36 int64_t num, int64_t den, int64_t max)
39 int sign = (num < 0) ^ (den < 0);
43 num =
FFABS(num) / gcd;
44 den =
FFABS(den) / gcd;
46 if (num <= max && den <= max) {
52 uint64_t x = num / den;
53 int64_t next_den = num - den * x;
54 int64_t a2n = x *
a1.num + a0.
num;
55 int64_t a2d = x *
a1.den + a0.
den;
57 if (a2n > max || a2d > max) {
58 if (
a1.num) x = (max - a0.
num) /
a1.num;
61 if (den * (2 * x *
a1.den + a0.
den) > num *
a1.den)
74 *dst_num = sign ? -
a1.num :
a1.num;
84 b.
den * (int64_t) c.
den, INT_MAX);
97 b.
den * (int64_t) c.
den, INT_MAX);
109 #define LOG2 0.69314718055994530941723212145817656807550013436025
114 if (fabs(d) > INT_MAX + 3LL)
116 exponent =
FFMAX( (
int)(log(fabs(d) + 1e-20)/
LOG2), 0);
117 den = 1LL << (61 - exponent);
120 if ((!a.
num || !a.
den) && d && max>0 && max<INT_MAX)
129 int64_t
a = q1.
num * (int64_t)q2.
den + q2.
num * (int64_t)q1.
den;
130 int64_t
b = 2 * (int64_t)q1.
den * q2.
den;
143 int i, nearest_q_idx = 0;
144 for (i = 0; q_list[i].
den; i++)
145 if (
av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
148 return nearest_q_idx;
165 if (!q.
num && !q.
den)
return 0xFFC00000;
166 if (!q.
num)
return 0;
167 if (!q.
den)
return 0x7F800000 | (q.
num & 0x80000000);
173 shift -= n >= (1<<24);
174 shift += n < (1<<23);
182 return sign<<31 | (150-
shift)<<23 | (n - (1<<23));
197 else if (d < 0) d = -1;
198 else if (d != d) d = INT_MIN;
221 for (start = 0; start < 10 ; start++) {
225 for (i = 0; i<100; i++) {
228 if (
FFABS(acc - exact) > 2) {
240 for (a.
den = 1; a.
den < 0x100000000U/3; a.
den*=3) {
241 for (a.
num = -1; a.
num < (1<<27); a.
num += 1 + a.
num/100) {
244 if (fabs(f - f2) > fabs(f)/5000000) {
static int shift(int a, int b)
int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd)
Rescale a 64-bit integer with specified rounding.
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
uint32_t av_q2intfloat(AVRational q)
Converts a AVRational to a IEEE 32bit float.
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
static const uint8_t q1[256]
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static av_always_inline av_const int isnan(float x)
static double av_q2d(AVRational a)
Convert rational to double.
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
AVRational av_add_q(AVRational b, AVRational c)
Add two rationals.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
AVRational av_div_q(AVRational b, AVRational c)
Divide one rational by another.
simple assert() macros that are a bit more flexible than ISO C assert().
int64_t av_gcd(int64_t a, int64_t b)
Return the greatest common divisor of a and b.
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
AVRational av_sub_q(AVRational b, AVRational c)
Subtract one rational from another.
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
int64_t av_rescale(int64_t a, int64_t b, int64_t c)
Rescale a 64-bit integer with rounding to nearest.
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
int av_find_nearest_q_idx(AVRational q, const AVRational *q_list)
Find the nearest value in q_list to q.
rational number numerator/denominator
common internal and external API header
int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc)
Add a value to a timestamp.
int main(int argc, char **argv)