strict -2 to use it anyway.\n");
354  return AVERROR(EINVAL);
355  }
356 
357  if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
358  av_log(avctx, AV_LOG_ERROR,
359  "Error: RGB is incompatible with median predictor\n");
360  return AVERROR(EINVAL);
361  }
362 
363  ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
364  ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
365  if (s->context)
366  ((uint8_t*)avctx->extradata)[2] |= 0x40;
367  if (s->version < 3) {
368  ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
369  ((uint8_t*)avctx->extradata)[3] = 0;
370  } else {
371  ((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
372  if (s->chroma)
373  ((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
374  if (s->alpha)
375  ((uint8_t*)avctx->extradata)[2] |= 4;
376  ((uint8_t*)avctx->extradata)[3] = 1;
377  }
378  s->avctx->extradata_size = 4;
379 
380  if (avctx->stats_in) {
381  char *p = avctx->stats_in;
382 
383  for (i = 0; i < 4; i++)
384  for (j = 0; j < s->vlc_n; j++)
385  s->stats[i][j] = 1;
386 
387  for (;;) {
388  for (i = 0; i < 4; i++) {
389  char *next;
390 
391  for (j = 0; j < s->vlc_n; j++) {
392  s->stats[i][j] += strtol(p, &next, 0);
393  if (next == p) return -1;
394  p = next;
395  }
396  }
397  if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
398  }
399  } else {
400  for (i = 0; i < 4; i++)
401  for (j = 0; j < s->vlc_n; j++) {
402  int d = FFMIN(j, s->vlc_n - j);
403 
404  s->stats[i][j] = 100000000 / (d*d + 1);
405  }
406  }
407 
409  if (ret < 0)
410  return ret;
411  s->avctx->extradata_size += ret;
412 
413  if (s->context) {
414  for (i = 0; i < 4; i++) {
415  int pels = s->width * s->height / (i ? 40 : 10);
416  for (j = 0; j < s->vlc_n; j++) {
417  int d = FFMIN(j, s->vlc_n - j);
418  s->stats[i][j] = pels/(d*d + 1);
419  }
420  }
421  } else {
422  for (i = 0; i < 4; i++)
423  for (j = 0; j < s->vlc_n; j++)
424  s->stats[i][j]= 0;
425  }
426 
427  if (ff_huffyuv_alloc_temp(s)) {
429  return AVERROR(ENOMEM);
430  }
431 
432  s->picture_number=0;
433 
434  return 0;
435 }
437 {
438  int i;
439  const uint8_t *y = s->temp[0] + offset;
440  const uint8_t *u = s->temp[1] + offset / 2;
441  const uint8_t *v = s->temp[2] + offset / 2;
442 
443  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
444  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
445  return -1;
446  }
447 
448 #define LOAD4\
449  int y0 = y[2 * i];\
450  int y1 = y[2 * i + 1];\
451  int u0 = u[i];\
452  int v0 = v[i];
453 
454  count /= 2;
455 
456  if (s->flags & CODEC_FLAG_PASS1) {
457  for(i = 0; i < count; i++) {
458  LOAD4;
459  s->stats[0][y0]++;
460  s->stats[1][u0]++;
461  s->stats[0][y1]++;
462  s->stats[2][v0]++;
463  }
464  }
466  return 0;
467  if (s->context) {
468  for (i = 0; i < count; i++) {
469  LOAD4;
470  s->stats[0][y0]++;
471  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
472  s->stats[1][u0]++;
473  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
474  s->stats[0][y1]++;
475  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
476  s->stats[2][v0]++;
477  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
478  }
479  } else {
480  for(i = 0; i < count; i++) {
481  LOAD4;
482  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
483  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
484  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
485  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
486  }
487  }
488  return 0;
489 }
490 
491 static int encode_plane_bitstream(HYuvContext *s, int width, int plane)
492 {
493  int i, count = width/2;
494 
495  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
496  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
497  return -1;
498  }
499 
500 #define LOADEND\
501  int y0 = s->temp[0][width-1];
502 #define LOADEND_14\
503  int y0 = s->temp16[0][width-1] & mask;
504 #define LOADEND_16\
505  int y0 = s->temp16[0][width-1];
506 #define STATEND\
507  s->stats[plane][y0]++;
508 #define STATEND_16\
509  s->stats[plane][y0>>2]++;
510 #define WRITEEND\
511  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);
512 #define WRITEEND_16\
513  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
514  put_bits(&s->pb, 2, y0&3);
515 
516 #define LOAD2\
517  int y0 = s->temp[0][2 * i];\
518  int y1 = s->temp[0][2 * i + 1];
519 #define LOAD2_14\
520  int y0 = s->temp16[0][2 * i] & mask;\
521  int y1 = s->temp16[0][2 * i + 1] & mask;
522 #define LOAD2_16\
523  int y0 = s->temp16[0][2 * i];\
524  int y1 = s->temp16[0][2 * i + 1];
525 #define STAT2\
526  s->stats[plane][y0]++;\
527  s->stats[plane][y1]++;
528 #define STAT2_16\
529  s->stats[plane][y0>>2]++;\
530  s->stats[plane][y1>>2]++;
531 #define WRITE2\
532  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
533  put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
534 #define WRITE2_16\
535  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
536  put_bits(&s->pb, 2, y0&3);\
537  put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
538  put_bits(&s->pb, 2, y1&3);
539 
540  if (s->bps <= 8) {
541  if (s->flags & CODEC_FLAG_PASS1) {
542  for (i = 0; i < count; i++) {
543  LOAD2;
544  STAT2;
545  }
546  if (width&1) {
547  LOADEND;
548  STATEND;
549  }
550  }
552  return 0;
553 
554  if (s->context) {
555  for (i = 0; i < count; i++) {
556  LOAD2;
557  STAT2;
558  WRITE2;
559  }
560  if (width&1) {
561  LOADEND;
562  STATEND;
563  WRITEEND;
564  }
565  } else {
566  for (i = 0; i < count; i++) {
567  LOAD2;
568  WRITE2;
569  }
570  if (width&1) {
571  LOADEND;
572  WRITEEND;
573  }
574  }
575  } else if (s->bps <= 14) {
576  int mask = s->n - 1;
577  if (s->flags & CODEC_FLAG_PASS1) {
578  for (i = 0; i < count; i++) {
579  LOAD2_14;
580  STAT2;
581  }
582  if (width&1) {
583  LOADEND_14;
584  STATEND;
585  }
586  }
588  return 0;
589 
590  if (s->context) {
591  for (i = 0; i < count; i++) {
592  LOAD2_14;
593  STAT2;
594  WRITE2;
595  }
596  if (width&1) {
597  LOADEND_14;
598  STATEND;
599  WRITEEND;
600  }
601  } else {
602  for (i = 0; i < count; i++) {
603  LOAD2_14;
604  WRITE2;
605  }
606  if (width&1) {
607  LOADEND_14;
608  WRITEEND;
609  }
610  }
611  } else {
612  if (s->flags & CODEC_FLAG_PASS1) {
613  for (i = 0; i < count; i++) {
614  LOAD2_16;
615  STAT2_16;
616  }
617  if (width&1) {
618  LOADEND_16;
619  STATEND_16;
620  }
621  }
623  return 0;
624 
625  if (s->context) {
626  for (i = 0; i < count; i++) {
627  LOAD2_16;
628  STAT2_16;
629  WRITE2_16;
630  }
631  if (width&1) {
632  LOADEND_16;
633  STATEND_16;
634  WRITEEND_16;
635  }
636  } else {
637  for (i = 0; i < count; i++) {
638  LOAD2_16;
639  WRITE2_16;
640  }
641  if (width&1) {
642  LOADEND_16;
643  WRITEEND_16;
644  }
645  }
646  }
647 #undef LOAD2
648 #undef STAT2
649 #undef WRITE2
650  return 0;
651 }
652 
654 {
655  int i;
656 
657  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
658  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
659  return -1;
660  }
661 
662 #define LOAD2\
663  int y0 = s->temp[0][2 * i];\
664  int y1 = s->temp[0][2 * i + 1];
665 #define STAT2\
666  s->stats[0][y0]++;\
667  s->stats[0][y1]++;
668 #define WRITE2\
669  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
670  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
671 
672  count /= 2;
673 
674  if (s->flags & CODEC_FLAG_PASS1) {
675  for (i = 0; i < count; i++) {
676  LOAD2;
677  STAT2;
678  }
679  }
681  return 0;
682 
683  if (s->context) {
684  for (i = 0; i < count; i++) {
685  LOAD2;
686  STAT2;
687  WRITE2;
688  }
689  } else {
690  for (i = 0; i < count; i++) {
691  LOAD2;
692  WRITE2;
693  }
694  }
695  return 0;
696 }
697 
698 static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
699 {
700  int i;
701 
702  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
703  4 * planes * count) {
704  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
705  return -1;
706  }
707 
708 #define LOAD_GBRA \
709  int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
710  int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
711  int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
712  int a = s->temp[0][planes * i + A];
713 
714 #define STAT_BGRA \
715  s->stats[0][b]++; \
716  s->stats[1][g]++; \
717  s->stats[2][r]++; \
718  if (planes == 4) \
719  s->stats[2][a]++;
720 
721 #define WRITE_GBRA \
722  put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
723  put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
724  put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
725  if (planes == 4) \
726  put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
727 
728  if ((s->flags & CODEC_FLAG_PASS1) &&
730  for (i = 0; i < count; i++) {
731  LOAD_GBRA;
732  STAT_BGRA;
733  }
734  } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
735  for (i = 0; i < count; i++) {
736  LOAD_GBRA;
737  STAT_BGRA;
738  WRITE_GBRA;
739  }
740  } else {
741  for (i = 0; i < count; i++) {
742  LOAD_GBRA;
743  WRITE_GBRA;
744  }
745  }
746  return 0;
747 }
748 
750  const AVFrame *pict, int *got_packet)
751 {
752  HYuvContext *s = avctx->priv_data;
753  const int width = s->width;
754  const int width2 = s->width>>1;
755  const int height = s->height;
756  const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
757  const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
758  const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
759  const AVFrame * const p = pict;
760  int i, j, size = 0, ret;
761 
762  if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0)
763  return ret;
764 
765  if (s->context) {
766  size = store_huffman_tables(s, pkt->data);
767  if (size < 0)
768  return size;
769 
770  for (i = 0; i < 4; i++)
771  for (j = 0; j < s->vlc_n; j++)
772  s->stats[i][j] >>= 1;
773  }
774 
775  init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
776 
777  if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
778  avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
779  int lefty, leftu, leftv, y, cy;
780 
781  put_bits(&s->pb, 8, leftv = p->data[2][0]);
782  put_bits(&s->pb, 8, lefty = p->data[0][1]);
783  put_bits(&s->pb, 8, leftu = p->data[1][0]);
784  put_bits(&s->pb, 8, p->data[0][0]);
785 
786  lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
787  leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
788  leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
789 
790  encode_422_bitstream(s, 2, width-2);
791 
792  if (s->predictor==MEDIAN) {
793  int lefttopy, lefttopu, lefttopv;
794  cy = y = 1;
795  if (s->interlaced) {
796  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
797  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
798  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
799 
800  encode_422_bitstream(s, 0, width);
801  y++; cy++;
802  }
803 
804  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
805  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
806  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
807 
808  encode_422_bitstream(s, 0, 4);
809 
810  lefttopy = p->data[0][3];
811  lefttopu = p->data[1][1];
812  lefttopv = p->data[2][1];
813  s->hencdsp.sub_hfyu_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
814  s->hencdsp.sub_hfyu_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
815  s->hencdsp.sub_hfyu_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
816  encode_422_bitstream(s, 0, width - 4);
817  y++; cy++;
818 
819  for (; y < height; y++,cy++) {
820  uint8_t *ydst, *udst, *vdst;
821 
822  if (s->bitstream_bpp == 12) {
823  while (2 * cy > y) {
824  ydst = p->data[0] + p->linesize[0] * y;
825  s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
826  encode_gray_bitstream(s, width);
827  y++;
828  }
829  if (y >= height) break;
830  }
831  ydst = p->data[0] + p->linesize[0] * y;
832  udst = p->data[1] + p->linesize[1] * cy;
833  vdst = p->data[2] + p->linesize[2] * cy;
834 
835  s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
836  s->hencdsp.sub_hfyu_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
837  s->hencdsp.sub_hfyu_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
838 
839  encode_422_bitstream(s, 0, width);
840  }
841  } else {
842  for (cy = y = 1; y < height; y++, cy++) {
843  uint8_t *ydst, *udst, *vdst;
844 
845  /* encode a luma only line & y++ */
846  if (s->bitstream_bpp == 12) {
847  ydst = p->data[0] + p->linesize[0] * y;
848 
849  if (s->predictor == PLANE && s->interlaced < y) {
850  s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
851 
852  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
853  } else {
854  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
855  }
856  encode_gray_bitstream(s, width);
857  y++;
858  if (y >= height) break;
859  }
860 
861  ydst = p->data[0] + p->linesize[0] * y;
862  udst = p->data[1] + p->linesize[1] * cy;
863  vdst = p->data[2] + p->linesize[2] * cy;
864 
865  if (s->predictor == PLANE && s->interlaced < cy) {
866  s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
867  s->hencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
868  s->hencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
869 
870  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
871  leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
872  leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
873  } else {
874  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
875  leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
876  leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
877  }
878 
879  encode_422_bitstream(s, 0, width);
880  }
881  }
882  } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
883  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
884  const int stride = -p->linesize[0];
885  const int fake_stride = -fake_ystride;
886  int y;
887  int leftr, leftg, leftb, lefta;
888 
889  put_bits(&s->pb, 8, lefta = data[A]);
890  put_bits(&s->pb, 8, leftr = data[R]);
891  put_bits(&s->pb, 8, leftg = data[G]);
892  put_bits(&s->pb, 8, leftb = data[B]);
893 
894  sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
895  &leftr, &leftg, &leftb, &lefta);
896  encode_bgra_bitstream(s, width - 1, 4);
897 
898  for (y = 1; y < s->height; y++) {
899  uint8_t *dst = data + y*stride;
900  if (s->predictor == PLANE && s->interlaced < y) {
901  s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
902  sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
903  &leftr, &leftg, &leftb, &lefta);
904  } else {
905  sub_left_prediction_bgr32(s, s->temp[0], dst, width,
906  &leftr, &leftg, &leftb, &lefta);
907  }
908  encode_bgra_bitstream(s, width, 4);
909  }
910  } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
911  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
912  const int stride = -p->linesize[0];
913  const int fake_stride = -fake_ystride;
914  int y;
915  int leftr, leftg, leftb;
916 
917  put_bits(&s->pb, 8, leftr = data[0]);
918  put_bits(&s->pb, 8, leftg = data[1]);
919  put_bits(&s->pb, 8, leftb = data[2]);
920  put_bits(&s->pb, 8, 0);
921 
922  sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
923  &leftr, &leftg, &leftb);
924  encode_bgra_bitstream(s, width-1, 3);
925 
926  for (y = 1; y < s->height; y++) {
927  uint8_t *dst = data + y * stride;
928  if (s->predictor == PLANE && s->interlaced < y) {
929  s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
930  width * 3);
931  sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
932  &leftr, &leftg, &leftb);
933  } else {
934  sub_left_prediction_rgb24(s, s->temp[0], dst, width,
935  &leftr, &leftg, &leftb);
936  }
937  encode_bgra_bitstream(s, width, 3);
938  }
939  } else if (s->version > 2) {
940  int plane;
941  for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
942  int left, y;
943  int w = width;
944  int h = height;
945  int fake_stride = fake_ystride;
946 
947  if (s->chroma && (plane == 1 || plane == 2)) {
948  w >>= s->chroma_h_shift;
949  h >>= s->chroma_v_shift;
950  fake_stride = plane == 1 ? fake_ustride : fake_vstride;
951  }
952 
953  left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);
954 
955  encode_plane_bitstream(s, w, plane);
956 
957  if (s->predictor==MEDIAN) {
958  int lefttop;
959  y = 1;
960  if (s->interlaced) {
961  left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);
962 
963  encode_plane_bitstream(s, w, plane);
964  y++;
965  }
966 
967  lefttop = p->data[plane][0];
968 
969  for (; y < h; y++) {
970  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
971 
972  sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
973 
974  encode_plane_bitstream(s, w, plane);
975  }
976  } else {
977  for (y = 1; y < h; y++) {
978  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
979 
980  if (s->predictor == PLANE && s->interlaced < y) {
981  diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
982 
983  left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
984  } else {
985  left = sub_left_prediction(s, s->temp[0], dst, w , left);
986  }
987 
988  encode_plane_bitstream(s, w, plane);
989  }
990  }
991  }
992  } else {
993  av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
994  }
995  emms_c();
996 
997  size += (put_bits_count(&s->pb) + 31) / 8;
998  put_bits(&s->pb, 16, 0);
999  put_bits(&s->pb, 15, 0);
1000  size /= 4;
1001 
1002  if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
1003  int j;
1004  char *p = avctx->stats_out;
1005  char *end = p + STATS_OUT_SIZE;
1006  for (i = 0; i < 4; i++) {
1007  for (j = 0; j < s->vlc_n; j++) {
1008  snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
1009  p += strlen(p);
1010  s->stats[i][j]= 0;
1011  }
1012  snprintf(p, end-p, "\n");
1013  p++;
1014  if (end <= p)
1015  return AVERROR(ENOMEM);
1016  }
1017  } else if (avctx->stats_out)
1018  avctx->stats_out[0] = '\0';
1019  if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
1020  flush_put_bits(&s->pb);
1021  s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
1022  }
1023 
1024  s->picture_number++;
1025 
1026  pkt->size = size * 4;
1027  pkt->flags |= AV_PKT_FLAG_KEY;
1028  *got_packet = 1;
1029 
1030  return 0;
1031 }
1032 
1034 {
1035  HYuvContext *s = avctx->priv_data;
1036 
1038 
1039  av_freep(&avctx->extradata);
1040  av_freep(&avctx->stats_out);
1041 
1042  av_frame_free(&avctx->coded_frame);
1043 
1044  return 0;
1045 }
1046 
1047 static const AVOption options[] = {
1048  { "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism",
1049  offsetof(HYuvContext, non_determ), AV_OPT_TYPE_INT, { .i64 = 1 },
1051  { NULL },
1052 };
1053 
1054 static const AVClass normal_class = {
1055  .class_name = "huffyuv",
1056  .item_name = av_default_item_name,
1057  .option = options,
1058  .version = LIBAVUTIL_VERSION_INT,
1059 };
1060 
1061 static const AVClass ff_class = {
1062  .class_name = "ffvhuff",
1063  .item_name = av_default_item_name,
1064  .option = options,
1065  .version = LIBAVUTIL_VERSION_INT,
1066 };
1067 
1069  .name = "huffyuv",
1070  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
1071  .type = AVMEDIA_TYPE_VIDEO,
1072  .id = AV_CODEC_ID_HUFFYUV,
1073  .priv_data_size = sizeof(HYuvContext),
1074  .init = encode_init,
1075  .encode2 = encode_frame,
1076  .close = encode_end,
1078  .priv_class = &normal_class,
1079  .pix_fmts = (const enum AVPixelFormat[]){
1082  },
1083 };
1084 
1085 #if CONFIG_FFVHUFF_ENCODER
1086 AVCodec ff_ffvhuff_encoder = {
1087  .name = "ffvhuff",
1088  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
1089  .type = AVMEDIA_TYPE_VIDEO,
1090  .id = AV_CODEC_ID_FFVHUFF,
1091  .priv_data_size = sizeof(HYuvContext),
1092  .init = encode_init,
1093  .encode2 = encode_frame,
1094  .close = encode_end,
1096  .priv_class = &ff_class,
1097  .pix_fmts = (const enum AVPixelFormat[]){
1114  },
1115 };
1116 #endif