FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264dsp_template.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003-2011 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG4 part10 DSP functions.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "bit_depth_template.c"
29 
30 #define op_scale1(x) block[x] = av_clip_pixel( (block[x]*weight + offset) >> log2_denom )
31 #define op_scale2(x) dst[x] = av_clip_pixel( (src[x]*weights + dst[x]*weightd + offset) >> (log2_denom+1))
32 #define H264_WEIGHT(W) \
33 static void FUNCC(weight_h264_pixels ## W)(uint8_t *_block, int stride, int height, \
34  int log2_denom, int weight, int offset) \
35 { \
36  int y; \
37  pixel *block = (pixel*)_block; \
38  stride >>= sizeof(pixel)-1; \
39  offset = (unsigned)offset << (log2_denom + (BIT_DEPTH-8)); \
40  if(log2_denom) offset += 1<<(log2_denom-1); \
41  for (y = 0; y < height; y++, block += stride) { \
42  op_scale1(0); \
43  op_scale1(1); \
44  if(W==2) continue; \
45  op_scale1(2); \
46  op_scale1(3); \
47  if(W==4) continue; \
48  op_scale1(4); \
49  op_scale1(5); \
50  op_scale1(6); \
51  op_scale1(7); \
52  if(W==8) continue; \
53  op_scale1(8); \
54  op_scale1(9); \
55  op_scale1(10); \
56  op_scale1(11); \
57  op_scale1(12); \
58  op_scale1(13); \
59  op_scale1(14); \
60  op_scale1(15); \
61  } \
62 } \
63 static void FUNCC(biweight_h264_pixels ## W)(uint8_t *_dst, uint8_t *_src, int stride, int height, \
64  int log2_denom, int weightd, int weights, int offset) \
65 { \
66  int y; \
67  pixel *dst = (pixel*)_dst; \
68  pixel *src = (pixel*)_src; \
69  stride >>= sizeof(pixel)-1; \
70  offset = (unsigned)offset << (BIT_DEPTH-8); \
71  offset = (unsigned)((offset + 1) | 1) << log2_denom; \
72  for (y = 0; y < height; y++, dst += stride, src += stride) { \
73  op_scale2(0); \
74  op_scale2(1); \
75  if(W==2) continue; \
76  op_scale2(2); \
77  op_scale2(3); \
78  if(W==4) continue; \
79  op_scale2(4); \
80  op_scale2(5); \
81  op_scale2(6); \
82  op_scale2(7); \
83  if(W==8) continue; \
84  op_scale2(8); \
85  op_scale2(9); \
86  op_scale2(10); \
87  op_scale2(11); \
88  op_scale2(12); \
89  op_scale2(13); \
90  op_scale2(14); \
91  op_scale2(15); \
92  } \
93 }
94 
95 H264_WEIGHT(16)
96 H264_WEIGHT(8)
97 H264_WEIGHT(4)
98 H264_WEIGHT(2)
99 
100 #undef op_scale1
101 #undef op_scale2
102 #undef H264_WEIGHT
103 
104 static av_always_inline av_flatten void FUNCC(h264_loop_filter_luma)(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
105 {
106  pixel *pix = (pixel*)p_pix;
107  int i, d;
108  xstride >>= sizeof(pixel)-1;
109  ystride >>= sizeof(pixel)-1;
110  alpha <<= BIT_DEPTH - 8;
111  beta <<= BIT_DEPTH - 8;
112  for( i = 0; i < 4; i++ ) {
113  const int tc_orig = tc0[i] * (1 << (BIT_DEPTH - 8));
114  if( tc_orig < 0 ) {
115  pix += inner_iters*ystride;
116  continue;
117  }
118  for( d = 0; d < inner_iters; d++ ) {
119  const int p0 = pix[-1*xstride];
120  const int p1 = pix[-2*xstride];
121  const int p2 = pix[-3*xstride];
122  const int q0 = pix[0];
123  const int q1 = pix[1*xstride];
124  const int q2 = pix[2*xstride];
125 
126  if( FFABS( p0 - q0 ) < alpha &&
127  FFABS( p1 - p0 ) < beta &&
128  FFABS( q1 - q0 ) < beta ) {
129 
130  int tc = tc_orig;
131  int i_delta;
132 
133  if( FFABS( p2 - p0 ) < beta ) {
134  if(tc_orig)
135  pix[-2*xstride] = p1 + av_clip( (( p2 + ( ( p0 + q0 + 1 ) >> 1 ) ) >> 1) - p1, -tc_orig, tc_orig );
136  tc++;
137  }
138  if( FFABS( q2 - q0 ) < beta ) {
139  if(tc_orig)
140  pix[ xstride] = q1 + av_clip( (( q2 + ( ( p0 + q0 + 1 ) >> 1 ) ) >> 1) - q1, -tc_orig, tc_orig );
141  tc++;
142  }
143 
144  i_delta = av_clip( (((q0 - p0 ) * 4) + (p1 - q1) + 4) >> 3, -tc, tc );
145  pix[-xstride] = av_clip_pixel( p0 + i_delta ); /* p0' */
146  pix[0] = av_clip_pixel( q0 - i_delta ); /* q0' */
147  }
148  pix += ystride;
149  }
150  }
151 }
152 static void FUNCC(h264_v_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
153 {
154  FUNCC(h264_loop_filter_luma)(pix, stride, sizeof(pixel), 4, alpha, beta, tc0);
155 }
156 static void FUNCC(h264_h_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
157 {
158  FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 4, alpha, beta, tc0);
159 }
160 static void FUNCC(h264_h_loop_filter_luma_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
161 {
162  FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
163 }
164 
165 static av_always_inline av_flatten void FUNCC(h264_loop_filter_luma_intra)(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
166 {
167  pixel *pix = (pixel*)p_pix;
168  int d;
169  xstride >>= sizeof(pixel)-1;
170  ystride >>= sizeof(pixel)-1;
171  alpha <<= BIT_DEPTH - 8;
172  beta <<= BIT_DEPTH - 8;
173  for( d = 0; d < 4 * inner_iters; d++ ) {
174  const int p2 = pix[-3*xstride];
175  const int p1 = pix[-2*xstride];
176  const int p0 = pix[-1*xstride];
177 
178  const int q0 = pix[ 0*xstride];
179  const int q1 = pix[ 1*xstride];
180  const int q2 = pix[ 2*xstride];
181 
182  if( FFABS( p0 - q0 ) < alpha &&
183  FFABS( p1 - p0 ) < beta &&
184  FFABS( q1 - q0 ) < beta ) {
185 
186  if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
187  if( FFABS( p2 - p0 ) < beta)
188  {
189  const int p3 = pix[-4*xstride];
190  /* p0', p1', p2' */
191  pix[-1*xstride] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
192  pix[-2*xstride] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
193  pix[-3*xstride] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
194  } else {
195  /* p0' */
196  pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
197  }
198  if( FFABS( q2 - q0 ) < beta)
199  {
200  const int q3 = pix[3*xstride];
201  /* q0', q1', q2' */
202  pix[0*xstride] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
203  pix[1*xstride] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
204  pix[2*xstride] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
205  } else {
206  /* q0' */
207  pix[0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
208  }
209  }else{
210  /* p0', q0' */
211  pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
212  pix[ 0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
213  }
214  }
215  pix += ystride;
216  }
217 }
218 static void FUNCC(h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta)
219 {
220  FUNCC(h264_loop_filter_luma_intra)(pix, stride, sizeof(pixel), 4, alpha, beta);
221 }
222 static void FUNCC(h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta)
223 {
224  FUNCC(h264_loop_filter_luma_intra)(pix, sizeof(pixel), stride, 4, alpha, beta);
225 }
226 static void FUNCC(h264_h_loop_filter_luma_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
227 {
228  FUNCC(h264_loop_filter_luma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
229 }
230 
231 static av_always_inline av_flatten void FUNCC(h264_loop_filter_chroma)(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
232 {
233  pixel *pix = (pixel*)p_pix;
234  int i, d;
235  alpha <<= BIT_DEPTH - 8;
236  beta <<= BIT_DEPTH - 8;
237  xstride >>= sizeof(pixel)-1;
238  ystride >>= sizeof(pixel)-1;
239  for( i = 0; i < 4; i++ ) {
240  const int tc = ((tc0[i] - 1U) << (BIT_DEPTH - 8)) + 1;
241  if( tc <= 0 ) {
242  pix += inner_iters*ystride;
243  continue;
244  }
245  for( d = 0; d < inner_iters; d++ ) {
246  const int p0 = pix[-1*xstride];
247  const int p1 = pix[-2*xstride];
248  const int q0 = pix[0];
249  const int q1 = pix[1*xstride];
250 
251  if( FFABS( p0 - q0 ) < alpha &&
252  FFABS( p1 - p0 ) < beta &&
253  FFABS( q1 - q0 ) < beta ) {
254 
255  int delta = av_clip( ((q0 - p0) * 4 + (p1 - q1) + 4) >> 3, -tc, tc );
256 
257  pix[-xstride] = av_clip_pixel( p0 + delta ); /* p0' */
258  pix[0] = av_clip_pixel( q0 - delta ); /* q0' */
259  }
260  pix += ystride;
261  }
262  }
263 }
264 static void FUNCC(h264_v_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
265 {
266  FUNCC(h264_loop_filter_chroma)(pix, stride, sizeof(pixel), 2, alpha, beta, tc0);
267 }
268 static void FUNCC(h264_h_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
269 {
270  FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
271 }
272 static void FUNCC(h264_h_loop_filter_chroma_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
273 {
274  FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 1, alpha, beta, tc0);
275 }
276 static void FUNCC(h264_h_loop_filter_chroma422)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
277 {
278  FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 4, alpha, beta, tc0);
279 }
280 static void FUNCC(h264_h_loop_filter_chroma422_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
281 {
282  FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
283 }
284 
285 static av_always_inline av_flatten void FUNCC(h264_loop_filter_chroma_intra)(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
286 {
287  pixel *pix = (pixel*)p_pix;
288  int d;
289  xstride >>= sizeof(pixel)-1;
290  ystride >>= sizeof(pixel)-1;
291  alpha <<= BIT_DEPTH - 8;
292  beta <<= BIT_DEPTH - 8;
293  for( d = 0; d < 4 * inner_iters; d++ ) {
294  const int p0 = pix[-1*xstride];
295  const int p1 = pix[-2*xstride];
296  const int q0 = pix[0];
297  const int q1 = pix[1*xstride];
298 
299  if( FFABS( p0 - q0 ) < alpha &&
300  FFABS( p1 - p0 ) < beta &&
301  FFABS( q1 - q0 ) < beta ) {
302 
303  pix[-xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
304  pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
305  }
306  pix += ystride;
307  }
308 }
309 static void FUNCC(h264_v_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta)
310 {
311  FUNCC(h264_loop_filter_chroma_intra)(pix, stride, sizeof(pixel), 2, alpha, beta);
312 }
313 static void FUNCC(h264_h_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta)
314 {
315  FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
316 }
317 static void FUNCC(h264_h_loop_filter_chroma_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
318 {
319  FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 1, alpha, beta);
320 }
321 static void FUNCC(h264_h_loop_filter_chroma422_intra)(uint8_t *pix, int stride, int alpha, int beta)
322 {
323  FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 4, alpha, beta);
324 }
325 static void FUNCC(h264_h_loop_filter_chroma422_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
326 {
327  FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
328 }
static void FUNCC() h264_v_loop_filter_luma(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
static void FUNCC() h264_h_loop_filter_chroma_intra(uint8_t *pix, int stride, int alpha, int beta)
static void FUNCC() h264_h_loop_filter_chroma422(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
static void FUNCC() h264_h_loop_filter_luma_mbaff_intra(uint8_t *pix, int stride, int alpha, int beta)
static void FUNCC() h264_h_loop_filter_chroma(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
#define BIT_DEPTH
#define tc
Definition: regdef.h:69
static av_always_inline av_flatten void FUNCC() h264_loop_filter_luma(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
static const uint8_t q1[256]
Definition: twofish.c:96
static void FUNCC() h264_v_loop_filter_luma_intra(uint8_t *pix, int stride, int alpha, int beta)
static void FUNCC() h264_h_loop_filter_chroma_mbaff(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
#define av_clip_pixel(a)
uint8_t
float delta
static void FUNCC() h264_v_loop_filter_chroma(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
#define U(x)
Definition: vp56_arith.h:37
static double alpha(void *priv, double x, double y)
Definition: vf_geq.c:99
static void FUNCC() h264_h_loop_filter_chroma422_mbaff(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
#define H264_WEIGHT(W)
static const uint8_t q0[256]
Definition: twofish.c:77
static void FUNCC() h264_v_loop_filter_chroma_intra(uint8_t *pix, int stride, int alpha, int beta)
#define av_flatten
Definition: attributes.h:80
static void FUNCC() h264_h_loop_filter_chroma422_intra(uint8_t *pix, int stride, int alpha, int beta)
static av_always_inline av_flatten void FUNCC() h264_loop_filter_chroma(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:68
static void FUNCC() h264_h_loop_filter_luma_intra(uint8_t *pix, int stride, int alpha, int beta)
static void FUNCC() h264_h_loop_filter_luma_mbaff(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
static av_always_inline av_flatten void FUNCC() h264_loop_filter_chroma_intra(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
static void FUNCC() h264_h_loop_filter_luma(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
static void FUNCC() h264_h_loop_filter_chroma422_mbaff_intra(uint8_t *pix, int stride, int alpha, int beta)
uint8_t pixel
Definition: tiny_ssim.c:42
static void FUNCC() h264_h_loop_filter_chroma_mbaff_intra(uint8_t *pix, int stride, int alpha, int beta)
static av_always_inline av_flatten void FUNCC() h264_loop_filter_luma_intra(uint8_t *p_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
#define av_always_inline
Definition: attributes.h:37
#define stride
#define FUNCC(a)