FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bytestream.h"
35 #include "bgmc.h"
36 #include "bswapdsp.h"
37 #include "internal.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
40 
41 #include <stdint.h>
42 
43 /** Rice parameters and corresponding index offsets for decoding the
44  * indices of scaled PARCOR values. The table chosen is set globally
45  * by the encoder and stored in ALSSpecificConfig.
46  */
47 static const int8_t parcor_rice_table[3][20][2] = {
48  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
49  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
50  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
51  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
52  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
53  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
54  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
55  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
56  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
57  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
58  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
59  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
60 };
61 
62 
63 /** Scaled PARCOR values used for the first two PARCOR coefficients.
64  * To be indexed by the Rice coded indices.
65  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
66  * Actual values are divided by 32 in order to be stored in 16 bits.
67  */
68 static const int16_t parcor_scaled_values[] = {
69  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
70  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
71  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
72  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
73  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
74  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
75  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
76  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
77  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
78  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
79  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
80  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
81  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
82  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
83  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
84  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
85  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
86  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
87  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
88  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
89  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
90  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
91  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
92  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
93  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
94  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
95  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
96  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
97  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
98  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
99  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
100  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
101 };
102 
103 
104 /** Gain values of p(0) for long-term prediction.
105  * To be indexed by the Rice coded indices.
106  */
107 static const uint8_t ltp_gain_values [4][4] = {
108  { 0, 8, 16, 24},
109  {32, 40, 48, 56},
110  {64, 70, 76, 82},
111  {88, 92, 96, 100}
112 };
113 
114 
115 /** Inter-channel weighting factors for multi-channel correlation.
116  * To be indexed by the Rice coded indices.
117  */
118 static const int16_t mcc_weightings[] = {
119  204, 192, 179, 166, 153, 140, 128, 115,
120  102, 89, 76, 64, 51, 38, 25, 12,
121  0, -12, -25, -38, -51, -64, -76, -89,
122  -102, -115, -128, -140, -153, -166, -179, -192
123 };
124 
125 
126 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
127  */
128 static const uint8_t tail_code[16][6] = {
129  { 74, 44, 25, 13, 7, 3},
130  { 68, 42, 24, 13, 7, 3},
131  { 58, 39, 23, 13, 7, 3},
132  {126, 70, 37, 19, 10, 5},
133  {132, 70, 37, 20, 10, 5},
134  {124, 70, 38, 20, 10, 5},
135  {120, 69, 37, 20, 11, 5},
136  {116, 67, 37, 20, 11, 5},
137  {108, 66, 36, 20, 10, 5},
138  {102, 62, 36, 20, 10, 5},
139  { 88, 58, 34, 19, 10, 5},
140  {162, 89, 49, 25, 13, 7},
141  {156, 87, 49, 26, 14, 7},
142  {150, 86, 47, 26, 14, 7},
143  {142, 84, 47, 26, 14, 7},
144  {131, 79, 46, 26, 14, 7}
145 };
146 
147 
148 enum RA_Flag {
152 };
153 
154 
155 typedef struct ALSSpecificConfig {
156  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
157  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
158  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
159  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
160  int frame_length; ///< frame length for each frame (last frame may differ)
161  int ra_distance; ///< distance between RA frames (in frames, 0...255)
162  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
163  int adapt_order; ///< adaptive order: 1 = on, 0 = off
164  int coef_table; ///< table index of Rice code parameters
165  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
166  int max_order; ///< maximum prediction order (0..1023)
167  int block_switching; ///< number of block switching levels
168  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
169  int sb_part; ///< sub-block partition
170  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
171  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
172  int chan_config; ///< indicates that a chan_config_info field is present
173  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
174  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
175  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
176  int *chan_pos; ///< original channel positions
177  int crc_enabled; ///< enable Cyclic Redundancy Checksum
179 
180 
181 typedef struct ALSChannelData {
187  int weighting[6];
189 
190 
191 typedef struct ALSDecContext {
196  const AVCRC *crc_table;
197  uint32_t crc_org; ///< CRC value of the original input data
198  uint32_t crc; ///< CRC value calculated from decoded data
199  unsigned int cur_frame_length; ///< length of the current frame to decode
200  unsigned int frame_id; ///< the frame ID / number of the current frame
201  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
202  unsigned int cs_switch; ///< if true, channel rearrangement is done
203  unsigned int num_blocks; ///< number of blocks used in the current frame
204  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
205  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
206  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
207  int ltp_lag_length; ///< number of bits used for ltp lag value
208  int *const_block; ///< contains const_block flags for all channels
209  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
210  unsigned int *opt_order; ///< contains opt_order flags for all channels
211  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
212  int *use_ltp; ///< contains use_ltp flags for all channels
213  int *ltp_lag; ///< contains ltp lag values for all channels
214  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
215  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
216  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
217  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
218  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
219  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
220  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
221  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
222  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
223  int *reverted_channels; ///< stores a flag for each reverted channel
224  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
225  int32_t **raw_samples; ///< decoded raw samples for each channel
226  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
227  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
228 } ALSDecContext;
229 
230 
231 typedef struct ALSBlockData {
232  unsigned int block_length; ///< number of samples within the block
233  unsigned int ra_block; ///< if true, this is a random access block
234  int *const_block; ///< if true, this is a constant value block
235  int js_blocks; ///< true if this block contains a difference signal
236  unsigned int *shift_lsbs; ///< shift of values for this block
237  unsigned int *opt_order; ///< prediction order of this block
238  int *store_prev_samples;///< if true, carryover samples have to be stored
239  int *use_ltp; ///< if true, long-term prediction is used
240  int *ltp_lag; ///< lag value for long-term prediction
241  int *ltp_gain; ///< gain values for ltp 5-tap filter
242  int32_t *quant_cof; ///< quantized parcor coefficients
243  int32_t *lpc_cof; ///< coefficients of the direct form prediction
244  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
245  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
246  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
247 } ALSBlockData;
248 
249 
251 {
252 #ifdef DEBUG
253  AVCodecContext *avctx = ctx->avctx;
254  ALSSpecificConfig *sconf = &ctx->sconf;
255 
256  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
257  ff_dlog(avctx, "floating = %i\n", sconf->floating);
258  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
259  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
260  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
261  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
262  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
263  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
264  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
265  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
266  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
267  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
268  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
269  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
270  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
271  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
272  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
273  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
274 #endif
275 }
276 
277 
278 /** Read an ALSSpecificConfig from a buffer into the output struct.
279  */
281 {
282  GetBitContext gb;
283  uint64_t ht_size;
284  int i, config_offset;
285  MPEG4AudioConfig m4ac = {0};
286  ALSSpecificConfig *sconf = &ctx->sconf;
287  AVCodecContext *avctx = ctx->avctx;
288  uint32_t als_id, header_size, trailer_size;
289  int ret;
290 
291  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
292  return ret;
293 
294  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
295  avctx->extradata_size * 8, 1);
296 
297  if (config_offset < 0)
298  return AVERROR_INVALIDDATA;
299 
300  skip_bits_long(&gb, config_offset);
301 
302  if (get_bits_left(&gb) < (30 << 3))
303  return AVERROR_INVALIDDATA;
304 
305  // read the fixed items
306  als_id = get_bits_long(&gb, 32);
307  avctx->sample_rate = m4ac.sample_rate;
308  skip_bits_long(&gb, 32); // sample rate already known
309  sconf->samples = get_bits_long(&gb, 32);
310  avctx->channels = m4ac.channels;
311  skip_bits(&gb, 16); // number of channels already known
312  skip_bits(&gb, 3); // skip file_type
313  sconf->resolution = get_bits(&gb, 3);
314  sconf->floating = get_bits1(&gb);
315  sconf->msb_first = get_bits1(&gb);
316  sconf->frame_length = get_bits(&gb, 16) + 1;
317  sconf->ra_distance = get_bits(&gb, 8);
318  sconf->ra_flag = get_bits(&gb, 2);
319  sconf->adapt_order = get_bits1(&gb);
320  sconf->coef_table = get_bits(&gb, 2);
321  sconf->long_term_prediction = get_bits1(&gb);
322  sconf->max_order = get_bits(&gb, 10);
323  sconf->block_switching = get_bits(&gb, 2);
324  sconf->bgmc = get_bits1(&gb);
325  sconf->sb_part = get_bits1(&gb);
326  sconf->joint_stereo = get_bits1(&gb);
327  sconf->mc_coding = get_bits1(&gb);
328  sconf->chan_config = get_bits1(&gb);
329  sconf->chan_sort = get_bits1(&gb);
330  sconf->crc_enabled = get_bits1(&gb);
331  sconf->rlslms = get_bits1(&gb);
332  skip_bits(&gb, 5); // skip 5 reserved bits
333  skip_bits1(&gb); // skip aux_data_enabled
334 
335 
336  // check for ALSSpecificConfig struct
337  if (als_id != MKBETAG('A','L','S','\0'))
338  return AVERROR_INVALIDDATA;
339 
340  ctx->cur_frame_length = sconf->frame_length;
341 
342  // read channel config
343  if (sconf->chan_config)
344  sconf->chan_config_info = get_bits(&gb, 16);
345  // TODO: use this to set avctx->channel_layout
346 
347 
348  // read channel sorting
349  if (sconf->chan_sort && avctx->channels > 1) {
350  int chan_pos_bits = av_ceil_log2(avctx->channels);
351  int bits_needed = avctx->channels * chan_pos_bits + 7;
352  if (get_bits_left(&gb) < bits_needed)
353  return AVERROR_INVALIDDATA;
354 
355  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
356  return AVERROR(ENOMEM);
357 
358  ctx->cs_switch = 1;
359 
360  for (i = 0; i < avctx->channels; i++) {
361  sconf->chan_pos[i] = -1;
362  }
363 
364  for (i = 0; i < avctx->channels; i++) {
365  int idx;
366 
367  idx = get_bits(&gb, chan_pos_bits);
368  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
369  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
370  ctx->cs_switch = 0;
371  break;
372  }
373  sconf->chan_pos[idx] = i;
374  }
375 
376  align_get_bits(&gb);
377  }
378 
379 
380  // read fixed header and trailer sizes,
381  // if size = 0xFFFFFFFF then there is no data field!
382  if (get_bits_left(&gb) < 64)
383  return AVERROR_INVALIDDATA;
384 
385  header_size = get_bits_long(&gb, 32);
386  trailer_size = get_bits_long(&gb, 32);
387  if (header_size == 0xFFFFFFFF)
388  header_size = 0;
389  if (trailer_size == 0xFFFFFFFF)
390  trailer_size = 0;
391 
392  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
393 
394 
395  // skip the header and trailer data
396  if (get_bits_left(&gb) < ht_size)
397  return AVERROR_INVALIDDATA;
398 
399  if (ht_size > INT32_MAX)
400  return AVERROR_PATCHWELCOME;
401 
402  skip_bits_long(&gb, ht_size);
403 
404 
405  // initialize CRC calculation
406  if (sconf->crc_enabled) {
407  if (get_bits_left(&gb) < 32)
408  return AVERROR_INVALIDDATA;
409 
412  ctx->crc = 0xFFFFFFFF;
413  ctx->crc_org = ~get_bits_long(&gb, 32);
414  } else
415  skip_bits_long(&gb, 32);
416  }
417 
418 
419  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
420 
422 
423  return 0;
424 }
425 
426 
427 /** Check the ALSSpecificConfig for unsupported features.
428  */
430 {
431  ALSSpecificConfig *sconf = &ctx->sconf;
432  int error = 0;
433 
434  // report unsupported feature and set error value
435  #define MISSING_ERR(cond, str, errval) \
436  { \
437  if (cond) { \
438  avpriv_report_missing_feature(ctx->avctx, \
439  str); \
440  error = errval; \
441  } \
442  }
443 
444  MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
445  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
446 
447  return error;
448 }
449 
450 
451 /** Parse the bs_info field to extract the block partitioning used in
452  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
453  */
454 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
455  unsigned int div, unsigned int **div_blocks,
456  unsigned int *num_blocks)
457 {
458  if (n < 31 && ((bs_info << n) & 0x40000000)) {
459  // if the level is valid and the investigated bit n is set
460  // then recursively check both children at bits (2n+1) and (2n+2)
461  n *= 2;
462  div += 1;
463  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
464  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
465  } else {
466  // else the bit is not set or the last level has been reached
467  // (bit implicitly not set)
468  **div_blocks = div;
469  (*div_blocks)++;
470  (*num_blocks)++;
471  }
472 }
473 
474 
475 /** Read and decode a Rice codeword.
476  */
477 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
478 {
479  int max = get_bits_left(gb) - k;
480  int q = get_unary(gb, 0, max);
481  int r = k ? get_bits1(gb) : !(q & 1);
482 
483  if (k > 1) {
484  q <<= (k - 1);
485  q += get_bits_long(gb, k - 1);
486  } else if (!k) {
487  q >>= 1;
488  }
489  return r ? q : ~q;
490 }
491 
492 
493 /** Convert PARCOR coefficient k to direct filter coefficient.
494  */
495 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
496 {
497  int i, j;
498 
499  for (i = 0, j = k - 1; i < j; i++, j--) {
500  int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
501  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
502  cof[i] += tmp1;
503  }
504  if (i == j)
505  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
506 
507  cof[k] = par[k];
508 }
509 
510 
511 /** Read block switching field if necessary and set actual block sizes.
512  * Also assure that the block sizes of the last frame correspond to the
513  * actual number of samples.
514  */
515 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
516  uint32_t *bs_info)
517 {
518  ALSSpecificConfig *sconf = &ctx->sconf;
519  GetBitContext *gb = &ctx->gb;
520  unsigned int *ptr_div_blocks = div_blocks;
521  unsigned int b;
522 
523  if (sconf->block_switching) {
524  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
525  *bs_info = get_bits_long(gb, bs_info_len);
526  *bs_info <<= (32 - bs_info_len);
527  }
528 
529  ctx->num_blocks = 0;
530  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
531 
532  // The last frame may have an overdetermined block structure given in
533  // the bitstream. In that case the defined block structure would need
534  // more samples than available to be consistent.
535  // The block structure is actually used but the block sizes are adapted
536  // to fit the actual number of available samples.
537  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
538  // This results in the actual block sizes: 2 2 1 0.
539  // This is not specified in 14496-3 but actually done by the reference
540  // codec RM22 revision 2.
541  // This appears to happen in case of an odd number of samples in the last
542  // frame which is actually not allowed by the block length switching part
543  // of 14496-3.
544  // The ALS conformance files feature an odd number of samples in the last
545  // frame.
546 
547  for (b = 0; b < ctx->num_blocks; b++)
548  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
549 
550  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
551  unsigned int remaining = ctx->cur_frame_length;
552 
553  for (b = 0; b < ctx->num_blocks; b++) {
554  if (remaining <= div_blocks[b]) {
555  div_blocks[b] = remaining;
556  ctx->num_blocks = b + 1;
557  break;
558  }
559 
560  remaining -= div_blocks[b];
561  }
562  }
563 }
564 
565 
566 /** Read the block data for a constant block
567  */
569 {
570  ALSSpecificConfig *sconf = &ctx->sconf;
571  AVCodecContext *avctx = ctx->avctx;
572  GetBitContext *gb = &ctx->gb;
573 
574  if (bd->block_length <= 0)
575  return AVERROR_INVALIDDATA;
576 
577  *bd->raw_samples = 0;
578  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
579  bd->js_blocks = get_bits1(gb);
580 
581  // skip 5 reserved bits
582  skip_bits(gb, 5);
583 
584  if (*bd->const_block) {
585  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
586  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
587  }
588 
589  // ensure constant block decoding by reusing this field
590  *bd->const_block = 1;
591 
592  return 0;
593 }
594 
595 
596 /** Decode the block data for a constant block
597  */
599 {
600  int smp = bd->block_length - 1;
601  int32_t val = *bd->raw_samples;
602  int32_t *dst = bd->raw_samples + 1;
603 
604  // write raw samples into buffer
605  for (; smp; smp--)
606  *dst++ = val;
607 }
608 
609 
610 /** Read the block data for a non-constant block
611  */
613 {
614  ALSSpecificConfig *sconf = &ctx->sconf;
615  AVCodecContext *avctx = ctx->avctx;
616  GetBitContext *gb = &ctx->gb;
617  unsigned int k;
618  unsigned int s[8];
619  unsigned int sx[8];
620  unsigned int sub_blocks, log2_sub_blocks, sb_length;
621  unsigned int start = 0;
622  unsigned int opt_order;
623  int sb;
624  int32_t *quant_cof = bd->quant_cof;
625  int32_t *current_res;
626 
627 
628  // ensure variable block decoding by reusing this field
629  *bd->const_block = 0;
630 
631  *bd->opt_order = 1;
632  bd->js_blocks = get_bits1(gb);
633 
634  opt_order = *bd->opt_order;
635 
636  // determine the number of subblocks for entropy decoding
637  if (!sconf->bgmc && !sconf->sb_part) {
638  log2_sub_blocks = 0;
639  } else {
640  if (sconf->bgmc && sconf->sb_part)
641  log2_sub_blocks = get_bits(gb, 2);
642  else
643  log2_sub_blocks = 2 * get_bits1(gb);
644  }
645 
646  sub_blocks = 1 << log2_sub_blocks;
647 
648  // do not continue in case of a damaged stream since
649  // block_length must be evenly divisible by sub_blocks
650  if (bd->block_length & (sub_blocks - 1)) {
651  av_log(avctx, AV_LOG_WARNING,
652  "Block length is not evenly divisible by the number of subblocks.\n");
653  return AVERROR_INVALIDDATA;
654  }
655 
656  sb_length = bd->block_length >> log2_sub_blocks;
657 
658  if (sconf->bgmc) {
659  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
660  for (k = 1; k < sub_blocks; k++)
661  s[k] = s[k - 1] + decode_rice(gb, 2);
662 
663  for (k = 0; k < sub_blocks; k++) {
664  sx[k] = s[k] & 0x0F;
665  s [k] >>= 4;
666  }
667  } else {
668  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
669  for (k = 1; k < sub_blocks; k++)
670  s[k] = s[k - 1] + decode_rice(gb, 0);
671  }
672  for (k = 1; k < sub_blocks; k++)
673  if (s[k] > 32) {
674  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
675  return AVERROR_INVALIDDATA;
676  }
677 
678  if (get_bits1(gb))
679  *bd->shift_lsbs = get_bits(gb, 4) + 1;
680 
681  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
682 
683 
684  if (!sconf->rlslms) {
685  if (sconf->adapt_order && sconf->max_order) {
686  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
687  2, sconf->max_order + 1));
688  *bd->opt_order = get_bits(gb, opt_order_length);
689  if (*bd->opt_order > sconf->max_order) {
690  *bd->opt_order = sconf->max_order;
691  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
692  return AVERROR_INVALIDDATA;
693  }
694  } else {
695  *bd->opt_order = sconf->max_order;
696  }
697  if (*bd->opt_order > bd->block_length) {
698  *bd->opt_order = bd->block_length;
699  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
700  return AVERROR_INVALIDDATA;
701  }
702  opt_order = *bd->opt_order;
703 
704  if (opt_order) {
705  int add_base;
706 
707  if (sconf->coef_table == 3) {
708  add_base = 0x7F;
709 
710  // read coefficient 0
711  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
712 
713  // read coefficient 1
714  if (opt_order > 1)
715  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
716 
717  // read coefficients 2 to opt_order
718  for (k = 2; k < opt_order; k++)
719  quant_cof[k] = get_bits(gb, 7);
720  } else {
721  int k_max;
722  add_base = 1;
723 
724  // read coefficient 0 to 19
725  k_max = FFMIN(opt_order, 20);
726  for (k = 0; k < k_max; k++) {
727  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
728  int offset = parcor_rice_table[sconf->coef_table][k][0];
729  quant_cof[k] = decode_rice(gb, rice_param) + offset;
730  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
731  av_log(avctx, AV_LOG_ERROR,
732  "quant_cof %"PRIu32" is out of range.\n",
733  quant_cof[k]);
734  return AVERROR_INVALIDDATA;
735  }
736  }
737 
738  // read coefficients 20 to 126
739  k_max = FFMIN(opt_order, 127);
740  for (; k < k_max; k++)
741  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
742 
743  // read coefficients 127 to opt_order
744  for (; k < opt_order; k++)
745  quant_cof[k] = decode_rice(gb, 1);
746 
747  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
748 
749  if (opt_order > 1)
750  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
751  }
752 
753  for (k = 2; k < opt_order; k++)
754  quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
755  }
756  }
757 
758  // read LTP gain and lag values
759  if (sconf->long_term_prediction) {
760  *bd->use_ltp = get_bits1(gb);
761 
762  if (*bd->use_ltp) {
763  int r, c;
764 
765  bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
766  bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
767 
768  r = get_unary(gb, 0, 3);
769  c = get_bits(gb, 2);
770  bd->ltp_gain[2] = ltp_gain_values[r][c];
771 
772  bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
773  bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
774 
775  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
776  *bd->ltp_lag += FFMAX(4, opt_order + 1);
777  }
778  }
779 
780  // read first value and residuals in case of a random access block
781  if (bd->ra_block) {
782  if (opt_order)
783  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
784  if (opt_order > 1)
785  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
786  if (opt_order > 2)
787  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
788 
789  start = FFMIN(opt_order, 3);
790  }
791 
792  // read all residuals
793  if (sconf->bgmc) {
794  int delta[8];
795  unsigned int k [8];
796  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
797 
798  // read most significant bits
799  unsigned int high;
800  unsigned int low;
801  unsigned int value;
802 
803  ff_bgmc_decode_init(gb, &high, &low, &value);
804 
805  current_res = bd->raw_samples + start;
806 
807  for (sb = 0; sb < sub_blocks; sb++) {
808  unsigned int sb_len = sb_length - (sb ? 0 : start);
809 
810  k [sb] = s[sb] > b ? s[sb] - b : 0;
811  delta[sb] = 5 - s[sb] + k[sb];
812 
813  ff_bgmc_decode(gb, sb_len, current_res,
814  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
815 
816  current_res += sb_len;
817  }
818 
819  ff_bgmc_decode_end(gb);
820 
821 
822  // read least significant bits and tails
823  current_res = bd->raw_samples + start;
824 
825  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
826  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
827  unsigned int cur_k = k[sb];
828  unsigned int cur_s = s[sb];
829 
830  for (; start < sb_length; start++) {
831  int32_t res = *current_res;
832 
833  if (res == cur_tail_code) {
834  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
835  << (5 - delta[sb]);
836 
837  res = decode_rice(gb, cur_s);
838 
839  if (res >= 0) {
840  res += (max_msb ) << cur_k;
841  } else {
842  res -= (max_msb - 1) << cur_k;
843  }
844  } else {
845  if (res > cur_tail_code)
846  res--;
847 
848  if (res & 1)
849  res = -res;
850 
851  res >>= 1;
852 
853  if (cur_k) {
854  res <<= cur_k;
855  res |= get_bits_long(gb, cur_k);
856  }
857  }
858 
859  *current_res++ = res;
860  }
861  }
862  } else {
863  current_res = bd->raw_samples + start;
864 
865  for (sb = 0; sb < sub_blocks; sb++, start = 0)
866  for (; start < sb_length; start++)
867  *current_res++ = decode_rice(gb, s[sb]);
868  }
869 
870  if (!sconf->mc_coding || ctx->js_switch)
871  align_get_bits(gb);
872 
873  return 0;
874 }
875 
876 
877 /** Decode the block data for a non-constant block
878  */
880 {
881  ALSSpecificConfig *sconf = &ctx->sconf;
882  unsigned int block_length = bd->block_length;
883  unsigned int smp = 0;
884  unsigned int k;
885  int opt_order = *bd->opt_order;
886  int sb;
887  int64_t y;
888  int32_t *quant_cof = bd->quant_cof;
889  int32_t *lpc_cof = bd->lpc_cof;
890  int32_t *raw_samples = bd->raw_samples;
891  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
892  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
893 
894  // reverse long-term prediction
895  if (*bd->use_ltp) {
896  int ltp_smp;
897 
898  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
899  int center = ltp_smp - *bd->ltp_lag;
900  int begin = FFMAX(0, center - 2);
901  int end = center + 3;
902  int tab = 5 - (end - begin);
903  int base;
904 
905  y = 1 << 6;
906 
907  for (base = begin; base < end; base++, tab++)
908  y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
909 
910  raw_samples[ltp_smp] += y >> 7;
911  }
912  }
913 
914  // reconstruct all samples from residuals
915  if (bd->ra_block) {
916  for (smp = 0; smp < opt_order; smp++) {
917  y = 1 << 19;
918 
919  for (sb = 0; sb < smp; sb++)
920  y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
921 
922  *raw_samples++ -= y >> 20;
923  parcor_to_lpc(smp, quant_cof, lpc_cof);
924  }
925  } else {
926  for (k = 0; k < opt_order; k++)
927  parcor_to_lpc(k, quant_cof, lpc_cof);
928 
929  // store previous samples in case that they have to be altered
930  if (*bd->store_prev_samples)
931  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
932  sizeof(*bd->prev_raw_samples) * sconf->max_order);
933 
934  // reconstruct difference signal for prediction (joint-stereo)
935  if (bd->js_blocks && bd->raw_other) {
936  int32_t *left, *right;
937 
938  if (bd->raw_other > raw_samples) { // D = R - L
939  left = raw_samples;
940  right = bd->raw_other;
941  } else { // D = R - L
942  left = bd->raw_other;
943  right = raw_samples;
944  }
945 
946  for (sb = -1; sb >= -sconf->max_order; sb--)
947  raw_samples[sb] = right[sb] - left[sb];
948  }
949 
950  // reconstruct shifted signal
951  if (*bd->shift_lsbs)
952  for (sb = -1; sb >= -sconf->max_order; sb--)
953  raw_samples[sb] >>= *bd->shift_lsbs;
954  }
955 
956  // reverse linear prediction coefficients for efficiency
957  lpc_cof = lpc_cof + opt_order;
958 
959  for (sb = 0; sb < opt_order; sb++)
960  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
961 
962  // reconstruct raw samples
963  raw_samples = bd->raw_samples + smp;
964  lpc_cof = lpc_cof_reversed + opt_order;
965 
966  for (; raw_samples < raw_samples_end; raw_samples++) {
967  y = 1 << 19;
968 
969  for (sb = -opt_order; sb < 0; sb++)
970  y += MUL64(lpc_cof[sb], raw_samples[sb]);
971 
972  *raw_samples -= y >> 20;
973  }
974 
975  raw_samples = bd->raw_samples;
976 
977  // restore previous samples in case that they have been altered
978  if (*bd->store_prev_samples)
979  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
980  sizeof(*raw_samples) * sconf->max_order);
981 
982  return 0;
983 }
984 
985 
986 /** Read the block data.
987  */
988 static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
989 {
990  int ret;
991  GetBitContext *gb = &ctx->gb;
992 
993  *bd->shift_lsbs = 0;
994  // read block type flag and read the samples accordingly
995  if (get_bits1(gb)) {
996  ret = read_var_block_data(ctx, bd);
997  } else {
998  ret = read_const_block_data(ctx, bd);
999  }
1000 
1001  return ret;
1002 }
1003 
1004 
1005 /** Decode the block data.
1006  */
1008 {
1009  unsigned int smp;
1010  int ret = 0;
1011 
1012  // read block type flag and read the samples accordingly
1013  if (*bd->const_block)
1014  decode_const_block_data(ctx, bd);
1015  else
1016  ret = decode_var_block_data(ctx, bd); // always return 0
1017 
1018  if (ret < 0)
1019  return ret;
1020 
1021  // TODO: read RLSLMS extension data
1022 
1023  if (*bd->shift_lsbs)
1024  for (smp = 0; smp < bd->block_length; smp++)
1025  bd->raw_samples[smp] <<= *bd->shift_lsbs;
1026 
1027  return 0;
1028 }
1029 
1030 
1031 /** Read and decode block data successively.
1032  */
1034 {
1035  int ret;
1036 
1037  if ((ret = read_block(ctx, bd)) < 0)
1038  return ret;
1039 
1040  return decode_block(ctx, bd);
1041 }
1042 
1043 
1044 /** Compute the number of samples left to decode for the current frame and
1045  * sets these samples to zero.
1046  */
1047 static void zero_remaining(unsigned int b, unsigned int b_max,
1048  const unsigned int *div_blocks, int32_t *buf)
1049 {
1050  unsigned int count = 0;
1051 
1052  while (b < b_max)
1053  count += div_blocks[b++];
1054 
1055  if (count)
1056  memset(buf, 0, sizeof(*buf) * count);
1057 }
1058 
1059 
1060 /** Decode blocks independently.
1061  */
1062 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1063  unsigned int c, const unsigned int *div_blocks,
1064  unsigned int *js_blocks)
1065 {
1066  int ret;
1067  unsigned int b;
1068  ALSBlockData bd = { 0 };
1069 
1070  bd.ra_block = ra_frame;
1071  bd.const_block = ctx->const_block;
1072  bd.shift_lsbs = ctx->shift_lsbs;
1073  bd.opt_order = ctx->opt_order;
1075  bd.use_ltp = ctx->use_ltp;
1076  bd.ltp_lag = ctx->ltp_lag;
1077  bd.ltp_gain = ctx->ltp_gain[0];
1078  bd.quant_cof = ctx->quant_cof[0];
1079  bd.lpc_cof = ctx->lpc_cof[0];
1081  bd.raw_samples = ctx->raw_samples[c];
1082 
1083 
1084  for (b = 0; b < ctx->num_blocks; b++) {
1085  bd.block_length = div_blocks[b];
1086 
1087  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1088  // damaged block, write zero for the rest of the frame
1089  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1090  return ret;
1091  }
1092  bd.raw_samples += div_blocks[b];
1093  bd.ra_block = 0;
1094  }
1095 
1096  return 0;
1097 }
1098 
1099 
1100 /** Decode blocks dependently.
1101  */
1102 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1103  unsigned int c, const unsigned int *div_blocks,
1104  unsigned int *js_blocks)
1105 {
1106  ALSSpecificConfig *sconf = &ctx->sconf;
1107  unsigned int offset = 0;
1108  unsigned int b;
1109  int ret;
1110  ALSBlockData bd[2] = { { 0 } };
1111 
1112  bd[0].ra_block = ra_frame;
1113  bd[0].const_block = ctx->const_block;
1114  bd[0].shift_lsbs = ctx->shift_lsbs;
1115  bd[0].opt_order = ctx->opt_order;
1117  bd[0].use_ltp = ctx->use_ltp;
1118  bd[0].ltp_lag = ctx->ltp_lag;
1119  bd[0].ltp_gain = ctx->ltp_gain[0];
1120  bd[0].quant_cof = ctx->quant_cof[0];
1121  bd[0].lpc_cof = ctx->lpc_cof[0];
1122  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1123  bd[0].js_blocks = *js_blocks;
1124 
1125  bd[1].ra_block = ra_frame;
1126  bd[1].const_block = ctx->const_block;
1127  bd[1].shift_lsbs = ctx->shift_lsbs;
1128  bd[1].opt_order = ctx->opt_order;
1130  bd[1].use_ltp = ctx->use_ltp;
1131  bd[1].ltp_lag = ctx->ltp_lag;
1132  bd[1].ltp_gain = ctx->ltp_gain[0];
1133  bd[1].quant_cof = ctx->quant_cof[0];
1134  bd[1].lpc_cof = ctx->lpc_cof[0];
1135  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1136  bd[1].js_blocks = *(js_blocks + 1);
1137 
1138  // decode all blocks
1139  for (b = 0; b < ctx->num_blocks; b++) {
1140  unsigned int s;
1141 
1142  bd[0].block_length = div_blocks[b];
1143  bd[1].block_length = div_blocks[b];
1144 
1145  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1146  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1147 
1148  bd[0].raw_other = bd[1].raw_samples;
1149  bd[1].raw_other = bd[0].raw_samples;
1150 
1151  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1152  (ret = read_decode_block(ctx, &bd[1])) < 0)
1153  goto fail;
1154 
1155  // reconstruct joint-stereo blocks
1156  if (bd[0].js_blocks) {
1157  if (bd[1].js_blocks)
1158  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1159 
1160  for (s = 0; s < div_blocks[b]; s++)
1161  bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1162  } else if (bd[1].js_blocks) {
1163  for (s = 0; s < div_blocks[b]; s++)
1164  bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1165  }
1166 
1167  offset += div_blocks[b];
1168  bd[0].ra_block = 0;
1169  bd[1].ra_block = 0;
1170  }
1171 
1172  // store carryover raw samples,
1173  // the others channel raw samples are stored by the calling function.
1174  memmove(ctx->raw_samples[c] - sconf->max_order,
1175  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1176  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1177 
1178  return 0;
1179 fail:
1180  // damaged block, write zero for the rest of the frame
1181  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1182  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1183  return ret;
1184 }
1185 
1186 static inline int als_weighting(GetBitContext *gb, int k, int off)
1187 {
1188  int idx = av_clip(decode_rice(gb, k) + off,
1189  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1190  return mcc_weightings[idx];
1191 }
1192 
1193 /** Read the channel data.
1194  */
1196 {
1197  GetBitContext *gb = &ctx->gb;
1198  ALSChannelData *current = cd;
1199  unsigned int channels = ctx->avctx->channels;
1200  int entries = 0;
1201 
1202  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1203  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1204 
1205  if (current->master_channel >= channels) {
1206  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1207  return AVERROR_INVALIDDATA;
1208  }
1209 
1210  if (current->master_channel != c) {
1211  current->time_diff_flag = get_bits1(gb);
1212  current->weighting[0] = als_weighting(gb, 1, 16);
1213  current->weighting[1] = als_weighting(gb, 2, 14);
1214  current->weighting[2] = als_weighting(gb, 1, 16);
1215 
1216  if (current->time_diff_flag) {
1217  current->weighting[3] = als_weighting(gb, 1, 16);
1218  current->weighting[4] = als_weighting(gb, 1, 16);
1219  current->weighting[5] = als_weighting(gb, 1, 16);
1220 
1221  current->time_diff_sign = get_bits1(gb);
1222  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1223  }
1224  }
1225 
1226  current++;
1227  entries++;
1228  }
1229 
1230  if (entries == channels) {
1231  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1232  return AVERROR_INVALIDDATA;
1233  }
1234 
1235  align_get_bits(gb);
1236  return 0;
1237 }
1238 
1239 
1240 /** Recursively reverts the inter-channel correlation for a block.
1241  */
1243  ALSChannelData **cd, int *reverted,
1244  unsigned int offset, int c)
1245 {
1246  ALSChannelData *ch = cd[c];
1247  unsigned int dep = 0;
1248  unsigned int channels = ctx->avctx->channels;
1249  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1250 
1251  if (reverted[c])
1252  return 0;
1253 
1254  reverted[c] = 1;
1255 
1256  while (dep < channels && !ch[dep].stop_flag) {
1257  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1258  ch[dep].master_channel);
1259 
1260  dep++;
1261  }
1262 
1263  if (dep == channels) {
1264  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1265  return AVERROR_INVALIDDATA;
1266  }
1267 
1268  bd->const_block = ctx->const_block + c;
1269  bd->shift_lsbs = ctx->shift_lsbs + c;
1270  bd->opt_order = ctx->opt_order + c;
1272  bd->use_ltp = ctx->use_ltp + c;
1273  bd->ltp_lag = ctx->ltp_lag + c;
1274  bd->ltp_gain = ctx->ltp_gain[c];
1275  bd->lpc_cof = ctx->lpc_cof[c];
1276  bd->quant_cof = ctx->quant_cof[c];
1277  bd->raw_samples = ctx->raw_samples[c] + offset;
1278 
1279  for (dep = 0; !ch[dep].stop_flag; dep++) {
1280  ptrdiff_t smp;
1281  ptrdiff_t begin = 1;
1282  ptrdiff_t end = bd->block_length - 1;
1283  int64_t y;
1284  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1285 
1286  if (ch[dep].master_channel == c)
1287  continue;
1288 
1289  if (ch[dep].time_diff_flag) {
1290  int t = ch[dep].time_diff_index;
1291 
1292  if (ch[dep].time_diff_sign) {
1293  t = -t;
1294  if (begin < t) {
1295  av_log(ctx->avctx, AV_LOG_ERROR, "begin %td smaller than time diff index %d.\n", begin, t);
1296  return AVERROR_INVALIDDATA;
1297  }
1298  begin -= t;
1299  } else {
1300  if (end < t) {
1301  av_log(ctx->avctx, AV_LOG_ERROR, "end %td smaller than time diff index %d.\n", end, t);
1302  return AVERROR_INVALIDDATA;
1303  }
1304  end -= t;
1305  }
1306 
1307  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1308  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1309  av_log(ctx->avctx, AV_LOG_ERROR,
1310  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1311  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1312  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1313  return AVERROR_INVALIDDATA;
1314  }
1315 
1316  for (smp = begin; smp < end; smp++) {
1317  y = (1 << 6) +
1318  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1319  MUL64(ch[dep].weighting[1], master[smp ]) +
1320  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1321  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1322  MUL64(ch[dep].weighting[4], master[smp + t]) +
1323  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1324 
1325  bd->raw_samples[smp] += y >> 7;
1326  }
1327  } else {
1328 
1329  if (begin - 1 < ctx->raw_buffer - master ||
1330  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1331  av_log(ctx->avctx, AV_LOG_ERROR,
1332  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1333  master + begin - 1, master + end + 1,
1334  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1335  return AVERROR_INVALIDDATA;
1336  }
1337 
1338  for (smp = begin; smp < end; smp++) {
1339  y = (1 << 6) +
1340  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1341  MUL64(ch[dep].weighting[1], master[smp ]) +
1342  MUL64(ch[dep].weighting[2], master[smp + 1]);
1343 
1344  bd->raw_samples[smp] += y >> 7;
1345  }
1346  }
1347  }
1348 
1349  return 0;
1350 }
1351 
1352 
1353 /** Read the frame data.
1354  */
1355 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1356 {
1357  ALSSpecificConfig *sconf = &ctx->sconf;
1358  AVCodecContext *avctx = ctx->avctx;
1359  GetBitContext *gb = &ctx->gb;
1360  unsigned int div_blocks[32]; ///< block sizes.
1361  unsigned int c;
1362  unsigned int js_blocks[2];
1363  uint32_t bs_info = 0;
1364  int ret;
1365 
1366  // skip the size of the ra unit if present in the frame
1367  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1368  skip_bits_long(gb, 32);
1369 
1370  if (sconf->mc_coding && sconf->joint_stereo) {
1371  ctx->js_switch = get_bits1(gb);
1372  align_get_bits(gb);
1373  }
1374 
1375  if (!sconf->mc_coding || ctx->js_switch) {
1376  int independent_bs = !sconf->joint_stereo;
1377 
1378  for (c = 0; c < avctx->channels; c++) {
1379  js_blocks[0] = 0;
1380  js_blocks[1] = 0;
1381 
1382  get_block_sizes(ctx, div_blocks, &bs_info);
1383 
1384  // if joint_stereo and block_switching is set, independent decoding
1385  // is signaled via the first bit of bs_info
1386  if (sconf->joint_stereo && sconf->block_switching)
1387  if (bs_info >> 31)
1388  independent_bs = 2;
1389 
1390  // if this is the last channel, it has to be decoded independently
1391  if (c == avctx->channels - 1)
1392  independent_bs = 1;
1393 
1394  if (independent_bs) {
1395  ret = decode_blocks_ind(ctx, ra_frame, c,
1396  div_blocks, js_blocks);
1397  if (ret < 0)
1398  return ret;
1399  independent_bs--;
1400  } else {
1401  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1402  if (ret < 0)
1403  return ret;
1404 
1405  c++;
1406  }
1407 
1408  // store carryover raw samples
1409  memmove(ctx->raw_samples[c] - sconf->max_order,
1410  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1411  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1412  }
1413  } else { // multi-channel coding
1414  ALSBlockData bd = { 0 };
1415  int b, ret;
1416  int *reverted_channels = ctx->reverted_channels;
1417  unsigned int offset = 0;
1418 
1419  for (c = 0; c < avctx->channels; c++)
1420  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1421  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1422  return AVERROR_INVALIDDATA;
1423  }
1424 
1425  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1426 
1427  bd.ra_block = ra_frame;
1429 
1430  get_block_sizes(ctx, div_blocks, &bs_info);
1431 
1432  for (b = 0; b < ctx->num_blocks; b++) {
1433  bd.block_length = div_blocks[b];
1434  if (bd.block_length <= 0) {
1435  av_log(ctx->avctx, AV_LOG_WARNING,
1436  "Invalid block length %u in channel data!\n",
1437  bd.block_length);
1438  continue;
1439  }
1440 
1441  for (c = 0; c < avctx->channels; c++) {
1442  bd.const_block = ctx->const_block + c;
1443  bd.shift_lsbs = ctx->shift_lsbs + c;
1444  bd.opt_order = ctx->opt_order + c;
1446  bd.use_ltp = ctx->use_ltp + c;
1447  bd.ltp_lag = ctx->ltp_lag + c;
1448  bd.ltp_gain = ctx->ltp_gain[c];
1449  bd.lpc_cof = ctx->lpc_cof[c];
1450  bd.quant_cof = ctx->quant_cof[c];
1451  bd.raw_samples = ctx->raw_samples[c] + offset;
1452  bd.raw_other = NULL;
1453 
1454  if ((ret = read_block(ctx, &bd)) < 0)
1455  return ret;
1456  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1457  return ret;
1458  }
1459 
1460  for (c = 0; c < avctx->channels; c++) {
1461  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1462  reverted_channels, offset, c);
1463  if (ret < 0)
1464  return ret;
1465  }
1466  for (c = 0; c < avctx->channels; c++) {
1467  bd.const_block = ctx->const_block + c;
1468  bd.shift_lsbs = ctx->shift_lsbs + c;
1469  bd.opt_order = ctx->opt_order + c;
1471  bd.use_ltp = ctx->use_ltp + c;
1472  bd.ltp_lag = ctx->ltp_lag + c;
1473  bd.ltp_gain = ctx->ltp_gain[c];
1474  bd.lpc_cof = ctx->lpc_cof[c];
1475  bd.quant_cof = ctx->quant_cof[c];
1476  bd.raw_samples = ctx->raw_samples[c] + offset;
1477 
1478  if ((ret = decode_block(ctx, &bd)) < 0)
1479  return ret;
1480  }
1481 
1482  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1483  offset += div_blocks[b];
1484  bd.ra_block = 0;
1485  }
1486 
1487  // store carryover raw samples
1488  for (c = 0; c < avctx->channels; c++)
1489  memmove(ctx->raw_samples[c] - sconf->max_order,
1490  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1491  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1492  }
1493 
1494  // TODO: read_diff_float_data
1495 
1496  if (get_bits_left(gb) < 0) {
1497  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1498  return AVERROR_INVALIDDATA;
1499  }
1500 
1501  return 0;
1502 }
1503 
1504 
1505 /** Decode an ALS frame.
1506  */
1507 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1508  AVPacket *avpkt)
1509 {
1510  ALSDecContext *ctx = avctx->priv_data;
1511  AVFrame *frame = data;
1512  ALSSpecificConfig *sconf = &ctx->sconf;
1513  const uint8_t *buffer = avpkt->data;
1514  int buffer_size = avpkt->size;
1515  int invalid_frame, ret;
1516  unsigned int c, sample, ra_frame, bytes_read, shift;
1517 
1518  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1519  return ret;
1520 
1521  // In the case that the distance between random access frames is set to zero
1522  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1523  // For the first frame, if prediction is used, all samples used from the
1524  // previous frame are assumed to be zero.
1525  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1526 
1527  // the last frame to decode might have a different length
1528  if (sconf->samples != 0xFFFFFFFF)
1529  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1530  sconf->frame_length);
1531  else
1532  ctx->cur_frame_length = sconf->frame_length;
1533 
1534  // decode the frame data
1535  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1536  av_log(ctx->avctx, AV_LOG_WARNING,
1537  "Reading frame data failed. Skipping RA unit.\n");
1538 
1539  ctx->frame_id++;
1540 
1541  /* get output buffer */
1542  frame->nb_samples = ctx->cur_frame_length;
1543  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1544  return ret;
1545 
1546  // transform decoded frame into output format
1547  #define INTERLEAVE_OUTPUT(bps) \
1548  { \
1549  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1550  shift = bps - ctx->avctx->bits_per_raw_sample; \
1551  if (!ctx->cs_switch) { \
1552  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1553  for (c = 0; c < avctx->channels; c++) \
1554  *dest++ = ctx->raw_samples[c][sample] << shift; \
1555  } else { \
1556  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1557  for (c = 0; c < avctx->channels; c++) \
1558  *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
1559  } \
1560  }
1561 
1562  if (ctx->avctx->bits_per_raw_sample <= 16) {
1563  INTERLEAVE_OUTPUT(16)
1564  } else {
1565  INTERLEAVE_OUTPUT(32)
1566  }
1567 
1568  // update CRC
1569  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1570  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1571 
1572  if (ctx->avctx->bits_per_raw_sample == 24) {
1573  int32_t *src = (int32_t *)frame->data[0];
1574 
1575  for (sample = 0;
1576  sample < ctx->cur_frame_length * avctx->channels;
1577  sample++) {
1578  int32_t v;
1579 
1580  if (swap)
1581  v = av_bswap32(src[sample]);
1582  else
1583  v = src[sample];
1584  if (!HAVE_BIGENDIAN)
1585  v >>= 8;
1586 
1587  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1588  }
1589  } else {
1590  uint8_t *crc_source;
1591 
1592  if (swap) {
1593  if (ctx->avctx->bits_per_raw_sample <= 16) {
1594  int16_t *src = (int16_t*) frame->data[0];
1595  int16_t *dest = (int16_t*) ctx->crc_buffer;
1596  for (sample = 0;
1597  sample < ctx->cur_frame_length * avctx->channels;
1598  sample++)
1599  *dest++ = av_bswap16(src[sample]);
1600  } else {
1601  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1602  (uint32_t *) frame->data[0],
1603  ctx->cur_frame_length * avctx->channels);
1604  }
1605  crc_source = ctx->crc_buffer;
1606  } else {
1607  crc_source = frame->data[0];
1608  }
1609 
1610  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1611  ctx->cur_frame_length * avctx->channels *
1613  }
1614 
1615 
1616  // check CRC sums if this is the last frame
1617  if (ctx->cur_frame_length != sconf->frame_length &&
1618  ctx->crc_org != ctx->crc) {
1619  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1620  if (avctx->err_recognition & AV_EF_EXPLODE)
1621  return AVERROR_INVALIDDATA;
1622  }
1623  }
1624 
1625  *got_frame_ptr = 1;
1626 
1627  bytes_read = invalid_frame ? buffer_size :
1628  (get_bits_count(&ctx->gb) + 7) >> 3;
1629 
1630  return bytes_read;
1631 }
1632 
1633 
1634 /** Uninitialize the ALS decoder.
1635  */
1637 {
1638  ALSDecContext *ctx = avctx->priv_data;
1639 
1640  av_freep(&ctx->sconf.chan_pos);
1641 
1642  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1643 
1644  av_freep(&ctx->const_block);
1645  av_freep(&ctx->shift_lsbs);
1646  av_freep(&ctx->opt_order);
1648  av_freep(&ctx->use_ltp);
1649  av_freep(&ctx->ltp_lag);
1650  av_freep(&ctx->ltp_gain);
1651  av_freep(&ctx->ltp_gain_buffer);
1652  av_freep(&ctx->quant_cof);
1653  av_freep(&ctx->lpc_cof);
1654  av_freep(&ctx->quant_cof_buffer);
1655  av_freep(&ctx->lpc_cof_buffer);
1657  av_freep(&ctx->prev_raw_samples);
1658  av_freep(&ctx->raw_samples);
1659  av_freep(&ctx->raw_buffer);
1660  av_freep(&ctx->chan_data);
1661  av_freep(&ctx->chan_data_buffer);
1662  av_freep(&ctx->reverted_channels);
1663  av_freep(&ctx->crc_buffer);
1664 
1665  return 0;
1666 }
1667 
1668 
1669 /** Initialize the ALS decoder.
1670  */
1672 {
1673  unsigned int c;
1674  unsigned int channel_size;
1675  int num_buffers, ret;
1676  ALSDecContext *ctx = avctx->priv_data;
1677  ALSSpecificConfig *sconf = &ctx->sconf;
1678  ctx->avctx = avctx;
1679 
1680  if (!avctx->extradata) {
1681  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1682  return AVERROR_INVALIDDATA;
1683  }
1684 
1685  if ((ret = read_specific_config(ctx)) < 0) {
1686  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1687  goto fail;
1688  }
1689 
1690  if ((ret = check_specific_config(ctx)) < 0) {
1691  goto fail;
1692  }
1693 
1694  if (sconf->bgmc) {
1695  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1696  if (ret < 0)
1697  goto fail;
1698  }
1699  if (sconf->floating) {
1700  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1701  avctx->bits_per_raw_sample = 32;
1702  } else {
1703  avctx->sample_fmt = sconf->resolution > 1
1705  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1706  if (avctx->bits_per_raw_sample > 32) {
1707  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1708  avctx->bits_per_raw_sample);
1709  ret = AVERROR_INVALIDDATA;
1710  goto fail;
1711  }
1712  }
1713 
1714  // set maximum Rice parameter for progressive decoding based on resolution
1715  // This is not specified in 14496-3 but actually done by the reference
1716  // codec RM22 revision 2.
1717  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1718 
1719  // set lag value for long-term prediction
1720  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1721  (avctx->sample_rate >= 192000);
1722 
1723  // allocate quantized parcor coefficient buffer
1724  num_buffers = sconf->mc_coding ? avctx->channels : 1;
1725 
1726  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
1727  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
1728  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1729  sizeof(*ctx->quant_cof_buffer));
1730  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1731  sizeof(*ctx->lpc_cof_buffer));
1733  sizeof(*ctx->lpc_cof_buffer));
1734 
1735  if (!ctx->quant_cof || !ctx->lpc_cof ||
1736  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
1737  !ctx->lpc_cof_reversed_buffer) {
1738  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1739  ret = AVERROR(ENOMEM);
1740  goto fail;
1741  }
1742 
1743  // assign quantized parcor coefficient buffers
1744  for (c = 0; c < num_buffers; c++) {
1745  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
1746  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
1747  }
1748 
1749  // allocate and assign lag and gain data buffer for ltp mode
1750  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
1751  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
1752  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
1753  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
1754  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
1755  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
1756  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
1757  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
1758 
1759  if (!ctx->const_block || !ctx->shift_lsbs ||
1760  !ctx->opt_order || !ctx->store_prev_samples ||
1761  !ctx->use_ltp || !ctx->ltp_lag ||
1762  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
1763  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1764  ret = AVERROR(ENOMEM);
1765  goto fail;
1766  }
1767 
1768  for (c = 0; c < num_buffers; c++)
1769  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
1770 
1771  // allocate and assign channel data buffer for mcc mode
1772  if (sconf->mc_coding) {
1773  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
1774  sizeof(*ctx->chan_data_buffer));
1775  ctx->chan_data = av_mallocz_array(num_buffers,
1776  sizeof(*ctx->chan_data));
1777  ctx->reverted_channels = av_malloc_array(num_buffers,
1778  sizeof(*ctx->reverted_channels));
1779 
1780  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
1781  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1782  ret = AVERROR(ENOMEM);
1783  goto fail;
1784  }
1785 
1786  for (c = 0; c < num_buffers; c++)
1787  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
1788  } else {
1789  ctx->chan_data = NULL;
1790  ctx->chan_data_buffer = NULL;
1791  ctx->reverted_channels = NULL;
1792  }
1793 
1794  channel_size = sconf->frame_length + sconf->max_order;
1795 
1796  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
1797  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
1798  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
1799 
1800  // allocate previous raw sample buffer
1801  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
1802  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1803  ret = AVERROR(ENOMEM);
1804  goto fail;
1805  }
1806 
1807  // assign raw samples buffers
1808  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
1809  for (c = 1; c < avctx->channels; c++)
1810  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
1811 
1812  // allocate crc buffer
1813  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
1816  avctx->channels *
1818  sizeof(*ctx->crc_buffer));
1819  if (!ctx->crc_buffer) {
1820  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1821  ret = AVERROR(ENOMEM);
1822  goto fail;
1823  }
1824  }
1825 
1826  ff_bswapdsp_init(&ctx->bdsp);
1827 
1828  return 0;
1829 
1830 fail:
1831  decode_end(avctx);
1832  return ret;
1833 }
1834 
1835 
1836 /** Flush (reset) the frame ID after seeking.
1837  */
1838 static av_cold void flush(AVCodecContext *avctx)
1839 {
1840  ALSDecContext *ctx = avctx->priv_data;
1841 
1842  ctx->frame_id = 0;
1843 }
1844 
1845 
1847  .name = "als",
1848  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
1849  .type = AVMEDIA_TYPE_AUDIO,
1850  .id = AV_CODEC_ID_MP4ALS,
1851  .priv_data_size = sizeof(ALSDecContext),
1852  .init = decode_init,
1853  .close = decode_end,
1854  .decode = decode_frame,
1855  .flush = flush,
1856  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1857 };
#define MUL64(a, b)
Definition: mathops.h:52
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
AVCodec ff_als_decoder
Definition: alsdec.c:1846
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1186
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:879
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:159
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:634
float v
const char * s
Definition: avisynth_c.h:631
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:171
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:212
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:225
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:227
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:260
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:118
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:217
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int block_switching
number of block switching levels
Definition: alsdec.c:167
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:174
int size
Definition: avcodec.h:1424
const char * b
Definition: vf_curves.c:109
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:429
#define av_bswap16
Definition: bswap.h:31
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:163
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1355
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:220
GetBitContext gb
Definition: alsdec.c:194
Block Gilbert-Moore decoder header.
const char * master
Definition: vf_curves.c:110
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:201
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3003
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1033
#define INTERLEAVE_OUTPUT(bps)
#define sample
AVCodec.
Definition: avcodec.h:3472
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:477
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:375
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:213
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:208
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:107
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1671
BswapDSPContext bdsp
Definition: alsdec.c:195
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:243
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2270
uint8_t
#define av_cold
Definition: attributes.h:74
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:598
float delta
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:214
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1617
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:173
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:170
uint8_t * data
Definition: avcodec.h:1423
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:212
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1062
void ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
unsigned int block_length
number of samples within the block
Definition: alsdec.c:232
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1047
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:161
int weighting[6]
Definition: alsdec.c:187
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:217
signed 32 bits
Definition: samplefmt.h:63
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:222
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:168
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:202
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:588
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:239
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:162
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:207
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2901
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:250
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:237
int * chan_pos
original channel positions
Definition: alsdec.c:176
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:175
AVCodecContext * avctx
Definition: alsdec.c:192
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:68
const char * r
Definition: vf_curves.c:107
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:218
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:175
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:203
const char * name
Name of the codec implementation.
Definition: avcodec.h:3479
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:224
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1102
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:498
const AVCRC * crc_table
Definition: alsdec.c:196
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
GLsizei count
Definition: opengl_enc.c:109
#define FFMAX(a, b)
Definition: common.h:79
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:206
Libavcodec external API header.
#define fail()
Definition: checkasm.h:57
ALSSpecificConfig sconf
Definition: alsdec.c:193
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:238
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:209
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2890
#define FFMIN(a, b)
Definition: common.h:81
float y
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:612
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:172
int32_t
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:356
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:505
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1636
int * const_block
if true, this is a constant value block
Definition: alsdec.c:234
int n
Definition: avisynth_c.h:547
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:158
int time_diff_flag
Definition: alsdec.c:184
int master_channel
Definition: alsdec.c:183
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:198
int coef_table
table index of Rice code parameters
Definition: alsdec.c:164
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:568
#define FF_ARRAY_ELEMS(a)
int sb_part
sub-block partition
Definition: alsdec.c:169
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:246
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:205
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:241
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:235
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:233
AVS_Value src
Definition: avisynth_c.h:482
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:495
int sample_rate
samples per second
Definition: avcodec.h:2262
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:441
main external API structure.
Definition: avcodec.h:1502
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:221
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1507
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:1040
#define MISSING_ERR(cond, str, errval)
void * buf
Definition: avisynth_c.h:553
int extradata_size
Definition: avcodec.h:1618
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:304
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:329
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:204
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:297
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:907
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:240
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:219
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:47
RA_Flag
Definition: alsdec.c:148
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:280
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:337
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:165
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:244
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:223
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:210
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:226
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:166
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:156
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:104
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:342
static int decode(AVCodecContext *avctx, void *data, int *got_sub, AVPacket *avpkt)
Definition: ccaption_dec.c:523
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:171
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:128
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:280
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:245
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:33
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:1838
signed 16 bits
Definition: samplefmt.h:62
static double c[64]
int time_diff_index
Definition: alsdec.c:186
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:215
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:242
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata to retrieve audio configuration.
Definition: mpeg4audio.c:81
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:2898
#define MKBETAG(a, b, c, d)
Definition: common.h:331
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:454
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1544
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:216
int channels
number of audio channels
Definition: avcodec.h:2263
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:177
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:197
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1007
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:988
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:160
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:449
int stop_flag
Definition: alsdec.c:182
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:236
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:228
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:553
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1195
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:515
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:211
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:200
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1242
This structure stores compressed data.
Definition: avcodec.h:1400
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:225
uint32_t AVCRC
Definition: crc.h:34
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:857
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:199
GLuint buffer
Definition: opengl_enc.c:102
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:157
int time_diff_sign
Definition: alsdec.c:185
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:2904