60 #define MONO 0x1000001
61 #define STEREO 0x1000002
62 #define JOINT_STEREO 0x1000003
63 #define MC_COOK 0x2000000 // multichannel Cook, not supported
65 #define SUBBAND_SIZE 20
66 #define MAX_SUBPACKETS 5
102 typedef struct cook {
107 void (*scalar_dequant)(
struct cook *q,
int index,
int quant_index,
108 int *subband_coef_index,
int *subband_coef_sign,
111 void (*decouple)(
struct cook *q,
115 float *decode_buffer,
116 float *mlt_buffer1,
float *mlt_buffer2);
118 void (*imlt_window)(
struct cook *q,
float *buffer1,
119 cook_gains *gains_ptr,
float *previous_buffer);
122 int gain_index,
int gain_index_next);
124 void (*saturate_output)(
struct cook *q,
float *
out);
141 VLC envelope_quant_index[13];
146 float gain_table[23];
152 float decode_buffer_1[1024];
153 float decode_buffer_2[1024];
154 float decode_buffer_0[1060];
170 for (i = -63; i < 64; i++) {
181 for (i = 0; i < 23; i++)
192 for (i = 0; i < 13; i++) {
198 for (i = 0; i < 7; i++) {
228 for (j = 0; j < mlt_size; j++)
245 for (i = 0; i < 5; i++)
251 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
252 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
276 static const uint32_t
tab[4] = {
283 uint32_t *obuf = (uint32_t *) out;
290 off = (intptr_t) inbuffer & 3;
291 buf = (
const uint32_t *) (inbuffer - off);
294 for (i = 0; i < bytes / 4; i++)
295 obuf[i] = c ^ buf[i];
314 for (i = 0; i < 13; i++)
316 for (i = 0; i < 7; i++)
344 gaininfo[i++] = gain;
357 int *quant_index_table)
361 quant_index_table[0] =
get_bits(&q->
gb, 6) - 6;
377 quant_index_table[i] = quant_index_table[i - 1] + j - 12;
378 if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
380 "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
381 quant_index_table[i], i);
400 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits,
index,
v, i, j;
401 int exp_index2[102] = { 0 };
402 int exp_index1[102] = { 0 };
404 int tmp_categorize_array[128 * 2] = { 0 };
417 for (i = 32; i > 0; i = i / 2) {
421 exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3);
425 if (num_bits >= bits_left - 32)
432 exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3);
434 exp_index1[i] = exp_idx;
435 exp_index2[i] = exp_idx;
437 tmpbias1 = tmpbias2 = num_bits;
440 if (tmpbias1 + tmpbias2 > 2 * bits_left) {
444 if (exp_index1[i] < 7) {
445 v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
454 tmp_categorize_array[tmp_categorize_array1_idx++] =
index;
462 if (exp_index2[i] > 0) {
463 v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
472 tmp_categorize_array[--tmp_categorize_array2_idx] =
index;
480 category[i] = exp_index2[i];
483 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
500 int idx = category_index[i];
517 int *subband_coef_index,
int *subband_coef_sign,
524 if (subband_coef_index[i]) {
526 if (subband_coef_sign[i])
546 int *subband_coef_index,
int *subband_coef_sign)
549 int vlc, vd, tmp, result;
559 for (j = vd - 1; j >= 0; j--) {
564 for (j = 0; j < vd; j++) {
565 if (subband_coef_index[i * vd + j]) {
570 subband_coef_sign[i * vd + j] = 0;
573 subband_coef_sign[i * vd + j] = 0;
590 int *quant_index_table,
float *mlt_buffer)
602 index = category[
band];
603 if (category[band] < 7) {
604 if (
unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
607 category[band + j] = 7;
611 memset(subband_coef_index, 0,
sizeof(subband_coef_index));
612 memset(subband_coef_sign, 0,
sizeof(subband_coef_sign));
615 subband_coef_index, subband_coef_sign,
627 int category_index[128] = { 0 };
629 int quant_index_table[102];
635 categorize(q, p, quant_index_table, category, category_index);
656 int gain_index,
int gain_index_next)
660 fc1 =
pow2tab[gain_index + 63];
662 if (gain_index == gain_index_next) {
666 fc2 = q->
gain_table[11 + (gain_index_next - gain_index)];
683 cook_gains *gains_ptr,
float *previous_buffer)
695 inbuffer[i] = inbuffer[i] * fc * q->
mlt_window[i] -
711 cook_gains *gains_ptr,
float *previous_buffer)
720 q->
imlt_window(q, buffer1, gains_ptr, previous_buffer);
723 for (i = 0; i < 8; i++)
724 if (gains_ptr->
now[i] || gains_ptr->
now[i + 1])
726 gains_ptr->
now[i], gains_ptr->
now[i + 1]);
729 memcpy(previous_buffer, buffer0,
746 int length = end - start + 1;
752 for (i = 0; i <
length; i++)
757 for (i = 0; i <
length; i++) {
763 decouple_tab[start + i] =
v;
783 float *decode_buffer,
784 float *mlt_buffer1,
float *mlt_buffer2)
789 mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
790 mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
802 float *mlt_buffer_left,
float *mlt_buffer_right)
809 const float *cplscale;
814 memset(mlt_buffer_left, 0, 1024 *
sizeof(*mlt_buffer_left));
815 memset(mlt_buffer_right, 0, 1024 *
sizeof(*mlt_buffer_right));
823 mlt_buffer_left[i * 20 + j] = decode_buffer[i * 40 + j];
824 mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
833 idx -= decouple_tab[cpl_tmp];
835 f1 = cplscale[decouple_tab[cpl_tmp] + 1];
837 q->
decouple(q, p, i, f1, f2, decode_buffer,
838 mlt_buffer_left, mlt_buffer_right);
894 cook_gains *gains_ptr,
float *previous_buffer,
897 imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
912 const uint8_t *inbuffer,
float **outbuffer)
914 int sub_packet_size = p->
size;
942 outbuffer ? outbuffer[p->
ch_idx + 1] : NULL);
946 outbuffer ? outbuffer[p->
ch_idx + 1] : NULL);
954 int *got_frame_ptr,
AVPacket *avpkt)
958 int buf_size = avpkt->
size;
960 float **samples =
NULL;
965 if (buf_size < avctx->block_align)
984 "frame subpacket size total > avctx->block_align!\n");
995 "subpacket[%i] size %i js %i %i block_align %i\n",
1022 #define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
1053 unsigned int channel_mask = 0;
1054 int samples_per_frame = 0;
1059 if (extradata_size < 8) {
1076 while (edata_ptr < edata_ptr_end) {
1079 if (extradata_size >= 8) {
1081 samples_per_frame = bytestream_get_be16(&edata_ptr);
1083 extradata_size -= 8;
1085 if (extradata_size >= 8) {
1086 bytestream_get_be32(&edata_ptr);
1094 extradata_size -= 8;
1147 if (extradata_size >= 4)
static void mlt_compensate_output(COOKContext *q, float *decode_buffer, cook_gains *gains_ptr, float *previous_buffer, float *out)
Final part of subpacket decoding: Apply modulated lapped transform, gain compensation, clip and convert to integer.
static av_cold void init_cplscales_table(COOKContext *q)
static const int cplband[51]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
This structure describes decoded (raw) audio or video data.
void(* scalar_dequant)(struct cook *q, int index, int quant_index, int *subband_coef_index, int *subband_coef_sign, float *mlt_p)
ptrdiff_t const GLvoid * data
static const uint16_t envelope_quant_index_huffcodes[13][24]
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
float decode_buffer_1[1024]
static av_cold int init(AVCodecContext *avctx)
static const int kmax_tab[7]
static const int expbits_tab[8]
static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table, int *category, int *category_index)
Calculate the category and category_index vector.
static const float *const cplscales[5]
#define DECLARE_ALIGNED(n, t, v)
av_cold void ff_audiodsp_init(AudioDSPContext *c)
static av_cold void init_pow2table(void)
#define AV_CH_LAYOUT_STEREO
VLC envelope_quant_index[13]
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs...
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout.
static const uint8_t *const ccpl_huffbits[5]
static const int vhsize_tab[7]
static const float quant_centroid_tab[7][14]
void(* imlt_window)(struct cook *q, float *buffer1, cook_gains *gains_ptr, float *previous_buffer)
static void imlt_gain(COOKContext *q, float *inbuffer, cook_gains *gains_ptr, float *previous_buffer)
The modulated lapped transform, this takes transform coefficients and transforms them into timedomain...
static av_cold void init_gain_table(COOKContext *q)
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
enum AVSampleFormat sample_fmt
audio sample format
uint8_t * decoded_bytes_buffer
static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
function for getting the jointstereo coupling information
float mono_previous_buffer1[1024]
static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category, int *quant_index_table, float *mlt_buffer)
Fill the mlt_buffer with mlt coefficients.
static void expand_category(COOKContext *q, int *category, int *category_index)
Expand the category vector.
static av_cold int end(AVCodecContext *avctx)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static void interpolate(float *out, float v1, float v2, int size)
static int get_bits_count(const GetBitContext *s)
bitstream reader API header.
const float * cplscales[5]
static int decode_subpacket(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer, float **outbuffer)
Cook subpacket decoding.
static int cook_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
static void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer, cook_gains *gains_ptr)
First part of subpacket decoding: decode raw stream bytes and read gain info.
#define DECODE_BYTES_PAD1(bytes)
static int get_bits_left(GetBitContext *gb)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static const int vd_tab[7]
static const float dither_tab[9]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static const uint16_t *const ccpl_huffcodes[5]
float mono_previous_buffer2[1024]
const char * name
Name of the codec implementation.
static int decode_envelope(COOKContext *q, COOKSubpacket *p, int *quant_index_table)
Create the quant index table needed for the envelope.
static const uint8_t offset[127][2]
Libavcodec external API header.
uint64_t channel_layout
Audio channel layout.
static void saturate_output_float(COOKContext *q, float *out)
Saturate the output signal and interleave.
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
static const int vhvlcsize_tab[7]
static const uint16_t fc[]
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int *subband_coef_index, int *subband_coef_sign)
Unpack the subband_coef_index and subband_coef_sign vectors.
int bit_rate
the average bitrate
static av_cold int init_cook_mlt(COOKContext *q)
audio channel layout utility functions
static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
static av_cold int cook_decode_init(AVCodecContext *avctx)
Cook initialization.
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
#define FF_ARRAY_ELEMS(a)
static const uint16_t *const cvh_huffcodes[7]
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static void interpolate_float(COOKContext *q, float *buffer, int gain_index, int gain_index_next)
the actual requantization of the timedomain samples
void(* vector_clipf)(float *dst, const float *src, float min, float max, int len)
void(* interpolate)(struct cook *q, float *buffer, int gain_index, int gain_index_next)
AVSampleFormat
Audio sample formats.
static av_cold int init_cook_vlc_tables(COOKContext *q)
int sample_rate
samples per second
void AAC_RENAME() ff_sine_window_init(INTFLOAT *window, int n)
Generate a sine window.
main external API structure.
float mono_mdct_output[2048]
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
#define init_vlc(vlc, nb_bits, nb_codes,bits, bits_wrap, bits_size,codes, codes_wrap, codes_size,flags)
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
static void dump_cook_context(COOKContext *q)
static unsigned int get_bits1(GetBitContext *s)
void(* decouple)(struct cook *q, COOKSubpacket *p, int subband, float f1, float f2, float *decode_buffer, float *mlt_buffer1, float *mlt_buffer2)
static int joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer_left, float *mlt_buffer_right)
function for decoding joint stereo data
static av_cold int cook_decode_close(AVCodecContext *avctx)
static float pow2tab[127]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
float decode_buffer_0[1060]
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
COOKSubpacket subpacket[MAX_SUBPACKETS]
float decode_buffer_2[1024]
static float rootpow2tab[127]
static const uint8_t envelope_quant_index_huffbits[13][24]
static const uint8_t *const cvh_huffbits[7]
static int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
static void scalar_dequant_float(COOKContext *q, int index, int quant_index, int *subband_coef_index, int *subband_coef_sign, float *mlt_p)
The real requantization of the mltcoefs.
static int decode(AVCodecContext *avctx, void *data, int *got_sub, AVPacket *avpkt)
common internal api header.
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
static const int invradix_tab[7]
int channels
number of audio channels
VLC_TYPE(* table)[2]
code, bits
static const struct twinvq_data tab
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
static enum AVSampleFormat sample_fmts[]
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
Fill the gain array for the timedomain quantization.
#define av_malloc_array(a, b)
#define FFSWAP(type, a, b)
static void imlt_window_float(COOKContext *q, float *inbuffer, cook_gains *gains_ptr, float *previous_buffer)
Apply transform window, overlap buffers.
static void decouple_float(COOKContext *q, COOKSubpacket *p, int subband, float f1, float f2, float *decode_buffer, float *mlt_buffer1, float *mlt_buffer2)
function decouples a pair of signals from a single signal via multiplication.
static const int vpr_tab[7]
uint8_t ** extended_data
pointers to the data planes/channels.
#define AV_CH_LAYOUT_MONO
This structure stores compressed data.
void ff_free_vlc(VLC *vlc)
int nb_samples
number of audio samples (per channel) described by this frame
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
unsigned int channel_mask
Cook AKA RealAudio G2 compatible decoderdata.
void(* saturate_output)(struct cook *q, float *out)