FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tiny_ssim.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2003-2013 Loren Merritt
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 USA
17  */
18 /*
19  * tiny_ssim.c
20  * Computes the Structural Similarity Metric between two rawYV12 video files.
21  * original algorithm:
22  * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
23  * "Image quality assessment: From error visibility to structural similarity,"
24  * IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
25  *
26  * To improve speed, this implementation uses the standard approximation of
27  * overlapped 8x8 block sums, rather than the original gaussian weights.
28  */
29 
30 #include "config.h"
31 #include <inttypes.h>
32 #include <limits.h>
33 #include <math.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 
37 #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
38 #define FFMIN(a,b) ((a) > (b) ? (b) : (a))
39 
40 #define BIT_DEPTH 8
41 #define PIXEL_MAX ((1 << BIT_DEPTH)-1)
42 typedef uint8_t pixel;
43 
44 /****************************************************************************
45  * structural similarity metric
46  ****************************************************************************/
47 static void ssim_4x4x2_core( const pixel *pix1, intptr_t stride1,
48  const pixel *pix2, intptr_t stride2,
49  int sums[2][4] )
50 {
51  int x,y,z;
52 
53  for( z = 0; z < 2; z++ )
54  {
55  uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
56  for( y = 0; y < 4; y++ )
57  for( x = 0; x < 4; x++ )
58  {
59  int a = pix1[x+y*stride1];
60  int b = pix2[x+y*stride2];
61  s1 += a;
62  s2 += b;
63  ss += a*a;
64  ss += b*b;
65  s12 += a*b;
66  }
67  sums[z][0] = s1;
68  sums[z][1] = s2;
69  sums[z][2] = ss;
70  sums[z][3] = s12;
71  pix1 += 4;
72  pix2 += 4;
73  }
74 }
75 
76 static float ssim_end1( int s1, int s2, int ss, int s12 )
77 {
78 /* Maximum value for 10-bit is: ss*64 = (2^10-1)^2*16*4*64 = 4286582784, which will overflow in some cases.
79  * s1*s1, s2*s2, and s1*s2 also obtain this value for edge cases: ((2^10-1)*16*4)^2 = 4286582784.
80  * Maximum value for 9-bit is: ss*64 = (2^9-1)^2*16*4*64 = 1069551616, which will not overflow. */
81 #if BIT_DEPTH > 9
82 #define type float
83  static const float ssim_c1 = .01*.01*PIXEL_MAX*PIXEL_MAX*64;
84  static const float ssim_c2 = .03*.03*PIXEL_MAX*PIXEL_MAX*64*63;
85 #else
86 #define type int
87  static const int ssim_c1 = (int)(.01*.01*PIXEL_MAX*PIXEL_MAX*64 + .5);
88  static const int ssim_c2 = (int)(.03*.03*PIXEL_MAX*PIXEL_MAX*64*63 + .5);
89 #endif
90  type fs1 = s1;
91  type fs2 = s2;
92  type fss = ss;
93  type fs12 = s12;
94  type vars = fss*64 - fs1*fs1 - fs2*fs2;
95  type covar = fs12*64 - fs1*fs2;
96  return (float)(2*fs1*fs2 + ssim_c1) * (float)(2*covar + ssim_c2)
97  / ((float)(fs1*fs1 + fs2*fs2 + ssim_c1) * (float)(vars + ssim_c2));
98 #undef type
99 }
100 
101 static float ssim_end4( int sum0[5][4], int sum1[5][4], int width )
102 {
103  float ssim = 0.0;
104  int i;
105 
106  for( i = 0; i < width; i++ )
107  ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0],
108  sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1],
109  sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2],
110  sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] );
111  return ssim;
112 }
113 
115  pixel *pix1, intptr_t stride1,
116  pixel *pix2, intptr_t stride2,
117  int width, int height, void *buf, int *cnt )
118 {
119  int z = 0;
120  int x, y;
121  float ssim = 0.0;
122  int (*sum0)[4] = buf;
123  int (*sum1)[4] = sum0 + (width >> 2) + 3;
124  width >>= 2;
125  height >>= 2;
126  for( y = 1; y < height; y++ )
127  {
128  for( ; z <= y; z++ )
129  {
130  FFSWAP( void*, sum0, sum1 );
131  for( x = 0; x < width; x+=2 )
132  ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] );
133  }
134  for( x = 0; x < width-1; x += 4 )
135  ssim += ssim_end4( sum0+x, sum1+x, FFMIN(4,width-x-1) );
136  }
137 // *cnt = (height-1) * (width-1);
138  return ssim / ((height-1) * (width-1));
139 }
140 
141 
142 uint64_t ssd_plane( const uint8_t *pix1, const uint8_t *pix2, int size )
143 {
144  uint64_t ssd = 0;
145  int i;
146  for( i=0; i<size; i++ )
147  {
148  int d = pix1[i] - pix2[i];
149  ssd += d*d;
150  }
151  return ssd;
152 }
153 
154 static double ssd_to_psnr( uint64_t ssd, uint64_t denom )
155 {
156  return -10*log((double)ssd/(denom*255*255))/log(10);
157 }
158 
159 static double ssim_db( double ssim, double weight )
160 {
161  return 10*(log(weight)/log(10)-log(weight-ssim)/log(10));
162 }
163 
164 static void print_results(uint64_t ssd[3], double ssim[3], int frames, int w, int h)
165 {
166  printf( "PSNR Y:%.3f U:%.3f V:%.3f All:%.3f | ",
167  ssd_to_psnr( ssd[0], (uint64_t)frames*w*h ),
168  ssd_to_psnr( ssd[1], (uint64_t)frames*w*h/4 ),
169  ssd_to_psnr( ssd[2], (uint64_t)frames*w*h/4 ),
170  ssd_to_psnr( ssd[0] + ssd[1] + ssd[2], (uint64_t)frames*w*h*3/2 ) );
171  printf( "SSIM Y:%.5f U:%.5f V:%.5f All:%.5f (%.5f)",
172  ssim[0] / frames,
173  ssim[1] / frames,
174  ssim[2] / frames,
175  (ssim[0]*4 + ssim[1] + ssim[2]) / (frames*6),
176  ssim_db(ssim[0] * 4 + ssim[1] + ssim[2], frames*6));
177 }
178 
179 int main(int argc, char* argv[])
180 {
181  FILE *f[2];
182  uint8_t *buf[2], *plane[2][3];
183  int *temp;
184  uint64_t ssd[3] = {0,0,0};
185  double ssim[3] = {0,0,0};
186  int frame_size, w, h;
187  int frames, seek;
188  int i;
189 
190  if( argc<4 || 2 != sscanf(argv[3], "%dx%d", &w, &h) )
191  {
192  printf("tiny_ssim <file1.yuv> <file2.yuv> <width>x<height> [<seek>]\n");
193  return -1;
194  }
195 
196  f[0] = fopen(argv[1], "rb");
197  f[1] = fopen(argv[2], "rb");
198  sscanf(argv[3], "%dx%d", &w, &h);
199 
200  if (w<=0 || h<=0 || w*(int64_t)h >= INT_MAX/3 || 2LL*w+12 >= INT_MAX / sizeof(*temp)) {
201  fprintf(stderr, "Dimensions are too large, or invalid\n");
202  return -2;
203  }
204 
205  frame_size = w*h*3LL/2;
206  for( i=0; i<2; i++ )
207  {
208  buf[i] = malloc(frame_size);
209  plane[i][0] = buf[i];
210  plane[i][1] = plane[i][0] + w*h;
211  plane[i][2] = plane[i][1] + w*h/4;
212  }
213  temp = malloc((2*w+12)*sizeof(*temp));
214  seek = argc<5 ? 0 : atoi(argv[4]);
215  fseek(f[seek<0], seek < 0 ? -seek : seek, SEEK_SET);
216 
217  for( frames=0;; frames++ )
218  {
219  uint64_t ssd_one[3];
220  double ssim_one[3];
221  if( fread(buf[0], frame_size, 1, f[0]) != 1) break;
222  if( fread(buf[1], frame_size, 1, f[1]) != 1) break;
223  for( i=0; i<3; i++ )
224  {
225  ssd_one[i] = ssd_plane ( plane[0][i], plane[1][i], w*h>>2*!!i );
226  ssim_one[i] = ssim_plane( plane[0][i], w>>!!i,
227  plane[1][i], w>>!!i,
228  w>>!!i, h>>!!i, temp, NULL );
229  ssd[i] += ssd_one[i];
230  ssim[i] += ssim_one[i];
231  }
232 
233  printf("Frame %d | ", frames);
234  print_results(ssd_one, ssim_one, 1, w, h);
235  printf(" \r");
236  fflush(stdout);
237  }
238 
239  if( !frames ) return 0;
240 
241  printf("Total %d frames | ", frames);
242  print_results(ssd, ssim, frames, w, h);
243  printf("\n");
244 
245  return 0;
246 }