46 for (i = 0; i < 4; i++)
55 uint32_t k0 = ctx->
key[0];
56 uint32_t k1 = ctx->
key[1];
57 uint32_t k2 = ctx->
key[2];
58 uint32_t k3 = ctx->
key[3];
67 uint32_t
delta = 0x9E3779B9
U, sum = delta * 32;
69 for (i = 0; i < 32; i++) {
72 v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->
key[sum & 3]);
75 #define DSTEP(SUM, K0, K1) \
76 v1 -= (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + K0); \
77 v0 -= (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM - 0x9E3779B9U + K1)
79 DSTEP(0xC6EF3720U, k2, k3);
80 DSTEP(0x28B7BD67U, k3, k2);
81 DSTEP(0x8A8043AEU, k0, k1);
82 DSTEP(0xEC48C9F5U, k1, k0);
83 DSTEP(0x4E11503CU, k2, k3);
84 DSTEP(0xAFD9D683U, k2, k2);
85 DSTEP(0x11A25CCAU, k3, k1);
86 DSTEP(0x736AE311U, k0, k0);
87 DSTEP(0xD5336958U, k1, k3);
88 DSTEP(0x36FBEF9FU, k1, k2);
89 DSTEP(0x98C475E6U, k2, k1);
90 DSTEP(0xFA8CFC2DU, k3, k0);
91 DSTEP(0x5C558274U, k0, k3);
92 DSTEP(0xBE1E08BBU, k1, k2);
93 DSTEP(0x1FE68F02U, k1, k1);
94 DSTEP(0x81AF1549U, k2, k0);
95 DSTEP(0xE3779B90U, k3, k3);
96 DSTEP(0x454021D7U, k0, k2);
97 DSTEP(0xA708A81EU, k1, k1);
98 DSTEP(0x08D12E65U, k1, k0);
99 DSTEP(0x6A99B4ACU, k2, k3);
100 DSTEP(0xCC623AF3U, k3, k2);
101 DSTEP(0x2E2AC13AU, k0, k1);
102 DSTEP(0x8FF34781U, k0, k0);
103 DSTEP(0xF1BBCDC8U, k1, k3);
104 DSTEP(0x5384540FU, k2, k2);
105 DSTEP(0xB54CDA56U, k3, k1);
106 DSTEP(0x1715609DU, k0, k0);
107 DSTEP(0x78DDE6E4U, k0, k3);
108 DSTEP(0xDAA66D2BU, k1, k2);
109 DSTEP(0x3C6EF372U, k2, k1);
110 DSTEP(0x9E3779B9U, k3, k0);
120 uint32_t sum = 0,
delta = 0x9E3779B9
U;
122 for (i = 0; i < 32; i++) {
123 v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (sum + ctx->
key[sum & 3]);
128 #define ESTEP(SUM, K0, K1) \
129 v0 += (((v1 << 4) ^ (v1 >> 5)) + v1) ^ (SUM + K0);\
130 v1 += (((v0 << 4) ^ (v0 >> 5)) + v0) ^ (SUM + 0x9E3779B9U + K1)
131 ESTEP(0x00000000U, k0, k3);
132 ESTEP(0x9E3779B9U, k1, k2);
133 ESTEP(0x3C6EF372U, k2, k1);
134 ESTEP(0xDAA66D2BU, k3, k0);
135 ESTEP(0x78DDE6E4U, k0, k0);
136 ESTEP(0x1715609DU, k1, k3);
137 ESTEP(0xB54CDA56U, k2, k2);
138 ESTEP(0x5384540FU, k3, k1);
139 ESTEP(0xF1BBCDC8U, k0, k0);
140 ESTEP(0x8FF34781U, k1, k0);
141 ESTEP(0x2E2AC13AU, k2, k3);
142 ESTEP(0xCC623AF3U, k3, k2);
143 ESTEP(0x6A99B4ACU, k0, k1);
144 ESTEP(0x08D12E65U, k1, k1);
145 ESTEP(0xA708A81EU, k2, k0);
146 ESTEP(0x454021D7U, k3, k3);
147 ESTEP(0xE3779B90U, k0, k2);
148 ESTEP(0x81AF1549U, k1, k1);
149 ESTEP(0x1FE68F02U, k2, k1);
150 ESTEP(0xBE1E08BBU, k3, k0);
151 ESTEP(0x5C558274U, k0, k3);
152 ESTEP(0xFA8CFC2DU, k1, k2);
153 ESTEP(0x98C475E6U, k2, k1);
154 ESTEP(0x36FBEF9FU, k3, k1);
155 ESTEP(0xD5336958U, k0, k0);
156 ESTEP(0x736AE311U, k1, k3);
157 ESTEP(0x11A25CCAU, k2, k2);
158 ESTEP(0xAFD9D683U, k3, k2);
159 ESTEP(0x4E11503CU, k0, k1);
160 ESTEP(0xEC48C9F5U, k1, k0);
161 ESTEP(0x8A8043AEU, k2, k3);
162 ESTEP(0x28B7BD67U, k3, k2);
185 for (i = 0; i < 8; i++)
186 dst[i] = src[i] ^ iv[i];
201 #define XTEA_NUM_TESTS 6
203 static const uint8_t xtea_test_key[XTEA_NUM_TESTS][16] = {
204 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
205 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
206 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
207 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
208 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
209 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
210 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
212 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
213 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
214 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
215 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
218 static const uint8_t xtea_test_pt[XTEA_NUM_TESTS][8] = {
219 { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
220 { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
221 { 0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f },
222 { 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
223 { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
224 { 0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55 }
227 static const uint8_t xtea_test_ct[XTEA_NUM_TESTS][8] = {
228 { 0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5 },
229 { 0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8 },
230 { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
231 { 0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5 },
232 { 0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d },
233 { 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
241 if (memcmp(dst, ref, 8*len)) {
243 printf(
"%s failed\ngot ", test);
244 for (i = 0; i < 8*
len; i++)
245 printf(
"%02x ", dst[i]);
246 printf(
"\nexpected ");
247 for (i = 0; i < 8*
len; i++)
248 printf(
"%02x ", ref[i]);
259 static const uint8_t src[32] =
"HelloWorldHelloWorldHelloWorld";
263 for (i = 0; i < XTEA_NUM_TESTS; i++) {
266 test_xtea(&ctx, buf, xtea_test_pt[i], xtea_test_ct[i], 1,
NULL, 0,
"encryption");
267 test_xtea(&ctx, buf, xtea_test_ct[i], xtea_test_pt[i], 1,
NULL, 1,
"decryption");
270 memcpy(iv,
"HALLO123", 8);
274 memcpy(iv,
"HALLO123", 8);
275 test_xtea(&ctx, pl, ct, src, 4, iv, 1,
"CBC decryption");
277 memcpy(iv,
"HALLO123", 8);
278 test_xtea(&ctx, ct, ct, src, 4, iv, 1,
"CBC inplace decryption");
281 printf(
"Test encryption/decryption success.\n");
memory handling functions
#define ESTEP(SUM, K0, K1)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void av_xtea_crypt(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int count, uint8_t *iv, int decrypt)
Encrypt or decrypt a buffer using a previously initialized context.
static void xtea_crypt_ecb(AVXTEA *ctx, uint8_t *dst, const uint8_t *src, int decrypt, uint8_t *iv)
void av_xtea_init(AVXTEA *ctx, const uint8_t key[16])
Initialize an AVXTEA context.
static void test(const char *pattern, const char *host)
Public header for libavutil XTEA algorithm.
#define DSTEP(SUM, K0, K1)
common internal and external API header
int main(int argc, char **argv)
AVXTEA * av_xtea_alloc(void)
Allocate an AVXTEA context.
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...