FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
snowenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "internal.h"
26 #include "snow_dwt.h"
27 #include "snow.h"
28 
29 #include "rangecoder.h"
30 #include "mathops.h"
31 
32 #include "mpegvideo.h"
33 #include "h263.h"
34 
35 #define FF_ME_ITER 50
36 
38 {
39  SnowContext *s = avctx->priv_data;
40  int plane_index, ret;
41  int i;
42 
43  if(avctx->prediction_method == DWT_97
44  && (avctx->flags & AV_CODEC_FLAG_QSCALE)
45  && avctx->global_quality == 0){
46  av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
47  return -1;
48  }
49 #if FF_API_MOTION_EST
51  if (avctx->me_method == ME_ITER)
54 #endif
55 
56  s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
57 
58  s->mv_scale = (avctx->flags & AV_CODEC_FLAG_QPEL) ? 2 : 4;
59  s->block_max_depth= (avctx->flags & AV_CODEC_FLAG_4MV ) ? 1 : 0;
60 
61  for(plane_index=0; plane_index<3; plane_index++){
62  s->plane[plane_index].diag_mc= 1;
63  s->plane[plane_index].htaps= 6;
64  s->plane[plane_index].hcoeff[0]= 40;
65  s->plane[plane_index].hcoeff[1]= -10;
66  s->plane[plane_index].hcoeff[2]= 2;
67  s->plane[plane_index].fast_mc= 1;
68  }
69 
70  if ((ret = ff_snow_common_init(avctx)) < 0) {
71  return ret;
72  }
74 
76 
77  s->version=0;
78 
79  s->m.avctx = avctx;
80  s->m.bit_rate= avctx->bit_rate;
81 
82  s->m.me.temp =
83  s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
84  s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
85  s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
86  s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
87  if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad)
88  return AVERROR(ENOMEM);
89 
90  ff_h263_encode_init(&s->m); //mv_penalty
91 
92  s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES);
93 
94  if(avctx->flags&AV_CODEC_FLAG_PASS1){
95  if(!avctx->stats_out)
96  avctx->stats_out = av_mallocz(256);
97 
98  if (!avctx->stats_out)
99  return AVERROR(ENOMEM);
100  }
101  if((avctx->flags&AV_CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
102  if(ff_rate_control_init(&s->m) < 0)
103  return -1;
104  }
106 
107  switch(avctx->pix_fmt){
108  case AV_PIX_FMT_YUV444P:
109 // case AV_PIX_FMT_YUV422P:
110  case AV_PIX_FMT_YUV420P:
111 // case AV_PIX_FMT_YUV411P:
112  case AV_PIX_FMT_YUV410P:
113  s->nb_planes = 3;
114  s->colorspace_type= 0;
115  break;
116  case AV_PIX_FMT_GRAY8:
117  s->nb_planes = 1;
118  s->colorspace_type = 1;
119  break;
120 /* case AV_PIX_FMT_RGB32:
121  s->colorspace= 1;
122  break;*/
123  default:
124  av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
125  return -1;
126  }
128 
129  ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
131 
133  if (!s->input_picture)
134  return AVERROR(ENOMEM);
135 
136  if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
137  return ret;
138 
139  if(s->motion_est == FF_ME_ITER){
140  int size= s->b_width * s->b_height << 2*s->block_max_depth;
141  for(i=0; i<s->max_ref_frames; i++){
142  s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
143  s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
144  if (!s->ref_mvs[i] || !s->ref_scores[i])
145  return AVERROR(ENOMEM);
146  }
147  }
148 
149  return 0;
150 }
151 
152 //near copy & paste from dsputil, FIXME
153 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
154 {
155  int s, i, j;
156 
157  s = 0;
158  for (i = 0; i < h; i++) {
159  for (j = 0; j < w; j++) {
160  s += pix[0];
161  pix ++;
162  }
163  pix += line_size - w;
164  }
165  return s;
166 }
167 
168 //near copy & paste from dsputil, FIXME
169 static int pix_norm1(uint8_t * pix, int line_size, int w)
170 {
171  int s, i, j;
172  uint32_t *sq = ff_square_tab + 256;
173 
174  s = 0;
175  for (i = 0; i < w; i++) {
176  for (j = 0; j < w; j ++) {
177  s += sq[pix[0]];
178  pix ++;
179  }
180  pix += line_size - w;
181  }
182  return s;
183 }
184 
185 static inline int get_penalty_factor(int lambda, int lambda2, int type){
186  switch(type&0xFF){
187  default:
188  case FF_CMP_SAD:
189  return lambda>>FF_LAMBDA_SHIFT;
190  case FF_CMP_DCT:
191  return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
192  case FF_CMP_W53:
193  return (4*lambda)>>(FF_LAMBDA_SHIFT);
194  case FF_CMP_W97:
195  return (2*lambda)>>(FF_LAMBDA_SHIFT);
196  case FF_CMP_SATD:
197  case FF_CMP_DCT264:
198  return (2*lambda)>>FF_LAMBDA_SHIFT;
199  case FF_CMP_RD:
200  case FF_CMP_PSNR:
201  case FF_CMP_SSE:
202  case FF_CMP_NSSE:
203  return lambda2>>FF_LAMBDA_SHIFT;
204  case FF_CMP_BIT:
205  return 1;
206  }
207 }
208 
209 //FIXME copy&paste
210 #define P_LEFT P[1]
211 #define P_TOP P[2]
212 #define P_TOPRIGHT P[3]
213 #define P_MEDIAN P[4]
214 #define P_MV1 P[9]
215 #define FLAG_QPEL 1 //must be 1
216 
217 static int encode_q_branch(SnowContext *s, int level, int x, int y){
218  uint8_t p_buffer[1024];
219  uint8_t i_buffer[1024];
220  uint8_t p_state[sizeof(s->block_state)];
221  uint8_t i_state[sizeof(s->block_state)];
222  RangeCoder pc, ic;
223  uint8_t *pbbak= s->c.bytestream;
224  uint8_t *pbbak_start= s->c.bytestream_start;
225  int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
226  const int w= s->b_width << s->block_max_depth;
227  const int h= s->b_height << s->block_max_depth;
228  const int rem_depth= s->block_max_depth - level;
229  const int index= (x + y*w) << rem_depth;
230  const int block_w= 1<<(LOG2_MB_SIZE - level);
231  int trx= (x+1)<<rem_depth;
232  int try= (y+1)<<rem_depth;
233  const BlockNode *left = x ? &s->block[index-1] : &null_block;
234  const BlockNode *top = y ? &s->block[index-w] : &null_block;
235  const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
236  const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
237  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
238  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
239  int pl = left->color[0];
240  int pcb= left->color[1];
241  int pcr= left->color[2];
242  int pmx, pmy;
243  int mx=0, my=0;
244  int l,cr,cb;
245  const int stride= s->current_picture->linesize[0];
246  const int uvstride= s->current_picture->linesize[1];
247  uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w,
248  s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
249  s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
250  int P[10][2];
251  int16_t last_mv[3][2];
252  int qpel= !!(s->avctx->flags & AV_CODEC_FLAG_QPEL); //unused
253  const int shift= 1+qpel;
254  MotionEstContext *c= &s->m.me;
255  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
256  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
257  int my_context= av_log2(2*FFABS(left->my - top->my));
258  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
259  int ref, best_ref, ref_score, ref_mx, ref_my;
260 
261  av_assert0(sizeof(s->block_state) >= 256);
262  if(s->keyframe){
263  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
264  return 0;
265  }
266 
267 // clip predictors / edge ?
268 
269  P_LEFT[0]= left->mx;
270  P_LEFT[1]= left->my;
271  P_TOP [0]= top->mx;
272  P_TOP [1]= top->my;
273  P_TOPRIGHT[0]= tr->mx;
274  P_TOPRIGHT[1]= tr->my;
275 
276  last_mv[0][0]= s->block[index].mx;
277  last_mv[0][1]= s->block[index].my;
278  last_mv[1][0]= right->mx;
279  last_mv[1][1]= right->my;
280  last_mv[2][0]= bottom->mx;
281  last_mv[2][1]= bottom->my;
282 
283  s->m.mb_stride=2;
284  s->m.mb_x=
285  s->m.mb_y= 0;
286  c->skip= 0;
287 
288  av_assert1(c-> stride == stride);
289  av_assert1(c->uvstride == uvstride);
290 
295 
296  c->xmin = - x*block_w - 16+3;
297  c->ymin = - y*block_w - 16+3;
298  c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
299  c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
300 
301  if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
302  if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
303  if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
304  if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
305  if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
306  if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
307  if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
308 
309  P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
310  P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
311 
312  if (!y) {
313  c->pred_x= P_LEFT[0];
314  c->pred_y= P_LEFT[1];
315  } else {
316  c->pred_x = P_MEDIAN[0];
317  c->pred_y = P_MEDIAN[1];
318  }
319 
320  score= INT_MAX;
321  best_ref= 0;
322  for(ref=0; ref<s->ref_frames; ref++){
323  init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
324 
325  ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
326  (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
327 
328  av_assert2(ref_mx >= c->xmin);
329  av_assert2(ref_mx <= c->xmax);
330  av_assert2(ref_my >= c->ymin);
331  av_assert2(ref_my <= c->ymax);
332 
333  ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
334  ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
335  ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
336  if(s->ref_mvs[ref]){
337  s->ref_mvs[ref][index][0]= ref_mx;
338  s->ref_mvs[ref][index][1]= ref_my;
339  s->ref_scores[ref][index]= ref_score;
340  }
341  if(score > ref_score){
342  score= ref_score;
343  best_ref= ref;
344  mx= ref_mx;
345  my= ref_my;
346  }
347  }
348  //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
349 
350  // subpel search
351  base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
352  pc= s->c;
353  pc.bytestream_start=
354  pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
355  memcpy(p_state, s->block_state, sizeof(s->block_state));
356 
357  if(level!=s->block_max_depth)
358  put_rac(&pc, &p_state[4 + s_context], 1);
359  put_rac(&pc, &p_state[1 + left->type + top->type], 0);
360  if(s->ref_frames > 1)
361  put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
362  pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
363  put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
364  put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
365  p_len= pc.bytestream - pc.bytestream_start;
366  score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
367 
368  block_s= block_w*block_w;
369  sum = pix_sum(current_data[0], stride, block_w, block_w);
370  l= (sum + block_s/2)/block_s;
371  iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
372 
373  if (s->nb_planes > 2) {
374  block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
375  sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
376  cb= (sum + block_s/2)/block_s;
377  // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
378  sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
379  cr= (sum + block_s/2)/block_s;
380  // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
381  }else
382  cb = cr = 0;
383 
384  ic= s->c;
385  ic.bytestream_start=
386  ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
387  memcpy(i_state, s->block_state, sizeof(s->block_state));
388  if(level!=s->block_max_depth)
389  put_rac(&ic, &i_state[4 + s_context], 1);
390  put_rac(&ic, &i_state[1 + left->type + top->type], 1);
391  put_symbol(&ic, &i_state[32], l-pl , 1);
392  if (s->nb_planes > 2) {
393  put_symbol(&ic, &i_state[64], cb-pcb, 1);
394  put_symbol(&ic, &i_state[96], cr-pcr, 1);
395  }
396  i_len= ic.bytestream - ic.bytestream_start;
397  iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
398 
399  av_assert1(iscore < 255*255*256 + s->lambda2*10);
400  av_assert1(iscore >= 0);
401  av_assert1(l>=0 && l<=255);
402  av_assert1(pl>=0 && pl<=255);
403 
404  if(level==0){
405  int varc= iscore >> 8;
406  int vard= score >> 8;
407  if (vard <= 64 || vard < varc)
408  c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
409  else
410  c->scene_change_score+= s->m.qscale;
411  }
412 
413  if(level!=s->block_max_depth){
414  put_rac(&s->c, &s->block_state[4 + s_context], 0);
415  score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
416  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
417  score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
418  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
419  score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
420 
421  if(score2 < score && score2 < iscore)
422  return score2;
423  }
424 
425  if(iscore < score){
426  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
427  memcpy(pbbak, i_buffer, i_len);
428  s->c= ic;
429  s->c.bytestream_start= pbbak_start;
430  s->c.bytestream= pbbak + i_len;
431  set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
432  memcpy(s->block_state, i_state, sizeof(s->block_state));
433  return iscore;
434  }else{
435  memcpy(pbbak, p_buffer, p_len);
436  s->c= pc;
437  s->c.bytestream_start= pbbak_start;
438  s->c.bytestream= pbbak + p_len;
439  set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
440  memcpy(s->block_state, p_state, sizeof(s->block_state));
441  return score;
442  }
443 }
444 
445 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
446  const int w= s->b_width << s->block_max_depth;
447  const int rem_depth= s->block_max_depth - level;
448  const int index= (x + y*w) << rem_depth;
449  int trx= (x+1)<<rem_depth;
450  BlockNode *b= &s->block[index];
451  const BlockNode *left = x ? &s->block[index-1] : &null_block;
452  const BlockNode *top = y ? &s->block[index-w] : &null_block;
453  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
454  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
455  int pl = left->color[0];
456  int pcb= left->color[1];
457  int pcr= left->color[2];
458  int pmx, pmy;
459  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
460  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
461  int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
462  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
463 
464  if(s->keyframe){
465  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
466  return;
467  }
468 
469  if(level!=s->block_max_depth){
470  if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
471  put_rac(&s->c, &s->block_state[4 + s_context], 1);
472  }else{
473  put_rac(&s->c, &s->block_state[4 + s_context], 0);
474  encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
475  encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
476  encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
477  encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
478  return;
479  }
480  }
481  if(b->type & BLOCK_INTRA){
482  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
483  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
484  put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
485  if (s->nb_planes > 2) {
486  put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
487  put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
488  }
489  set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
490  }else{
491  pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
492  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
493  if(s->ref_frames > 1)
494  put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
495  put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
496  put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
497  set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
498  }
499 }
500 
501 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
502  int i, x2, y2;
503  Plane *p= &s->plane[plane_index];
504  const int block_size = MB_SIZE >> s->block_max_depth;
505  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
506  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
507  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
508  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
509  const int ref_stride= s->current_picture->linesize[plane_index];
510  uint8_t *src= s-> input_picture->data[plane_index];
511  IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
512  const int b_stride = s->b_width << s->block_max_depth;
513  const int w= p->width;
514  const int h= p->height;
515  int index= mb_x + mb_y*b_stride;
516  BlockNode *b= &s->block[index];
517  BlockNode backup= *b;
518  int ab=0;
519  int aa=0;
520 
521  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
522 
523  b->type|= BLOCK_INTRA;
524  b->color[plane_index]= 0;
525  memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
526 
527  for(i=0; i<4; i++){
528  int mb_x2= mb_x + (i &1) - 1;
529  int mb_y2= mb_y + (i>>1) - 1;
530  int x= block_w*mb_x2 + block_w/2;
531  int y= block_h*mb_y2 + block_h/2;
532 
533  add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
534  x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
535 
536  for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
537  for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
538  int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
539  int obmc_v= obmc[index];
540  int d;
541  if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
542  if(x<0) obmc_v += obmc[index + block_w];
543  if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
544  if(x+block_w>w) obmc_v += obmc[index - block_w];
545  //FIXME precalculate this or simplify it somehow else
546 
547  d = -dst[index] + (1<<(FRAC_BITS-1));
548  dst[index] = d;
549  ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
550  aa += obmc_v * obmc_v; //FIXME precalculate this
551  }
552  }
553  }
554  *b= backup;
555 
556  return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping
557 }
558 
559 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
560  const int b_stride = s->b_width << s->block_max_depth;
561  const int b_height = s->b_height<< s->block_max_depth;
562  int index= x + y*b_stride;
563  const BlockNode *b = &s->block[index];
564  const BlockNode *left = x ? &s->block[index-1] : &null_block;
565  const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
566  const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
567  const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
568  int dmx, dmy;
569 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
570 // int my_context= av_log2(2*FFABS(left->my - top->my));
571 
572  if(x<0 || x>=b_stride || y>=b_height)
573  return 0;
574 /*
575 1 0 0
576 01X 1-2 1
577 001XX 3-6 2-3
578 0001XXX 7-14 4-7
579 00001XXXX 15-30 8-15
580 */
581 //FIXME try accurate rate
582 //FIXME intra and inter predictors if surrounding blocks are not the same type
583  if(b->type & BLOCK_INTRA){
584  return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
585  + av_log2(2*FFABS(left->color[1] - b->color[1]))
586  + av_log2(2*FFABS(left->color[2] - b->color[2])));
587  }else{
588  pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
589  dmx-= b->mx;
590  dmy-= b->my;
591  return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
592  + av_log2(2*FFABS(dmy))
593  + av_log2(2*b->ref));
594  }
595 }
596 
597 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
598  Plane *p= &s->plane[plane_index];
599  const int block_size = MB_SIZE >> s->block_max_depth;
600  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
601  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
602  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
603  const int ref_stride= s->current_picture->linesize[plane_index];
604  uint8_t *dst= s->current_picture->data[plane_index];
605  uint8_t *src= s-> input_picture->data[plane_index];
606  IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4;
607  uint8_t *cur = s->scratchbuf;
608  uint8_t *tmp = s->emu_edge_buffer;
609  const int b_stride = s->b_width << s->block_max_depth;
610  const int b_height = s->b_height<< s->block_max_depth;
611  const int w= p->width;
612  const int h= p->height;
613  int distortion;
614  int rate= 0;
615  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
616  int sx= block_w*mb_x - block_w/2;
617  int sy= block_h*mb_y - block_h/2;
618  int x0= FFMAX(0,-sx);
619  int y0= FFMAX(0,-sy);
620  int x1= FFMIN(block_w*2, w-sx);
621  int y1= FFMIN(block_h*2, h-sy);
622  int i,x,y;
623 
624  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
625 
626  ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
627 
628  for(y=y0; y<y1; y++){
629  const uint8_t *obmc1= obmc_edged[y];
630  const IDWTELEM *pred1 = pred + y*obmc_stride;
631  uint8_t *cur1 = cur + y*ref_stride;
632  uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
633  for(x=x0; x<x1; x++){
634 #if FRAC_BITS >= LOG2_OBMC_MAX
635  int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
636 #else
637  int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
638 #endif
639  v = (v + pred1[x]) >> FRAC_BITS;
640  if(v&(~255)) v= ~(v>>31);
641  dst1[x] = v;
642  }
643  }
644 
645  /* copy the regions where obmc[] = (uint8_t)256 */
646  if(LOG2_OBMC_MAX == 8
647  && (mb_x == 0 || mb_x == b_stride-1)
648  && (mb_y == 0 || mb_y == b_height-1)){
649  if(mb_x == 0)
650  x1 = block_w;
651  else
652  x0 = block_w;
653  if(mb_y == 0)
654  y1 = block_h;
655  else
656  y0 = block_h;
657  for(y=y0; y<y1; y++)
658  memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
659  }
660 
661  if(block_w==16){
662  /* FIXME rearrange dsputil to fit 32x32 cmp functions */
663  /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
664  /* FIXME cmps overlap but do not cover the wavelet's whole support.
665  * So improving the score of one block is not strictly guaranteed
666  * to improve the score of the whole frame, thus iterative motion
667  * estimation does not always converge. */
668  if(s->avctx->me_cmp == FF_CMP_W97)
669  distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
670  else if(s->avctx->me_cmp == FF_CMP_W53)
671  distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
672  else{
673  distortion = 0;
674  for(i=0; i<4; i++){
675  int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
676  distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
677  }
678  }
679  }else{
680  av_assert2(block_w==8);
681  distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
682  }
683 
684  if(plane_index==0){
685  for(i=0; i<4; i++){
686 /* ..RRr
687  * .RXx.
688  * rxx..
689  */
690  rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
691  }
692  if(mb_x == b_stride-2)
693  rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
694  }
695  return distortion + rate*penalty_factor;
696 }
697 
698 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
699  int i, y2;
700  Plane *p= &s->plane[plane_index];
701  const int block_size = MB_SIZE >> s->block_max_depth;
702  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
703  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
704  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
705  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
706  const int ref_stride= s->current_picture->linesize[plane_index];
707  uint8_t *dst= s->current_picture->data[plane_index];
708  uint8_t *src= s-> input_picture->data[plane_index];
709  //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
710  // const has only been removed from zero_dst to suppress a warning
711  static IDWTELEM zero_dst[4096]; //FIXME
712  const int b_stride = s->b_width << s->block_max_depth;
713  const int w= p->width;
714  const int h= p->height;
715  int distortion= 0;
716  int rate= 0;
717  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
718 
719  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
720 
721  for(i=0; i<9; i++){
722  int mb_x2= mb_x + (i%3) - 1;
723  int mb_y2= mb_y + (i/3) - 1;
724  int x= block_w*mb_x2 + block_w/2;
725  int y= block_h*mb_y2 + block_h/2;
726 
727  add_yblock(s, 0, NULL, zero_dst, dst, obmc,
728  x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
729 
730  //FIXME find a cleaner/simpler way to skip the outside stuff
731  for(y2= y; y2<0; y2++)
732  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
733  for(y2= h; y2<y+block_h; y2++)
734  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
735  if(x<0){
736  for(y2= y; y2<y+block_h; y2++)
737  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
738  }
739  if(x+block_w > w){
740  for(y2= y; y2<y+block_h; y2++)
741  memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
742  }
743 
744  av_assert1(block_w== 8 || block_w==16);
745  distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
746  }
747 
748  if(plane_index==0){
749  BlockNode *b= &s->block[mb_x+mb_y*b_stride];
750  int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
751 
752 /* ..RRRr
753  * .RXXx.
754  * .RXXx.
755  * rxxx.
756  */
757  if(merged)
758  rate = get_block_bits(s, mb_x, mb_y, 2);
759  for(i=merged?4:0; i<9; i++){
760  static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
761  rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
762  }
763  }
764  return distortion + rate*penalty_factor;
765 }
766 
767 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
768  const int w= b->width;
769  const int h= b->height;
770  int x, y;
771 
772  if(1){
773  int run=0;
774  int *runs = s->run_buffer;
775  int run_index=0;
776  int max_index;
777 
778  for(y=0; y<h; y++){
779  for(x=0; x<w; x++){
780  int v, p=0;
781  int /*ll=0, */l=0, lt=0, t=0, rt=0;
782  v= src[x + y*stride];
783 
784  if(y){
785  t= src[x + (y-1)*stride];
786  if(x){
787  lt= src[x - 1 + (y-1)*stride];
788  }
789  if(x + 1 < w){
790  rt= src[x + 1 + (y-1)*stride];
791  }
792  }
793  if(x){
794  l= src[x - 1 + y*stride];
795  /*if(x > 1){
796  if(orientation==1) ll= src[y + (x-2)*stride];
797  else ll= src[x - 2 + y*stride];
798  }*/
799  }
800  if(parent){
801  int px= x>>1;
802  int py= y>>1;
803  if(px<b->parent->width && py<b->parent->height)
804  p= parent[px + py*2*stride];
805  }
806  if(!(/*ll|*/l|lt|t|rt|p)){
807  if(v){
808  runs[run_index++]= run;
809  run=0;
810  }else{
811  run++;
812  }
813  }
814  }
815  }
816  max_index= run_index;
817  runs[run_index++]= run;
818  run_index=0;
819  run= runs[run_index++];
820 
821  put_symbol2(&s->c, b->state[30], max_index, 0);
822  if(run_index <= max_index)
823  put_symbol2(&s->c, b->state[1], run, 3);
824 
825  for(y=0; y<h; y++){
826  if(s->c.bytestream_end - s->c.bytestream < w*40){
827  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
828  return -1;
829  }
830  for(x=0; x<w; x++){
831  int v, p=0;
832  int /*ll=0, */l=0, lt=0, t=0, rt=0;
833  v= src[x + y*stride];
834 
835  if(y){
836  t= src[x + (y-1)*stride];
837  if(x){
838  lt= src[x - 1 + (y-1)*stride];
839  }
840  if(x + 1 < w){
841  rt= src[x + 1 + (y-1)*stride];
842  }
843  }
844  if(x){
845  l= src[x - 1 + y*stride];
846  /*if(x > 1){
847  if(orientation==1) ll= src[y + (x-2)*stride];
848  else ll= src[x - 2 + y*stride];
849  }*/
850  }
851  if(parent){
852  int px= x>>1;
853  int py= y>>1;
854  if(px<b->parent->width && py<b->parent->height)
855  p= parent[px + py*2*stride];
856  }
857  if(/*ll|*/l|lt|t|rt|p){
858  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
859 
860  put_rac(&s->c, &b->state[0][context], !!v);
861  }else{
862  if(!run){
863  run= runs[run_index++];
864 
865  if(run_index <= max_index)
866  put_symbol2(&s->c, b->state[1], run, 3);
867  av_assert2(v);
868  }else{
869  run--;
870  av_assert2(!v);
871  }
872  }
873  if(v){
874  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
875  int l2= 2*FFABS(l) + (l<0);
876  int t2= 2*FFABS(t) + (t<0);
877 
878  put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
879  put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
880  }
881  }
882  }
883  }
884  return 0;
885 }
886 
887 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
888 // encode_subband_qtree(s, b, src, parent, stride, orientation);
889 // encode_subband_z0run(s, b, src, parent, stride, orientation);
890  return encode_subband_c0run(s, b, src, parent, stride, orientation);
891 // encode_subband_dzr(s, b, src, parent, stride, orientation);
892 }
893 
894 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
895  const int b_stride= s->b_width << s->block_max_depth;
896  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
897  BlockNode backup= *block;
898  unsigned value;
899  int rd, index;
900 
901  av_assert2(mb_x>=0 && mb_y>=0);
902  av_assert2(mb_x<b_stride);
903 
904  if(intra){
905  block->color[0] = p[0];
906  block->color[1] = p[1];
907  block->color[2] = p[2];
908  block->type |= BLOCK_INTRA;
909  }else{
910  index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
911  value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
912  if(s->me_cache[index] == value)
913  return 0;
914  s->me_cache[index]= value;
915 
916  block->mx= p[0];
917  block->my= p[1];
918  block->type &= ~BLOCK_INTRA;
919  }
920 
921  rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra;
922 
923 //FIXME chroma
924  if(rd < *best_rd){
925  *best_rd= rd;
926  return 1;
927  }else{
928  *block= backup;
929  return 0;
930  }
931 }
932 
933 /* special case for int[2] args we discard afterwards,
934  * fixes compilation problem with gcc 2.95 */
935 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
936  int p[2] = {p0, p1};
937  return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
938 }
939 
940 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
941  const int b_stride= s->b_width << s->block_max_depth;
942  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
943  BlockNode backup[4];
944  unsigned value;
945  int rd, index;
946 
947  /* We don't initialize backup[] during variable declaration, because
948  * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
949  * 'int16_t'". */
950  backup[0] = block[0];
951  backup[1] = block[1];
952  backup[2] = block[b_stride];
953  backup[3] = block[b_stride + 1];
954 
955  av_assert2(mb_x>=0 && mb_y>=0);
956  av_assert2(mb_x<b_stride);
957  av_assert2(((mb_x|mb_y)&1) == 0);
958 
959  index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
960  value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
961  if(s->me_cache[index] == value)
962  return 0;
963  s->me_cache[index]= value;
964 
965  block->mx= p0;
966  block->my= p1;
967  block->ref= ref;
968  block->type &= ~BLOCK_INTRA;
969  block[1]= block[b_stride]= block[b_stride+1]= *block;
970 
971  rd= get_4block_rd(s, mb_x, mb_y, 0);
972 
973 //FIXME chroma
974  if(rd < *best_rd){
975  *best_rd= rd;
976  return 1;
977  }else{
978  block[0]= backup[0];
979  block[1]= backup[1];
980  block[b_stride]= backup[2];
981  block[b_stride+1]= backup[3];
982  return 0;
983  }
984 }
985 
986 static void iterative_me(SnowContext *s){
987  int pass, mb_x, mb_y;
988  const int b_width = s->b_width << s->block_max_depth;
989  const int b_height= s->b_height << s->block_max_depth;
990  const int b_stride= b_width;
991  int color[3];
992 
993  {
994  RangeCoder r = s->c;
995  uint8_t state[sizeof(s->block_state)];
996  memcpy(state, s->block_state, sizeof(s->block_state));
997  for(mb_y= 0; mb_y<s->b_height; mb_y++)
998  for(mb_x= 0; mb_x<s->b_width; mb_x++)
999  encode_q_branch(s, 0, mb_x, mb_y);
1000  s->c = r;
1001  memcpy(s->block_state, state, sizeof(s->block_state));
1002  }
1003 
1004  for(pass=0; pass<25; pass++){
1005  int change= 0;
1006 
1007  for(mb_y= 0; mb_y<b_height; mb_y++){
1008  for(mb_x= 0; mb_x<b_width; mb_x++){
1009  int dia_change, i, j, ref;
1010  int best_rd= INT_MAX, ref_rd;
1011  BlockNode backup, ref_b;
1012  const int index= mb_x + mb_y * b_stride;
1013  BlockNode *block= &s->block[index];
1014  BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1015  BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1016  BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1017  BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1018  BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1019  BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1020  BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1021  BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1022  const int b_w= (MB_SIZE >> s->block_max_depth);
1023  uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1024 
1025  if(pass && (block->type & BLOCK_OPT))
1026  continue;
1027  block->type |= BLOCK_OPT;
1028 
1029  backup= *block;
1030 
1031  if(!s->me_cache_generation)
1032  memset(s->me_cache, 0, sizeof(s->me_cache));
1033  s->me_cache_generation += 1<<22;
1034 
1035  //FIXME precalculate
1036  {
1037  int x, y;
1038  for (y = 0; y < b_w * 2; y++)
1039  memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1040  if(mb_x==0)
1041  for(y=0; y<b_w*2; y++)
1042  memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1043  if(mb_x==b_stride-1)
1044  for(y=0; y<b_w*2; y++)
1045  memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1046  if(mb_y==0){
1047  for(x=0; x<b_w*2; x++)
1048  obmc_edged[0][x] += obmc_edged[b_w-1][x];
1049  for(y=1; y<b_w; y++)
1050  memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1051  }
1052  if(mb_y==b_height-1){
1053  for(x=0; x<b_w*2; x++)
1054  obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1055  for(y=b_w; y<b_w*2-1; y++)
1056  memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1057  }
1058  }
1059 
1060  //skip stuff outside the picture
1061  if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1062  uint8_t *src= s-> input_picture->data[0];
1063  uint8_t *dst= s->current_picture->data[0];
1064  const int stride= s->current_picture->linesize[0];
1065  const int block_w= MB_SIZE >> s->block_max_depth;
1066  const int block_h= MB_SIZE >> s->block_max_depth;
1067  const int sx= block_w*mb_x - block_w/2;
1068  const int sy= block_h*mb_y - block_h/2;
1069  const int w= s->plane[0].width;
1070  const int h= s->plane[0].height;
1071  int y;
1072 
1073  for(y=sy; y<0; y++)
1074  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1075  for(y=h; y<sy+block_h*2; y++)
1076  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1077  if(sx<0){
1078  for(y=sy; y<sy+block_h*2; y++)
1079  memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1080  }
1081  if(sx+block_w*2 > w){
1082  for(y=sy; y<sy+block_h*2; y++)
1083  memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1084  }
1085  }
1086 
1087  // intra(black) = neighbors' contribution to the current block
1088  for(i=0; i < s->nb_planes; i++)
1089  color[i]= get_dc(s, mb_x, mb_y, i);
1090 
1091  // get previous score (cannot be cached due to OBMC)
1092  if(pass > 0 && (block->type&BLOCK_INTRA)){
1093  int color0[3]= {block->color[0], block->color[1], block->color[2]};
1094  check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1095  }else
1096  check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1097 
1098  ref_b= *block;
1099  ref_rd= best_rd;
1100  for(ref=0; ref < s->ref_frames; ref++){
1101  int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1102  if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1103  continue;
1104  block->ref= ref;
1105  best_rd= INT_MAX;
1106 
1107  check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1108  check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1109  if(tb)
1110  check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1111  if(lb)
1112  check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1113  if(rb)
1114  check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1115  if(bb)
1116  check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1117 
1118  /* fullpel ME */
1119  //FIXME avoid subpel interpolation / round to nearest integer
1120  do{
1121  int newx = block->mx;
1122  int newy = block->my;
1123  int dia_size = s->iterative_dia_size ? s->iterative_dia_size : FFMAX(s->avctx->dia_size, 1);
1124  dia_change=0;
1125  for(i=0; i < dia_size; i++){
1126  for(j=0; j<i; j++){
1127  dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd);
1128  dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd);
1129  dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd);
1130  dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd);
1131  }
1132  }
1133  }while(dia_change);
1134  /* subpel ME */
1135  do{
1136  static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1137  dia_change=0;
1138  for(i=0; i<8; i++)
1139  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1140  }while(dia_change);
1141  //FIXME or try the standard 2 pass qpel or similar
1142 
1143  mvr[0][0]= block->mx;
1144  mvr[0][1]= block->my;
1145  if(ref_rd > best_rd){
1146  ref_rd= best_rd;
1147  ref_b= *block;
1148  }
1149  }
1150  best_rd= ref_rd;
1151  *block= ref_b;
1152  check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1153  //FIXME RD style color selection
1154  if(!same_block(block, &backup)){
1155  if(tb ) tb ->type &= ~BLOCK_OPT;
1156  if(lb ) lb ->type &= ~BLOCK_OPT;
1157  if(rb ) rb ->type &= ~BLOCK_OPT;
1158  if(bb ) bb ->type &= ~BLOCK_OPT;
1159  if(tlb) tlb->type &= ~BLOCK_OPT;
1160  if(trb) trb->type &= ~BLOCK_OPT;
1161  if(blb) blb->type &= ~BLOCK_OPT;
1162  if(brb) brb->type &= ~BLOCK_OPT;
1163  change ++;
1164  }
1165  }
1166  }
1167  av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change);
1168  if(!change)
1169  break;
1170  }
1171 
1172  if(s->block_max_depth == 1){
1173  int change= 0;
1174  for(mb_y= 0; mb_y<b_height; mb_y+=2){
1175  for(mb_x= 0; mb_x<b_width; mb_x+=2){
1176  int i;
1177  int best_rd, init_rd;
1178  const int index= mb_x + mb_y * b_stride;
1179  BlockNode *b[4];
1180 
1181  b[0]= &s->block[index];
1182  b[1]= b[0]+1;
1183  b[2]= b[0]+b_stride;
1184  b[3]= b[2]+1;
1185  if(same_block(b[0], b[1]) &&
1186  same_block(b[0], b[2]) &&
1187  same_block(b[0], b[3]))
1188  continue;
1189 
1190  if(!s->me_cache_generation)
1191  memset(s->me_cache, 0, sizeof(s->me_cache));
1192  s->me_cache_generation += 1<<22;
1193 
1194  init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1195 
1196  //FIXME more multiref search?
1197  check_4block_inter(s, mb_x, mb_y,
1198  (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1199  (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1200 
1201  for(i=0; i<4; i++)
1202  if(!(b[i]->type&BLOCK_INTRA))
1203  check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1204 
1205  if(init_rd != best_rd)
1206  change++;
1207  }
1208  }
1209  av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1210  }
1211 }
1212 
1213 static void encode_blocks(SnowContext *s, int search){
1214  int x, y;
1215  int w= s->b_width;
1216  int h= s->b_height;
1217 
1218  if(s->motion_est == FF_ME_ITER && !s->keyframe && search)
1219  iterative_me(s);
1220 
1221  for(y=0; y<h; y++){
1222  if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1223  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1224  return;
1225  }
1226  for(x=0; x<w; x++){
1227  if(s->motion_est == FF_ME_ITER || !search)
1228  encode_q_branch2(s, 0, x, y);
1229  else
1230  encode_q_branch (s, 0, x, y);
1231  }
1232  }
1233 }
1234 
1235 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1236  const int w= b->width;
1237  const int h= b->height;
1238  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1239  const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1240  int x,y, thres1, thres2;
1241 
1242  if(s->qlog == LOSSLESS_QLOG){
1243  for(y=0; y<h; y++)
1244  for(x=0; x<w; x++)
1245  dst[x + y*stride]= src[x + y*stride];
1246  return;
1247  }
1248 
1249  bias= bias ? 0 : (3*qmul)>>3;
1250  thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1251  thres2= 2*thres1;
1252 
1253  if(!bias){
1254  for(y=0; y<h; y++){
1255  for(x=0; x<w; x++){
1256  int i= src[x + y*stride];
1257 
1258  if((unsigned)(i+thres1) > thres2){
1259  if(i>=0){
1260  i<<= QEXPSHIFT;
1261  i/= qmul; //FIXME optimize
1262  dst[x + y*stride]= i;
1263  }else{
1264  i= -i;
1265  i<<= QEXPSHIFT;
1266  i/= qmul; //FIXME optimize
1267  dst[x + y*stride]= -i;
1268  }
1269  }else
1270  dst[x + y*stride]= 0;
1271  }
1272  }
1273  }else{
1274  for(y=0; y<h; y++){
1275  for(x=0; x<w; x++){
1276  int i= src[x + y*stride];
1277 
1278  if((unsigned)(i+thres1) > thres2){
1279  if(i>=0){
1280  i<<= QEXPSHIFT;
1281  i= (i + bias) / qmul; //FIXME optimize
1282  dst[x + y*stride]= i;
1283  }else{
1284  i= -i;
1285  i<<= QEXPSHIFT;
1286  i= (i + bias) / qmul; //FIXME optimize
1287  dst[x + y*stride]= -i;
1288  }
1289  }else
1290  dst[x + y*stride]= 0;
1291  }
1292  }
1293  }
1294 }
1295 
1296 static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
1297  const int w= b->width;
1298  const int h= b->height;
1299  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1300  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1301  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1302  int x,y;
1303 
1304  if(s->qlog == LOSSLESS_QLOG) return;
1305 
1306  for(y=0; y<h; y++){
1307  for(x=0; x<w; x++){
1308  int i= src[x + y*stride];
1309  if(i<0){
1310  src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1311  }else if(i>0){
1312  src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1313  }
1314  }
1315  }
1316 }
1317 
1318 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1319  const int w= b->width;
1320  const int h= b->height;
1321  int x,y;
1322 
1323  for(y=h-1; y>=0; y--){
1324  for(x=w-1; x>=0; x--){
1325  int i= x + y*stride;
1326 
1327  if(x){
1328  if(use_median){
1329  if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1330  else src[i] -= src[i - 1];
1331  }else{
1332  if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1333  else src[i] -= src[i - 1];
1334  }
1335  }else{
1336  if(y) src[i] -= src[i - stride];
1337  }
1338  }
1339  }
1340 }
1341 
1342 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1343  const int w= b->width;
1344  const int h= b->height;
1345  int x,y;
1346 
1347  for(y=0; y<h; y++){
1348  for(x=0; x<w; x++){
1349  int i= x + y*stride;
1350 
1351  if(x){
1352  if(use_median){
1353  if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1354  else src[i] += src[i - 1];
1355  }else{
1356  if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1357  else src[i] += src[i - 1];
1358  }
1359  }else{
1360  if(y) src[i] += src[i - stride];
1361  }
1362  }
1363  }
1364 }
1365 
1366 static void encode_qlogs(SnowContext *s){
1367  int plane_index, level, orientation;
1368 
1369  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1370  for(level=0; level<s->spatial_decomposition_count; level++){
1371  for(orientation=level ? 1:0; orientation<4; orientation++){
1372  if(orientation==2) continue;
1373  put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1374  }
1375  }
1376  }
1377 }
1378 
1379 static void encode_header(SnowContext *s){
1380  int plane_index, i;
1381  uint8_t kstate[32];
1382 
1383  memset(kstate, MID_STATE, sizeof(kstate));
1384 
1385  put_rac(&s->c, kstate, s->keyframe);
1386  if(s->keyframe || s->always_reset){
1389  s->last_qlog=
1390  s->last_qbias=
1391  s->last_mv_scale=
1392  s->last_block_max_depth= 0;
1393  for(plane_index=0; plane_index<2; plane_index++){
1394  Plane *p= &s->plane[plane_index];
1395  p->last_htaps=0;
1396  p->last_diag_mc=0;
1397  memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1398  }
1399  }
1400  if(s->keyframe){
1401  put_symbol(&s->c, s->header_state, s->version, 0);
1402  put_rac(&s->c, s->header_state, s->always_reset);
1406  put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1407  if (s->nb_planes > 2) {
1408  put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1409  put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1410  }
1412 // put_rac(&s->c, s->header_state, s->rate_scalability);
1413  put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1414 
1415  encode_qlogs(s);
1416  }
1417 
1418  if(!s->keyframe){
1419  int update_mc=0;
1420  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1421  Plane *p= &s->plane[plane_index];
1422  update_mc |= p->last_htaps != p->htaps;
1423  update_mc |= p->last_diag_mc != p->diag_mc;
1424  update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1425  }
1426  put_rac(&s->c, s->header_state, update_mc);
1427  if(update_mc){
1428  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1429  Plane *p= &s->plane[plane_index];
1430  put_rac(&s->c, s->header_state, p->diag_mc);
1431  put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1432  for(i= p->htaps/2; i; i--)
1433  put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1434  }
1435  }
1437  put_rac(&s->c, s->header_state, 1);
1439  encode_qlogs(s);
1440  }else
1441  put_rac(&s->c, s->header_state, 0);
1442  }
1443 
1445  put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1446  put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1447  put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1449 
1450 }
1451 
1453  int plane_index;
1454 
1455  if(!s->keyframe){
1456  for(plane_index=0; plane_index<2; plane_index++){
1457  Plane *p= &s->plane[plane_index];
1458  p->last_diag_mc= p->diag_mc;
1459  p->last_htaps = p->htaps;
1460  memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1461  }
1462  }
1463 
1465  s->last_qlog = s->qlog;
1466  s->last_qbias = s->qbias;
1467  s->last_mv_scale = s->mv_scale;
1470 }
1471 
1472 static int qscale2qlog(int qscale){
1473  return rint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1474  + 61*QROOT/8; ///< 64 > 60
1475 }
1476 
1478 {
1479  /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1480  * FIXME we know exact mv bits at this point,
1481  * but ratecontrol isn't set up to include them. */
1482  uint32_t coef_sum= 0;
1483  int level, orientation, delta_qlog;
1484 
1485  for(level=0; level<s->spatial_decomposition_count; level++){
1486  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1487  SubBand *b= &s->plane[0].band[level][orientation];
1488  IDWTELEM *buf= b->ibuf;
1489  const int w= b->width;
1490  const int h= b->height;
1491  const int stride= b->stride;
1492  const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1493  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1494  const int qdiv= (1<<16)/qmul;
1495  int x, y;
1496  //FIXME this is ugly
1497  for(y=0; y<h; y++)
1498  for(x=0; x<w; x++)
1499  buf[x+y*stride]= b->buf[x+y*stride];
1500  if(orientation==0)
1501  decorrelate(s, b, buf, stride, 1, 0);
1502  for(y=0; y<h; y++)
1503  for(x=0; x<w; x++)
1504  coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1505  }
1506  }
1507 
1508  /* ugly, ratecontrol just takes a sqrt again */
1509  av_assert0(coef_sum < INT_MAX);
1510  coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1511 
1512  if(pict->pict_type == AV_PICTURE_TYPE_I){
1513  s->m.current_picture.mb_var_sum= coef_sum;
1515  }else{
1516  s->m.current_picture.mc_mb_var_sum= coef_sum;
1518  }
1519 
1520  pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1521  if (pict->quality < 0)
1522  return INT_MIN;
1523  s->lambda= pict->quality * 3/2;
1524  delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1525  s->qlog+= delta_qlog;
1526  return delta_qlog;
1527 }
1528 
1530  int width = p->width;
1531  int height= p->height;
1532  int level, orientation, x, y;
1533 
1534  for(level=0; level<s->spatial_decomposition_count; level++){
1535  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1536  SubBand *b= &p->band[level][orientation];
1537  IDWTELEM *ibuf= b->ibuf;
1538  int64_t error=0;
1539 
1540  memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1541  ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1543  for(y=0; y<height; y++){
1544  for(x=0; x<width; x++){
1545  int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1546  error += d*d;
1547  }
1548  }
1549 
1550  b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
1551  }
1552  }
1553 }
1554 
1556  const AVFrame *pict, int *got_packet)
1557 {
1558  SnowContext *s = avctx->priv_data;
1559  RangeCoder * const c= &s->c;
1560  AVFrame *pic = pict;
1561  const int width= s->avctx->width;
1562  const int height= s->avctx->height;
1563  int level, orientation, plane_index, i, y, ret;
1564  uint8_t rc_header_bak[sizeof(s->header_state)];
1565  uint8_t rc_block_bak[sizeof(s->block_state)];
1566 
1567  if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
1568  return ret;
1569 
1570  ff_init_range_encoder(c, pkt->data, pkt->size);
1571  ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1572 
1573  for(i=0; i < s->nb_planes; i++){
1574  int hshift= i ? s->chroma_h_shift : 0;
1575  int vshift= i ? s->chroma_v_shift : 0;
1576  for(y=0; y<FF_CEIL_RSHIFT(height, vshift); y++)
1577  memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1578  &pict->data[i][y * pict->linesize[i]],
1579  FF_CEIL_RSHIFT(width, hshift));
1581  FF_CEIL_RSHIFT(width, hshift), FF_CEIL_RSHIFT(height, vshift),
1582  EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1583  EDGE_TOP | EDGE_BOTTOM);
1584 
1585  }
1586  emms_c();
1587  s->new_picture = pict;
1588 
1589  s->m.picture_number= avctx->frame_number;
1590  if(avctx->flags&AV_CODEC_FLAG_PASS2){
1592  s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1593  if(!(avctx->flags&AV_CODEC_FLAG_QSCALE)) {
1594  pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1595  if (pic->quality < 0)
1596  return -1;
1597  }
1598  }else{
1599  s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1601  }
1602 
1603  if(s->pass1_rc && avctx->frame_number == 0)
1604  pic->quality = 2*FF_QP2LAMBDA;
1605  if (pic->quality) {
1606  s->qlog = qscale2qlog(pic->quality);
1607  s->lambda = pic->quality * 3/2;
1608  }
1609  if (s->qlog < 0 || (!pic->quality && (avctx->flags & AV_CODEC_FLAG_QSCALE))) {
1610  s->qlog= LOSSLESS_QLOG;
1611  s->lambda = 0;
1612  }//else keep previous frame's qlog until after motion estimation
1613 
1614  if (s->current_picture->data[0]
1615 #if FF_API_EMU_EDGE
1616  && !(s->avctx->flags&CODEC_FLAG_EMU_EDGE)
1617 #endif
1618  ) {
1619  int w = s->avctx->width;
1620  int h = s->avctx->height;
1621 
1623  s->current_picture->linesize[0], w , h ,
1625  if (s->current_picture->data[2]) {
1632  }
1633  }
1634 
1636  av_frame_unref(avctx->coded_frame);
1637  ret = av_frame_ref(avctx->coded_frame, s->current_picture);
1638  if (ret < 0)
1639  return ret;
1640 
1643  s->m.current_picture.f->pts = pict->pts;
1644  if(pic->pict_type == AV_PICTURE_TYPE_P){
1645  int block_width = (width +15)>>4;
1646  int block_height= (height+15)>>4;
1647  int stride= s->current_picture->linesize[0];
1648 
1650  av_assert0(s->last_picture[0]->data[0]);
1651 
1652  s->m.avctx= s->avctx;
1653  s->m. last_picture.f = s->last_picture[0];
1654  s->m. new_picture.f = s->input_picture;
1655  s->m. last_picture_ptr= &s->m. last_picture;
1656  s->m.linesize = stride;
1657  s->m.uvlinesize= s->current_picture->linesize[1];
1658  s->m.width = width;
1659  s->m.height= height;
1660  s->m.mb_width = block_width;
1661  s->m.mb_height= block_height;
1662  s->m.mb_stride= s->m.mb_width+1;
1663  s->m.b8_stride= 2*s->m.mb_width+1;
1664  s->m.f_code=1;
1665  s->m.pict_type = pic->pict_type;
1666 #if FF_API_MOTION_EST
1667  s->m.me_method= s->avctx->me_method;
1668 #endif
1669  s->m.motion_est= s->motion_est;
1670  s->m.me.scene_change_score=0;
1671  s->m.me.dia_size = avctx->dia_size;
1673  s->m.out_format= FMT_H263;
1674  s->m.unrestricted_mv= 1;
1675 
1676  s->m.lambda = s->lambda;
1677  s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1678  s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1679 
1680  s->m.mecc= s->mecc; //move
1681  s->m.qdsp= s->qdsp; //move
1682  s->m.hdsp = s->hdsp;
1683  ff_init_me(&s->m);
1684  s->hdsp = s->m.hdsp;
1685  s->mecc= s->m.mecc;
1686  }
1687 
1688  if(s->pass1_rc){
1689  memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1690  memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1691  }
1692 
1693 redo_frame:
1694 
1696 
1697  while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1698  || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1700 
1701  if (s->spatial_decomposition_count <= 0) {
1702  av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1703  return AVERROR(EINVAL);
1704  }
1705 
1706  s->m.pict_type = pic->pict_type;
1707  s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1708 
1710 
1712  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1713  calculate_visual_weight(s, &s->plane[plane_index]);
1714  }
1715  }
1716 
1717  encode_header(s);
1718  s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1719  encode_blocks(s, 1);
1720  s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1721 
1722  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1723  Plane *p= &s->plane[plane_index];
1724  int w= p->width;
1725  int h= p->height;
1726  int x, y;
1727 // int bits= put_bits_count(&s->c.pb);
1728 
1729  if (!s->memc_only) {
1730  //FIXME optimize
1731  if(pict->data[plane_index]) //FIXME gray hack
1732  for(y=0; y<h; y++){
1733  for(x=0; x<w; x++){
1734  s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1735  }
1736  }
1737  predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1738 
1739  if( plane_index==0
1740  && pic->pict_type == AV_PICTURE_TYPE_P
1741  && !(avctx->flags&AV_CODEC_FLAG_PASS2)
1743  ff_init_range_encoder(c, pkt->data, pkt->size);
1744  ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1746  s->keyframe=1;
1747  s->current_picture->key_frame=1;
1748  goto redo_frame;
1749  }
1750 
1751  if(s->qlog == LOSSLESS_QLOG){
1752  for(y=0; y<h; y++){
1753  for(x=0; x<w; x++){
1754  s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1755  }
1756  }
1757  }else{
1758  for(y=0; y<h; y++){
1759  for(x=0; x<w; x++){
1761  }
1762  }
1763  }
1764 
1766 
1767  if(s->pass1_rc && plane_index==0){
1768  int delta_qlog = ratecontrol_1pass(s, pic);
1769  if (delta_qlog <= INT_MIN)
1770  return -1;
1771  if(delta_qlog){
1772  //reordering qlog in the bitstream would eliminate this reset
1773  ff_init_range_encoder(c, pkt->data, pkt->size);
1774  memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1775  memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1776  encode_header(s);
1777  encode_blocks(s, 0);
1778  }
1779  }
1780 
1781  for(level=0; level<s->spatial_decomposition_count; level++){
1782  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1783  SubBand *b= &p->band[level][orientation];
1784 
1785  quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1786  if(orientation==0)
1787  decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1788  if (!s->no_bitstream)
1789  encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1790  av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1791  if(orientation==0)
1792  correlate(s, b, b->ibuf, b->stride, 1, 0);
1793  }
1794  }
1795 
1796  for(level=0; level<s->spatial_decomposition_count; level++){
1797  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1798  SubBand *b= &p->band[level][orientation];
1799 
1800  dequantize(s, b, b->ibuf, b->stride);
1801  }
1802  }
1803 
1805  if(s->qlog == LOSSLESS_QLOG){
1806  for(y=0; y<h; y++){
1807  for(x=0; x<w; x++){
1808  s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1809  }
1810  }
1811  }
1812  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1813  }else{
1814  //ME/MC only
1815  if(pic->pict_type == AV_PICTURE_TYPE_I){
1816  for(y=0; y<h; y++){
1817  for(x=0; x<w; x++){
1818  s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1819  pict->data[plane_index][y*pict->linesize[plane_index] + x];
1820  }
1821  }
1822  }else{
1823  memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1824  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1825  }
1826  }
1827  if(s->avctx->flags&AV_CODEC_FLAG_PSNR){
1828  int64_t error= 0;
1829 
1830  if(pict->data[plane_index]) //FIXME gray hack
1831  for(y=0; y<h; y++){
1832  for(x=0; x<w; x++){
1833  int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1834  error += d*d;
1835  }
1836  }
1837  s->avctx->error[plane_index] += error;
1838  s->current_picture->error[plane_index] = error;
1839  }
1840 
1841  }
1842 
1844 
1845  ff_snow_release_buffer(avctx);
1846 
1848  s->current_picture->pict_type = pict->pict_type;
1849  s->current_picture->quality = pict->quality;
1850  s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1851  s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1854  s->m.current_picture.f->quality = pic->quality;
1855  s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1856  if(s->pass1_rc)
1857  if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1858  return -1;
1859  if(avctx->flags&AV_CODEC_FLAG_PASS1)
1860  ff_write_pass1_stats(&s->m);
1861  s->m.last_pict_type = s->m.pict_type;
1862  avctx->frame_bits = s->m.frame_bits;
1863  avctx->mv_bits = s->m.mv_bits;
1864  avctx->misc_bits = s->m.misc_bits;
1865  avctx->p_tex_bits = s->m.p_tex_bits;
1866 
1867  emms_c();
1868 
1870  s->current_picture->error,
1871  (s->avctx->flags&AV_CODEC_FLAG_PSNR) ? 4 : 0,
1873 
1874  pkt->size = ff_rac_terminate(c);
1875  if (s->current_picture->key_frame)
1876  pkt->flags |= AV_PKT_FLAG_KEY;
1877  *got_packet = 1;
1878 
1879  return 0;
1880 }
1881 
1883 {
1884  SnowContext *s = avctx->priv_data;
1885 
1886  ff_snow_common_end(s);
1889  av_freep(&avctx->stats_out);
1890 
1891  return 0;
1892 }
1893 
1894 #define OFFSET(x) offsetof(SnowContext, x)
1895 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1896 static const AVOption options[] = {
1898  { "iter", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ITER }, 0, 0, FF_MPV_OPT_FLAGS, "motion_est" },
1899  { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1900  { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1901  { "intra_penalty", "Penalty for intra blocks in block decission", OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1902  { "iterative_dia_size", "Dia size for the iterative ME", OFFSET(iterative_dia_size), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1903  { NULL },
1904 };
1905 
1906 static const AVClass snowenc_class = {
1907  .class_name = "snow encoder",
1908  .item_name = av_default_item_name,
1909  .option = options,
1910  .version = LIBAVUTIL_VERSION_INT,
1911 };
1912 
1914  .name = "snow",
1915  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1916  .type = AVMEDIA_TYPE_VIDEO,
1917  .id = AV_CODEC_ID_SNOW,
1918  .priv_data_size = sizeof(SnowContext),
1919  .init = encode_init,
1920  .encode2 = encode_frame,
1921  .close = encode_end,
1922  .pix_fmts = (const enum AVPixelFormat[]){
1926  },
1927  .priv_class = &snowenc_class,
1928  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1930 };
1931 
1932 
1933 #ifdef TEST
1934 #undef malloc
1935 #undef free
1936 #undef printf
1937 
1938 #include "libavutil/lfg.h"
1939 #include "libavutil/mathematics.h"
1940 
1941 int main(void){
1942 #define width 256
1943 #define height 256
1944  int buffer[2][width*height];
1945  SnowContext s;
1946  int i;
1947  AVLFG prng;
1950 
1953 
1954  if (!s.temp_dwt_buffer || !s.temp_idwt_buffer) {
1955  fprintf(stderr, "Failed to allocate memory\n");
1956  return 1;
1957  }
1958 
1959  av_lfg_init(&prng, 1);
1960 
1961  printf("testing 5/3 DWT\n");
1962  for(i=0; i<width*height; i++)
1963  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1964 
1967 
1968  for(i=0; i<width*height; i++)
1969  if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1970 
1971  printf("testing 9/7 DWT\n");
1973  for(i=0; i<width*height; i++)
1974  buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
1975 
1978 
1979  for(i=0; i<width*height; i++)
1980  if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
1981 
1982  {
1983  int level, orientation, x, y;
1984  int64_t errors[8][4];
1985  int64_t g=0;
1986 
1987  memset(errors, 0, sizeof(errors));
1990  for(level=0; level<s.spatial_decomposition_count; level++){
1991  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1992  int w= width >> (s.spatial_decomposition_count-level);
1993  int h= height >> (s.spatial_decomposition_count-level);
1994  int stride= width << (s.spatial_decomposition_count-level);
1995  DWTELEM *buf= buffer[0];
1996  int64_t error=0;
1997 
1998  if(orientation&1) buf+=w;
1999  if(orientation>1) buf+=stride>>1;
2000 
2001  memset(buffer[0], 0, sizeof(int)*width*height);
2002  buf[w/2 + h/2*stride]= 256*256;
2004  for(y=0; y<height; y++){
2005  for(x=0; x<width; x++){
2006  int64_t d= buffer[0][x + y*width];
2007  error += d*d;
2008  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
2009  }
2010  if(FFABS(height/2-y)<9 && level==2) printf("\n");
2011  }
2012  error= (int)(sqrt(error)+0.5);
2013  errors[level][orientation]= error;
2014  if(g) g=av_gcd(g, error);
2015  else g= error;
2016  }
2017  }
2018  printf("static int const visual_weight[][4]={\n");
2019  for(level=0; level<s.spatial_decomposition_count; level++){
2020  printf(" {");
2021  for(orientation=0; orientation<4; orientation++){
2022  printf("%8"PRId64",", errors[level][orientation]/g);
2023  }
2024  printf("},\n");
2025  }
2026  printf("};\n");
2027  {
2028  int level=2;
2029  int w= width >> (s.spatial_decomposition_count-level);
2030  //int h= height >> (s.spatial_decomposition_count-level);
2031  int stride= width << (s.spatial_decomposition_count-level);
2032  DWTELEM *buf= buffer[0];
2033  int64_t error=0;
2034 
2035  buf+=w;
2036  buf+=stride>>1;
2037 
2038  memset(buffer[0], 0, sizeof(int)*width*height);
2039  for(y=0; y<height; y++){
2040  for(x=0; x<width; x++){
2041  int tab[4]={0,2,3,1};
2042  buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
2043  }
2044  }
2046  for(y=0; y<height; y++){
2047  for(x=0; x<width; x++){
2048  int64_t d= buffer[0][x + y*width];
2049  error += d*d;
2050  if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d);
2051  }
2052  if(FFABS(height/2-y)<9) printf("\n");
2053  }
2054  }
2055 
2056  }
2057  return 0;
2058 }
2059 #endif /* TEST */
int last_block_max_depth
Definition: snow.h:168
uint8_t * scratchpad
data area for the ME algo, so that the ME does not need to malloc/free.
Definition: motion_est.h:46
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
static const AVClass snowenc_class
Definition: snowenc.c:1906
Definition: lfg.h:25
int version
Definition: snow.h:135
static av_cold int encode_end(AVCodecContext *avctx)
Definition: snowenc.c:1882
MpegEncContext m
Definition: snow.h:182
int frame_bits
bits used for the current frame
Definition: mpegvideo.h:345
int mv_scale
Definition: snow.h:160
#define NULL
Definition: coverity.c:32
RateControlContext rc_context
contains stuff only accessed in ratecontrol.c
Definition: mpegvideo.h:348
static av_always_inline void predict_plane(SnowContext *s, IDWTELEM *buf, int plane_index, int add)
Definition: snow.h:475
int ff_snow_frame_start(SnowContext *s)
Definition: snow.c:655
av_cold void ff_rate_control_uninit(MpegEncContext *s)
Definition: ratecontrol.c:312
#define QSHIFT
Definition: snow.h:42
float v
#define P_MEDIAN
Definition: snowenc.c:213
int picture_number
Definition: mpegvideo.h:134
const char * s
Definition: avisynth_c.h:631
#define P
#define P_TOPRIGHT
Definition: snowenc.c:212
AVCodecContext * avctx
Definition: snow.h:115
int block_max_depth
Definition: snow.h:167
int last_spatial_decomposition_count
Definition: snow.h:140
static int shift(int a, int b)
Definition: sonic.c:82
int chroma_v_shift
Definition: snow.h:153
This structure describes decoded (raw) audio or video data.
Definition: frame.h:171
int skip
set if ME is skipped for the current MB
Definition: motion_est.h:43
static double rint(double x)
Definition: libm.h:141
AVOption.
Definition: opt.h:255
int ff_side_data_set_encoder_stats(AVPacket *pkt, int quality, int64_t *error, int error_count, int pict_type)
Definition: avpacket.c:606
int pass1_rc
Definition: snow.h:159
uint64_t error[AV_NUM_DATA_POINTERS]
error
Definition: avcodec.h:2941
#define CODEC_FLAG_PASS2
Definition: avcodec.h:978
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:68
#define FF_CMP_NSSE
Definition: avcodec.h:1938
RateControlEntry * entry
Definition: ratecontrol.h:65
int * run_buffer
Definition: snow.h:150
#define LIBAVUTIL_VERSION_INT
Definition: version.h:62
#define P_LEFT
Definition: snowenc.c:210
const char * g
Definition: vf_curves.c:108
void ff_h263_encode_init(MpegEncContext *s)
Definition: ituh263enc.c:762
int ff_epzs_motion_search(struct MpegEncContext *s, int *mx_ptr, int *my_ptr, int P[10][2], int src_index, int ref_index, int16_t(*last_mv)[2], int ref_mv_scale, int size, int h)
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int always_reset
Definition: snow.h:134
#define MAX_MV
Definition: motion_est.h:32
int no_bitstream
Definition: snow.h:177
uint8_t * current_mv_penalty
Definition: motion_est.h:88
#define BLOCK_INTRA
Definition: snow.h:57
#define FF_MPV_COMMON_OPTS
Definition: mpegvideo.h:573
Range coder.
uint8_t * bytestream_end
Definition: rangecoder.h:44
int size
Definition: avcodec.h:1424
const char * b
Definition: vf_curves.c:109
#define FF_CMP_SSE
Definition: avcodec.h:1929
#define FF_MPV_OPT_FLAGS
Definition: mpegvideo.h:572
int sub_penalty_factor
Definition: motion_est.h:61
const AVFrame * new_picture
Definition: snow.h:124
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1722
int max_ref_frames
Definition: snow.h:142
uint32_t * score_map
map to store the scores
Definition: motion_est.h:53
mpegvideo header.
int8_t last_hcoeff[HTAPS_MAX/2]
Definition: snow.h:109
int scene_change_score
Definition: motion_est.h:81
int ff_snow_common_init_after_header(AVCodecContext *avctx)
Definition: snow.c:514
static void update_last_header_values(SnowContext *s)
Definition: snowenc.c:1452
int keyframe
Definition: snow.h:133
uint8_t run
Definition: svq3.c:149
static AVPacket pkt
#define EDGE_TOP
#define FF_API_EMU_EDGE
Definition: version.h:146
#define FF_LAMBDA_SHIFT
Definition: avutil.h:217
QpelDSPContext qdsp
Definition: mpegvideo.h:242
AVCodec.
Definition: avcodec.h:3472
int qscale
QP.
Definition: mpegvideo.h:211
void ff_snow_reset_contexts(SnowContext *s)
Definition: snow.c:96
static void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int ref, int type)
Definition: snow.h:482
short IDWTELEM
Definition: dirac_dwt.h:27
#define FF_CMP_RD
Definition: avcodec.h:1934
HpelDSPContext hdsp
Definition: snow.h:118
attribute_deprecated int me_method
This option does nothing.
Definition: avcodec.h:1729
int scenechange_threshold
scene change detection threshold 0 is default, larger means fewer detected scene changes.
Definition: avcodec.h:2079
uint32_t ff_square_tab[512]
Definition: me_cmp.c:32
AVCodec ff_snow_encoder
Definition: snowenc.c:1913
#define log2(x)
Definition: libm.h:122
MECmpContext mecc
Definition: snow.h:117
static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation)
Definition: snowenc.c:767
#define OFFSET(x)
Definition: snowenc.c:1894
int qlog
log(qscale)/log[2^(1/6)]
Definition: snow.h:87
int ff_rac_terminate(RangeCoder *c)
Definition: rangecoder.c:103
Definition: snow.h:50
int width
Definition: diracdec.c:101
static int get_penalty_factor(int lambda, int lambda2, int type)
Definition: snowenc.c:185
uint8_t level
Definition: snow.h:60
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
uint8_t ref
Definition: snow.h:53
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:97
#define FF_CMP_W53
Definition: avcodec.h:1939
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
int b_height
Definition: snow.h:166
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: snowenc.c:1555
ScratchpadContext sc
Definition: mpegvideo.h:209
uint8_t
int16_t mx
Definition: snow.h:51
#define av_cold
Definition: attributes.h:74
#define FRAC_BITS
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:135
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed)
Definition: ffv1enc.c:228
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:63
static float search(FOCContext *foc, int pass, int maxpass, int xmin, int xmax, int ymin, int ymax, int *best_x, int *best_y, float best_score)
Definition: vf_find_rect.c:156
AVOptions.
enum OutputFormat out_format
output format
Definition: mpegvideo.h:111
uint32_t * ref_scores[MAX_REF_FRAMES]
Definition: snow.h:145
int ff_get_mb_score(struct MpegEncContext *s, int mx, int my, int src_index, int ref_index, int size, int h, int add_rate)
Motion estimation context.
Definition: motion_est.h:41
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:365
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:257
int misc_bits
cbp, mb_type
Definition: mpegvideo.h:359
int me_cmp
motion estimation comparison function
Definition: avcodec.h:1909
Picture current_picture
copy of the current picture structure.
Definition: mpegvideo.h:187
#define ENCODER_EXTRA_BITS
Definition: snow.h:74
static void calculate_visual_weight(SnowContext *s, Plane *p)
Definition: snowenc.c:1529
int16_t my
Definition: snow.h:52
uint8_t * data
Definition: avcodec.h:1423
uint8_t(* mv_penalty)[MAX_MV *2+1]
bit amount needed to encode a MV
Definition: motion_est.h:87
int ff_w97_32_c(struct MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t line_size, int h)
Definition: snow_dwt.c:837
static const BlockNode null_block
Definition: snow.h:63
static void encode_blocks(SnowContext *s, int search)
Definition: snowenc.c:1213
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:136
ptrdiff_t size
Definition: opengl_enc.c:101
void ff_snow_release_buffer(AVCodecContext *avctx)
Definition: snow.c:640
#define QEXPSHIFT
Definition: snow.h:527
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:2771
#define AV_INPUT_BUFFER_MIN_SIZE
minimum encoding buffer size Used to avoid some checks during header writing.
Definition: avcodec.h:643
static void put_symbol2(RangeCoder *c, uint8_t *state, int v, int log2)
Definition: snow.h:580
#define av_log(a,...)
#define ff_sqrt
Definition: mathops.h:214
#define ROUNDED_DIV(a, b)
Definition: common.h:55
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: avcodec.h:1469
#define DWT_97
Definition: snow_dwt.h:66
BlockNode * block
Definition: snow.h:171
MpegvideoEncDSPContext mpvencdsp
Definition: snow.h:122
int last_diag_mc
Definition: snow.h:110
#define EDGE_WIDTH
Definition: mpegpicture.h:33
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int16_t(*[MAX_REF_FRAMES] ref_mvs)[2]
Definition: snow.h:144
#define MB_SIZE
Definition: cinepakenc.c:86
#define AV_CODEC_FLAG_4MV
4 MV per MB allowed / advanced prediction for H.263.
Definition: avcodec.h:739
int64_t total_bits
Definition: mpegvideo.h:344
unsigned me_cache_generation
Definition: snow.h:174
#define FF_CMP_W97
Definition: avcodec.h:1940
av_default_item_name
#define AVERROR(e)
Definition: error.h:43
av_cold int ff_rate_control_init(MpegEncContext *s)
Definition: ratecontrol.c:88
int me_sub_cmp
subpixel motion estimation comparison function
Definition: avcodec.h:1915
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:148
#define FF_CMP_BIT
Definition: avcodec.h:1933
#define FF_CMP_DCT
Definition: avcodec.h:1931
void ff_write_pass1_stats(MpegEncContext *s)
Definition: ratecontrol.c:46
int unrestricted_mv
mv can point outside of the coded picture
Definition: mpegvideo.h:230
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:175
int diag_mc
Definition: snow.h:105
const char * r
Definition: vf_curves.c:107
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1133
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
const uint8_t *const ff_obmc_tab[4]
Definition: snowdata.h:123
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1597
static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index)
Definition: snowenc.c:501
#define CODEC_FLAG_QSCALE
Definition: avcodec.h:953
int64_t av_gcd(int64_t a, int64_t b)
Return the greatest common divisor of a and b.
Definition: mathematics.c:55
int stride
Definition: diracdec.c:100
const char * name
Name of the codec implementation.
Definition: avcodec.h:3479
static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median)
Definition: snowenc.c:1342
int quarter_sample
1->qpel, 0->half pel ME/MC
Definition: mpegvideo.h:406
static int square(int x)
Definition: roqvideoenc.c:113
int lambda
Definition: snow.h:157
int intra_penalty
Definition: snow.h:178
#define FFMAX(a, b)
Definition: common.h:79
#define FF_CMP_PSNR
Definition: avcodec.h:1932
Libavcodec external API header.
uint8_t * emu_edge_buffer
Definition: snow.h:185
uint8_t * bytestream
Definition: rangecoder.h:43
int flags
A combination of AV_PKT_FLAG values.
Definition: avcodec.h:1429
uint8_t color[3]
Definition: snow.h:54
#define pass
Definition: fft_template.c:509
int ref_frames
Definition: snow.h:143
int htaps
Definition: snow.h:103
int qlog
Definition: snow.h:155
int refs
number of reference frames
Definition: avcodec.h:2178
int bit_rate
the average bitrate
Definition: avcodec.h:1567
const int8_t ff_quant3bA[256]
Definition: snowdata.h:104
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:242
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
Definition: avcodec.h:735
#define FFMIN(a, b)
Definition: common.h:81
int display_picture_number
picture number in display order
Definition: frame.h:278
float y
iterative search
Definition: avcodec.h:673
int me_method
ME algorithm.
Definition: mpegvideo.h:266
static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t(*obmc_edged)[MB_SIZE *2], int *best_rd)
Definition: snowenc.c:935
#define ME_CACHE_SIZE
Definition: snow.h:172
#define LOSSLESS_QLOG
Definition: snow.h:44
int width
picture width / height.
Definition: avcodec.h:1681
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
Picture * current_picture_ptr
pointer to the current picture
Definition: mpegvideo.h:191
#define VE
Definition: snowenc.c:1895
#define FF_CEIL_RSHIFT(a, b)
Definition: common.h:57
uint8_t * scratchbuf
Definition: snow.h:184
static struct @197 state
#define AV_CODEC_FLAG_PSNR
error[?] variables will be set during encoding.
Definition: avcodec.h:767
static int encode_q_branch(SnowContext *s, int level, int x, int y)
Definition: snowenc.c:217
Plane plane[MAX_PLANES]
Definition: snow.h:170
float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
Definition: ratecontrol.c:753
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:751
static av_always_inline void add_yblock(SnowContext *s, int sliced, slice_buffer *sb, IDWTELEM *dst, uint8_t *dst8, const uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int offset_dst, int plane_index)
Definition: snow.h:300
int b_width
Definition: snow.h:165
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:62
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:68
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:283
MotionEstContext me
Definition: mpegvideo.h:290
int last_mv_scale
Definition: snow.h:161
void avcodec_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: imgconvert.c:43
int chroma_h_shift
Definition: snow.h:152
#define ME_MAP_SIZE
Definition: mpegvideo.h:69
#define av_log2
Definition: intmath.h:100
int penalty_factor
an estimate of the bits required to code a given mv value, e.g.
Definition: motion_est.h:56
static const float pred[4]
Definition: siprdata.h:259
SubBand band[MAX_DWT_LEVELS][4]
Definition: diracdec.c:134
static av_always_inline int same_block(BlockNode *a, BlockNode *b)
Definition: snow.h:290
uint8_t block_state[128+32 *128]
Definition: snow.h:132
int qbias
Definition: snow.h:162
int coded_picture_number
picture number in bitstream order
Definition: frame.h:274
#define FF_LAMBDA_SCALE
Definition: avutil.h:218
uint64_t error[AV_NUM_DATA_POINTERS]
error
Definition: frame.h:351
int ff_snow_get_buffer(SnowContext *s, AVFrame *frame)
Definition: snow.c:69
AVS_Value src
Definition: avisynth_c.h:482
unsigned int lambda2
(lambda*lambda) >> FF_LAMBDA_SHIFT
Definition: mpegvideo.h:214
static void encode_header(SnowContext *s)
Definition: snowenc.c:1379
ptrdiff_t linesize
line size, in bytes, may be different from width
Definition: mpegvideo.h:141
AVCodecContext * avctx
Definition: motion_est.h:42
#define LOG2_OBMC_MAX
Definition: snow.h:48
int spatial_decomposition_count
Definition: snow.h:139
int DWTELEM
Definition: dirac_dwt.h:26
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:199
void ff_set_cmp(MECmpContext *c, me_cmp_func *cmp, int type)
Definition: me_cmp.c:370
int frame_bits
number of bits used for the previously encoded frame
Definition: avcodec.h:2764
main external API structure.
Definition: avcodec.h:1502
int8_t hcoeff[HTAPS_MAX/2]
Definition: snow.h:104
#define QROOT
Definition: snow.h:43
void ff_snow_pred_block(SnowContext *s, uint8_t *dst, uint8_t *tmp, ptrdiff_t stride, int sx, int sy, int b_w, int b_h, const BlockNode *block, int plane_index, int w, int h)
Definition: snow.c:327
int height
picture size. must be a multiple of 16
Definition: mpegvideo.h:107
int ff_snow_alloc_blocks(SnowContext *s)
Definition: snow.c:110
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
Definition: lfg.h:38
struct SubBand * parent
Definition: diracdec.c:105
void * buf
Definition: avisynth_c.h:553
GLint GLenum type
Definition: opengl_enc.c:105
static int get_rac_count(RangeCoder *c)
Definition: rangecoder.h:77
static void encode_q_branch2(SnowContext *s, int level, int x, int y)
Definition: snowenc.c:445
unsigned me_cache[ME_CACHE_SIZE]
Definition: snow.h:173
BYTE int const BYTE int int int height
Definition: avisynth_c.h:676
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:69
Describe the class of an AVClass context structure.
Definition: log.h:67
av_cold void ff_init_range_encoder(RangeCoder *c, uint8_t *buf, int buf_size)
Definition: rangecoder.c:42
int64_t mc_mb_var_sum
motion compensated MB variance for current frame
Definition: mpegpicture.h:82
int index
Definition: gxfenc.c:89
struct AVFrame * f
Definition: mpegpicture.h:46
int nb_planes
Definition: snow.h:169
static int get_block_bits(SnowContext *s, int x, int y, int w)
Definition: snowenc.c:559
void ff_spatial_idwt(IDWTELEM *buffer, IDWTELEM *temp, int width, int height, int stride, int type, int decomposition_count)
Definition: snow_dwt.c:731
#define mid_pred
Definition: mathops.h:95
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
Definition: mpegvideo.h:142
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:30
int ff_w53_32_c(struct MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t line_size, int h)
Definition: snow_dwt.c:832
DWTELEM * temp_dwt_buffer
Definition: snow.h:147
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: utils.c:1782
uint8_t header_state[32]
Definition: snow.h:131
int motion_est
Definition: snow.h:179
int f_code
forward MV resolution
Definition: mpegvideo.h:245
int last_qlog
Definition: snow.h:156
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
Definition: mpegvideo.h:219
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:209
int spatial_scalability
Definition: snow.h:154
static int qscale2qlog(int qscale)
Definition: snowenc.c:1472
static int pix_sum(uint8_t *pix, int line_size, int w, int h)
Definition: snowenc.c:153
int ff_snow_common_init(AVCodecContext *avctx)
static void encode_qlogs(SnowContext *s)
Definition: snowenc.c:1366
int motion_est
ME algorithm.
Definition: mpegvideo.h:268
int iterative_dia_size
Definition: snow.h:180
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:464
int global_quality
Global quality for codecs which cannot change it per frame.
Definition: avcodec.h:1583
me_cmp_func me_cmp[6]
Definition: me_cmp.h:72
int ff_init_me(MpegEncContext *s)
Definition: motion_est.c:306
#define AV_CODEC_FLAG_QPEL
Use qpel MC.
Definition: avcodec.h:747
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
int spatial_decomposition_type
Definition: snow.h:136
AVFrame * current_picture
Definition: snow.h:126
int memc_only
Definition: snow.h:176
uint8_t level
Definition: svq3.c:150
static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t(*obmc_edged)[MB_SIZE *2])
Definition: snowenc.c:597
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
Definition: mpegvideo.h:138
struct AVCodecContext * avctx
Definition: mpegvideo.h:105
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
Definition: avcodec.h:1707
#define FF_CMP_DCT264
Definition: avcodec.h:1942
#define FF_CMP_SAD
Definition: avcodec.h:1928
static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index)
Definition: snowenc.c:698
#define FF_ME_ITER
Definition: snowenc.c:35
#define CODEC_FLAG_EMU_EDGE
Definition: avcodec.h:985
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
int mb_cmp
macroblock comparison function (not supported yet)
Definition: avcodec.h:1921
MECmpContext mecc
Definition: mpegvideo.h:238
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:63
Y , 8bpp.
Definition: pixfmt.h:71
#define MID_STATE
Definition: snow.h:39
int temporal_decomposition_type
Definition: snow.h:138
#define QBIAS_SHIFT
Definition: snow.h:164
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:79
common internal api header.
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:137
IDWTELEM * temp_idwt_buffer
Definition: snow.h:149
void ff_spatial_dwt(DWTELEM *buffer, DWTELEM *temp, int width, int height, int stride, int type, int decomposition_count)
Definition: snow_dwt.c:319
static double c[64]
int last_pict_type
Definition: mpegvideo.h:221
#define LOG2_MB_SIZE
Definition: snow.h:72
int prediction_method
prediction method (needed for huffyuv)
Definition: avcodec.h:1883
#define put_rac(C, S, B)
DWTELEM * spatial_dwt_buffer
Definition: snow.h:146
attribute_deprecated AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:3024
static av_cold int encode_init(AVCodecContext *avctx)
Definition: snowenc.c:37
int lambda2
Definition: snow.h:158
me_cmp_func me_sub_cmp[6]
Definition: me_cmp.h:73
uint8_t state[7+512][32]
Definition: snow.h:95
static const AVOption options[]
Definition: snowenc.c:1896
uint32_t * map
map to avoid duplicate evaluations
Definition: motion_est.h:52
IDWTELEM * spatial_idwt_buffer
Definition: snow.h:148
uint8_t * bytestream_start
Definition: rangecoder.h:42
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:755
void * priv_data
Definition: avcodec.h:1544
static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd)
Definition: snowenc.c:940
static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride)
Definition: snowenc.c:1296
int dia_size
ME diamond size & shape.
Definition: avcodec.h:1950
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:80
uint8_t * obmc_scratchpad
Definition: mpegpicture.h:38
void(* draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides)
static void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index)
Definition: motion_est.c:83
int colorspace_type
Definition: snow.h:151
int last_htaps
Definition: snow.h:108
int64_t bit_rate
wanted bit rate
Definition: mpegvideo.h:110
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:237
int height
Definition: diracdec.c:102
IDWTELEM * ibuf
Definition: diracdec.c:104
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
Definition: avutil.h:219
int fast_mc
Definition: snow.h:106
#define EDGE_BOTTOM
static const struct twinvq_data tab
int width
Definition: diracdec.c:113
av_cold void ff_snow_common_end(SnowContext *s)
Definition: snow.c:693
#define FF_CMP_SATD
Definition: avcodec.h:1930
RangeCoder c
Definition: snow.h:116
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:228
uint8_t ff_qexp[QROOT]
Definition: snowdata.h:128
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:2293
DWTELEM * buf
Definition: snow.h:88
#define P_TOP
Definition: snowenc.c:211
#define av_freep(p)
#define MAX_REF_FRAMES
Definition: snow.h:46
#define av_always_inline
Definition: attributes.h:37
uint8_t * temp
Definition: motion_est.h:50
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
Definition: asfcrypt.c:35
uint8_t type
Definition: snow.h:55
#define stride
int main(int argc, char **argv)
Definition: main.c:22
static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
Definition: snowenc.c:1477
AVFrame * last_picture[MAX_REF_FRAMES]
Definition: snow.h:127
int height
Definition: diracdec.c:114
int last_qbias
Definition: snow.h:163
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:98
AVFrame * input_picture
new_picture with the internal linesizes
Definition: snow.h:125
static int pix_norm1(uint8_t *pix, int line_size, int w)
Definition: snowenc.c:169
int temporal_decomposition_count
Definition: snow.h:141
int64_t mb_var_sum
sum of MB variance for current frame
Definition: mpegpicture.h:81
AVPixelFormat
Pixel format.
Definition: pixfmt.h:61
This structure stores compressed data.
Definition: avcodec.h:1400
static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median)
Definition: snowenc.c:1318
int(* sub_motion_search)(struct MpegEncContext *s, int *mx_ptr, int *my_ptr, int dmin, int src_index, int ref_index, int size, int h)
Definition: motion_est.h:89
#define BLOCK_OPT
Definition: snow.h:58
static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias)
Definition: snowenc.c:1235
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:252
static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation)
Definition: snowenc.c:887
int last_spatial_decomposition_type
Definition: snow.h:137
#define t2
Definition: regdef.h:30
Predicted.
Definition: avutil.h:267
unsigned int lambda
lagrange multipler used in rate distortion
Definition: mpegvideo.h:213
GLuint buffer
Definition: opengl_enc.c:102
#define tb
Definition: regdef.h:68
HpelDSPContext hdsp
Definition: mpegvideo.h:236
static void iterative_me(SnowContext *s)
Definition: snowenc.c:986
static int width
QpelDSPContext qdsp
Definition: snow.h:119
static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t(*obmc_edged)[MB_SIZE *2], int *best_rd)
Definition: snowenc.c:894
static int16_t block[64]
Definition: dct-test.c:110