FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aacsbr_template.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * Fixed point code
7  * Copyright (c) 2013
8  * MIPS Technologies, Inc., California.
9  *
10  * This file is part of FFmpeg.
11  *
12  * FFmpeg is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * FFmpeg is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with FFmpeg; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  */
26 
27 /**
28  * @file
29  * AAC Spectral Band Replication decoding functions
30  * @author Robert Swain ( rob opendot cl )
31  * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32  * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33  */
34 
35 #include "libavutil/qsort.h"
36 
38 {
39  static const struct {
40  const void *sbr_codes, *sbr_bits;
41  const unsigned int table_size, elem_size;
42  } sbr_tmp[] = {
43  SBR_VLC_ROW(t_huffman_env_1_5dB),
44  SBR_VLC_ROW(f_huffman_env_1_5dB),
45  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
46  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
47  SBR_VLC_ROW(t_huffman_env_3_0dB),
48  SBR_VLC_ROW(f_huffman_env_3_0dB),
49  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
50  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
51  SBR_VLC_ROW(t_huffman_noise_3_0dB),
52  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
53  };
54 
55  // SBR VLC table initialization
56  SBR_INIT_VLC_STATIC(0, 1098);
57  SBR_INIT_VLC_STATIC(1, 1092);
58  SBR_INIT_VLC_STATIC(2, 768);
59  SBR_INIT_VLC_STATIC(3, 1026);
60  SBR_INIT_VLC_STATIC(4, 1058);
61  SBR_INIT_VLC_STATIC(5, 1052);
62  SBR_INIT_VLC_STATIC(6, 544);
63  SBR_INIT_VLC_STATIC(7, 544);
64  SBR_INIT_VLC_STATIC(8, 592);
65  SBR_INIT_VLC_STATIC(9, 512);
66 
68 
70 }
71 
72 /** Places SBR in pure upsampling mode. */
74  sbr->start = 0;
75  sbr->ready_for_dequant = 0;
76  // Init defults used in pure upsampling mode
77  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
78  sbr->m[1] = 0;
79  // Reset values for first SBR header
80  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
81  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
82 }
83 
85 {
86  if(sbr->mdct.mdct_bits)
87  return;
88  sbr->kx[0] = sbr->kx[1];
89  sbr_turnoff(sbr);
90  sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
91  sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
92  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
93  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
94  * and scale back down at synthesis. */
95  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
96  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
97  AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
98  AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
99  aacsbr_func_ptr_init(&sbr->c);
100 }
101 
103 {
104  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
105  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
106 }
107 
108 static int qsort_comparison_function_int16(const void *a, const void *b)
109 {
110  return *(const int16_t *)a - *(const int16_t *)b;
111 }
112 
113 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
114 {
115  int i;
116  for (i = 0; i <= last_el; i++)
117  if (table[i] == needle)
118  return 1;
119  return 0;
120 }
121 
122 /// Limiter Frequency Band Table (14496-3 sp04 p198)
124 {
125  int k;
126  if (sbr->bs_limiter_bands > 0) {
127  static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
128  Q23(1.18509277094158210129f), //2^(0.49/2)
129  Q23(1.11987160404675912501f) }; //2^(0.49/3)
130  const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
131  int16_t patch_borders[7];
132  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
133 
134  patch_borders[0] = sbr->kx[1];
135  for (k = 1; k <= sbr->num_patches; k++)
136  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
137 
138  memcpy(sbr->f_tablelim, sbr->f_tablelow,
139  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
140  if (sbr->num_patches > 1)
141  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
142  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
143 
144  AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
145  uint16_t,
147 
148  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
149  while (out < sbr->f_tablelim + sbr->n_lim) {
150 #if USE_FIXED
151  if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
152 #else
153  if (*in >= *out * lim_bands_per_octave_warped) {
154 #endif /* USE_FIXED */
155  *++out = *in++;
156  } else if (*in == *out ||
157  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
158  in++;
159  sbr->n_lim--;
160  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
161  *out = *in++;
162  sbr->n_lim--;
163  } else {
164  *++out = *in++;
165  }
166  }
167  } else {
168  sbr->f_tablelim[0] = sbr->f_tablelow[0];
169  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
170  sbr->n_lim = 1;
171  }
172 }
173 
175 {
176  unsigned int cnt = get_bits_count(gb);
177  uint8_t bs_header_extra_1;
178  uint8_t bs_header_extra_2;
179  int old_bs_limiter_bands = sbr->bs_limiter_bands;
180  SpectrumParameters old_spectrum_params;
181 
182  sbr->start = 1;
183  sbr->ready_for_dequant = 0;
184 
185  // Save last spectrum parameters variables to compare to new ones
186  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
187 
188  sbr->bs_amp_res_header = get_bits1(gb);
189  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
190  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
191  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
192  skip_bits(gb, 2); // bs_reserved
193 
194  bs_header_extra_1 = get_bits1(gb);
195  bs_header_extra_2 = get_bits1(gb);
196 
197  if (bs_header_extra_1) {
198  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
201  } else {
205  }
206 
207  // Check if spectrum parameters changed
208  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
209  sbr->reset = 1;
210 
211  if (bs_header_extra_2) {
212  sbr->bs_limiter_bands = get_bits(gb, 2);
213  sbr->bs_limiter_gains = get_bits(gb, 2);
214  sbr->bs_interpol_freq = get_bits1(gb);
215  sbr->bs_smoothing_mode = get_bits1(gb);
216  } else {
217  sbr->bs_limiter_bands = 2;
218  sbr->bs_limiter_gains = 2;
219  sbr->bs_interpol_freq = 1;
220  sbr->bs_smoothing_mode = 1;
221  }
222 
223  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
224  sbr_make_f_tablelim(sbr);
225 
226  return get_bits_count(gb) - cnt;
227 }
228 
229 static int array_min_int16(const int16_t *array, int nel)
230 {
231  int i, min = array[0];
232  for (i = 1; i < nel; i++)
233  min = FFMIN(array[i], min);
234  return min;
235 }
236 
237 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
238 {
239  // Requirements (14496-3 sp04 p205)
240  if (n_master <= 0) {
241  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
242  return -1;
243  }
244  if (bs_xover_band >= n_master) {
245  av_log(avctx, AV_LOG_ERROR,
246  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
247  bs_xover_band);
248  return -1;
249  }
250  return 0;
251 }
252 
253 /// Master Frequency Band Table (14496-3 sp04 p194)
255  SpectrumParameters *spectrum)
256 {
257  unsigned int temp, max_qmf_subbands = 0;
258  unsigned int start_min, stop_min;
259  int k;
260  const int8_t *sbr_offset_ptr;
261  int16_t stop_dk[13];
262 
263  if (sbr->sample_rate < 32000) {
264  temp = 3000;
265  } else if (sbr->sample_rate < 64000) {
266  temp = 4000;
267  } else
268  temp = 5000;
269 
270  switch (sbr->sample_rate) {
271  case 16000:
272  sbr_offset_ptr = sbr_offset[0];
273  break;
274  case 22050:
275  sbr_offset_ptr = sbr_offset[1];
276  break;
277  case 24000:
278  sbr_offset_ptr = sbr_offset[2];
279  break;
280  case 32000:
281  sbr_offset_ptr = sbr_offset[3];
282  break;
283  case 44100: case 48000: case 64000:
284  sbr_offset_ptr = sbr_offset[4];
285  break;
286  case 88200: case 96000: case 128000: case 176400: case 192000:
287  sbr_offset_ptr = sbr_offset[5];
288  break;
289  default:
291  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
292  return -1;
293  }
294 
295  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
296  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
297 
298  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
299 
300  if (spectrum->bs_stop_freq < 14) {
301  sbr->k[2] = stop_min;
302  make_bands(stop_dk, stop_min, 64, 13);
303  AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
304  for (k = 0; k < spectrum->bs_stop_freq; k++)
305  sbr->k[2] += stop_dk[k];
306  } else if (spectrum->bs_stop_freq == 14) {
307  sbr->k[2] = 2*sbr->k[0];
308  } else if (spectrum->bs_stop_freq == 15) {
309  sbr->k[2] = 3*sbr->k[0];
310  } else {
312  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
313  return -1;
314  }
315  sbr->k[2] = FFMIN(64, sbr->k[2]);
316 
317  // Requirements (14496-3 sp04 p205)
318  if (sbr->sample_rate <= 32000) {
319  max_qmf_subbands = 48;
320  } else if (sbr->sample_rate == 44100) {
321  max_qmf_subbands = 35;
322  } else if (sbr->sample_rate >= 48000)
323  max_qmf_subbands = 32;
324  else
325  av_assert0(0);
326 
327  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
329  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
330  return -1;
331  }
332 
333  if (!spectrum->bs_freq_scale) {
334  int dk, k2diff;
335 
336  dk = spectrum->bs_alter_scale + 1;
337  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
339  return -1;
340 
341  for (k = 1; k <= sbr->n_master; k++)
342  sbr->f_master[k] = dk;
343 
344  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
345  if (k2diff < 0) {
346  sbr->f_master[1]--;
347  sbr->f_master[2]-= (k2diff < -1);
348  } else if (k2diff) {
349  sbr->f_master[sbr->n_master]++;
350  }
351 
352  sbr->f_master[0] = sbr->k[0];
353  for (k = 1; k <= sbr->n_master; k++)
354  sbr->f_master[k] += sbr->f_master[k - 1];
355 
356  } else {
357  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
358  int two_regions, num_bands_0;
359  int vdk0_max, vdk1_min;
360  int16_t vk0[49];
361 #if USE_FIXED
362  int tmp, nz = 0;
363 #endif /* USE_FIXED */
364 
365  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
366  two_regions = 1;
367  sbr->k[1] = 2 * sbr->k[0];
368  } else {
369  two_regions = 0;
370  sbr->k[1] = sbr->k[2];
371  }
372 
373 #if USE_FIXED
374  tmp = (sbr->k[1] << 23) / sbr->k[0];
375  while (tmp < 0x40000000) {
376  tmp <<= 1;
377  nz++;
378  }
379  tmp = fixed_log(tmp - 0x80000000);
380  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
381  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
382  num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
383 #else
384  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
385 #endif /* USE_FIXED */
386 
387  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
388  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
389  return -1;
390  }
391 
392  vk0[0] = 0;
393 
394  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
395 
396  AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
397  vdk0_max = vk0[num_bands_0];
398 
399  vk0[0] = sbr->k[0];
400  for (k = 1; k <= num_bands_0; k++) {
401  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
402  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
403  return -1;
404  }
405  vk0[k] += vk0[k-1];
406  }
407 
408  if (two_regions) {
409  int16_t vk1[49];
410 #if USE_FIXED
411  int num_bands_1;
412 
413  tmp = (sbr->k[2] << 23) / sbr->k[1];
414  nz = 0;
415  while (tmp < 0x40000000) {
416  tmp <<= 1;
417  nz++;
418  }
419  tmp = fixed_log(tmp - 0x80000000);
420  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
421  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
422  if (spectrum->bs_alter_scale)
423  tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
424  num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
425 #else
426  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
427  : 1.0f; // bs_alter_scale = {0,1}
428  int num_bands_1 = lrintf(half_bands * invwarp *
429  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
430 #endif /* USE_FIXED */
431  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
432 
433  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
434 
435  if (vdk1_min < vdk0_max) {
436  int change;
437  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
438  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
439  vk1[1] += change;
440  vk1[num_bands_1] -= change;
441  }
442 
443  AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
444 
445  vk1[0] = sbr->k[1];
446  for (k = 1; k <= num_bands_1; k++) {
447  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
448  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
449  return -1;
450  }
451  vk1[k] += vk1[k-1];
452  }
453 
454  sbr->n_master = num_bands_0 + num_bands_1;
456  return -1;
457  memcpy(&sbr->f_master[0], vk0,
458  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
459  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
460  num_bands_1 * sizeof(sbr->f_master[0]));
461 
462  } else {
463  sbr->n_master = num_bands_0;
465  return -1;
466  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
467  }
468  }
469 
470  return 0;
471 }
472 
473 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
475 {
476  int i, k, last_k = -1, last_msb = -1, sb = 0;
477  int msb = sbr->k[0];
478  int usb = sbr->kx[1];
479  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
480 
481  sbr->num_patches = 0;
482 
483  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
484  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
485  } else
486  k = sbr->n_master;
487 
488  do {
489  int odd = 0;
490  if (k == last_k && msb == last_msb) {
491  av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
492  return AVERROR_INVALIDDATA;
493  }
494  last_k = k;
495  last_msb = msb;
496  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
497  sb = sbr->f_master[i];
498  odd = (sb + sbr->k[0]) & 1;
499  }
500 
501  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
502  // After this check the final number of patches can still be six which is
503  // illegal however the Coding Technologies decoder check stream has a final
504  // count of 6 patches
505  if (sbr->num_patches > 5) {
506  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
507  return -1;
508  }
509 
510  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
511  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
512 
513  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
514  usb = sb;
515  msb = sb;
516  sbr->num_patches++;
517  } else
518  msb = sbr->kx[1];
519 
520  if (sbr->f_master[k] - sb < 3)
521  k = sbr->n_master;
522  } while (sb != sbr->kx[1] + sbr->m[1]);
523 
524  if (sbr->num_patches > 1 &&
525  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
526  sbr->num_patches--;
527 
528  return 0;
529 }
530 
531 /// Derived Frequency Band Tables (14496-3 sp04 p197)
533 {
534  int k, temp;
535 #if USE_FIXED
536  int nz = 0;
537 #endif /* USE_FIXED */
538 
539  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
540  sbr->n[0] = (sbr->n[1] + 1) >> 1;
541 
542  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
543  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
544  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
545  sbr->kx[1] = sbr->f_tablehigh[0];
546 
547  // Requirements (14496-3 sp04 p205)
548  if (sbr->kx[1] + sbr->m[1] > 64) {
550  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
551  return -1;
552  }
553  if (sbr->kx[1] > 32) {
554  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
555  return -1;
556  }
557 
558  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
559  temp = sbr->n[1] & 1;
560  for (k = 1; k <= sbr->n[0]; k++)
561  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
562 #if USE_FIXED
563  temp = (sbr->k[2] << 23) / sbr->kx[1];
564  while (temp < 0x40000000) {
565  temp <<= 1;
566  nz++;
567  }
568  temp = fixed_log(temp - 0x80000000);
569  temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
570  temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
571 
572  sbr->n_q = (temp + 0x400000) >> 23;
573  if (sbr->n_q < 1)
574  sbr->n_q = 1;
575 #else
577  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
578 #endif /* USE_FIXED */
579 
580  if (sbr->n_q > 5) {
581  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
582  return -1;
583  }
584 
585  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
586  temp = 0;
587  for (k = 1; k <= sbr->n_q; k++) {
588  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
589  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
590  }
591 
592  if (sbr_hf_calc_npatches(ac, sbr) < 0)
593  return -1;
594 
595  sbr_make_f_tablelim(sbr);
596 
597  sbr->data[0].f_indexnoise = 0;
598  sbr->data[1].f_indexnoise = 0;
599 
600  return 0;
601 }
602 
604  int elements)
605 {
606  int i;
607  for (i = 0; i < elements; i++) {
608  vec[i] = get_bits1(gb);
609  }
610 }
611 
612 /** ceil(log2(index+1)) */
613 static const int8_t ceil_log2[] = {
614  0, 1, 2, 2, 3, 3,
615 };
616 
618  GetBitContext *gb, SBRData *ch_data)
619 {
620  int i;
621  int bs_pointer = 0;
622  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
623  int abs_bord_trail = 16;
624  int num_rel_lead, num_rel_trail;
625  unsigned bs_num_env_old = ch_data->bs_num_env;
626 
627  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
628  ch_data->bs_amp_res = sbr->bs_amp_res_header;
629  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
630 
631  switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
632  case FIXFIX:
633  ch_data->bs_num_env = 1 << get_bits(gb, 2);
634  num_rel_lead = ch_data->bs_num_env - 1;
635  if (ch_data->bs_num_env == 1)
636  ch_data->bs_amp_res = 0;
637 
638  if (ch_data->bs_num_env > 4) {
640  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
641  ch_data->bs_num_env);
642  return -1;
643  }
644 
645  ch_data->t_env[0] = 0;
646  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
647 
648  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
649  ch_data->bs_num_env;
650  for (i = 0; i < num_rel_lead; i++)
651  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
652 
653  ch_data->bs_freq_res[1] = get_bits1(gb);
654  for (i = 1; i < ch_data->bs_num_env; i++)
655  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
656  break;
657  case FIXVAR:
658  abs_bord_trail += get_bits(gb, 2);
659  num_rel_trail = get_bits(gb, 2);
660  ch_data->bs_num_env = num_rel_trail + 1;
661  ch_data->t_env[0] = 0;
662  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
663 
664  for (i = 0; i < num_rel_trail; i++)
665  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
666  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
667 
668  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
669 
670  for (i = 0; i < ch_data->bs_num_env; i++)
671  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
672  break;
673  case VARFIX:
674  ch_data->t_env[0] = get_bits(gb, 2);
675  num_rel_lead = get_bits(gb, 2);
676  ch_data->bs_num_env = num_rel_lead + 1;
677  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
678 
679  for (i = 0; i < num_rel_lead; i++)
680  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
681 
682  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
683 
684  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
685  break;
686  case VARVAR:
687  ch_data->t_env[0] = get_bits(gb, 2);
688  abs_bord_trail += get_bits(gb, 2);
689  num_rel_lead = get_bits(gb, 2);
690  num_rel_trail = get_bits(gb, 2);
691  ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
692 
693  if (ch_data->bs_num_env > 5) {
695  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
696  ch_data->bs_num_env);
697  return -1;
698  }
699 
700  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
701 
702  for (i = 0; i < num_rel_lead; i++)
703  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
704  for (i = 0; i < num_rel_trail; i++)
705  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
706  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
707 
708  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
709 
710  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
711  break;
712  }
713 
714  av_assert0(bs_pointer >= 0);
715  if (bs_pointer > ch_data->bs_num_env + 1) {
717  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
718  bs_pointer);
719  return -1;
720  }
721 
722  for (i = 1; i <= ch_data->bs_num_env; i++) {
723  if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
724  av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
725  return -1;
726  }
727  }
728 
729  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
730 
731  ch_data->t_q[0] = ch_data->t_env[0];
732  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
733  if (ch_data->bs_num_noise > 1) {
734  int idx;
735  if (ch_data->bs_frame_class == FIXFIX) {
736  idx = ch_data->bs_num_env >> 1;
737  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
738  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
739  } else { // VARFIX
740  if (!bs_pointer)
741  idx = 1;
742  else if (bs_pointer == 1)
743  idx = ch_data->bs_num_env - 1;
744  else // bs_pointer > 1
745  idx = bs_pointer - 1;
746  }
747  ch_data->t_q[1] = ch_data->t_env[idx];
748  }
749 
750  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
751  ch_data->e_a[1] = -1;
752  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
753  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
754  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
755  ch_data->e_a[1] = bs_pointer - 1;
756 
757  return 0;
758 }
759 
760 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
761  //These variables are saved from the previous frame rather than copied
762  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
763  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
764  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
765 
766  //These variables are read from the bitstream and therefore copied
767  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
768  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
769  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
770  dst->bs_num_env = src->bs_num_env;
771  dst->bs_amp_res = src->bs_amp_res;
772  dst->bs_num_noise = src->bs_num_noise;
773  dst->bs_frame_class = src->bs_frame_class;
774  dst->e_a[1] = src->e_a[1];
775 }
776 
777 /// Read how the envelope and noise floor data is delta coded
779  SBRData *ch_data)
780 {
781  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
782  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
783 }
784 
785 /// Read inverse filtering data
787  SBRData *ch_data)
788 {
789  int i;
790 
791  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
792  for (i = 0; i < sbr->n_q; i++)
793  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
794 }
795 
797  SBRData *ch_data, int ch)
798 {
799  int bits;
800  int i, j, k;
801  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
802  int t_lav, f_lav;
803  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
804  const int odd = sbr->n[1] & 1;
805 
806  if (sbr->bs_coupling && ch) {
807  if (ch_data->bs_amp_res) {
808  bits = 5;
813  } else {
814  bits = 6;
819  }
820  } else {
821  if (ch_data->bs_amp_res) {
822  bits = 6;
827  } else {
828  bits = 7;
833  }
834  }
835 
836  for (i = 0; i < ch_data->bs_num_env; i++) {
837  if (ch_data->bs_df_env[i]) {
838  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
839  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
840  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
841  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
842  if (ch_data->env_facs_q[i + 1][j] > 127U) {
843  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
844  return AVERROR_INVALIDDATA;
845  }
846  }
847  } else if (ch_data->bs_freq_res[i + 1]) {
848  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
849  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
850  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
851  if (ch_data->env_facs_q[i + 1][j] > 127U) {
852  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
853  return AVERROR_INVALIDDATA;
854  }
855  }
856  } else {
857  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
858  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
859  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
860  if (ch_data->env_facs_q[i + 1][j] > 127U) {
861  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
862  return AVERROR_INVALIDDATA;
863  }
864  }
865  }
866  } else {
867  ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
868  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
869  ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
870  if (ch_data->env_facs_q[i + 1][j] > 127U) {
871  av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
872  return AVERROR_INVALIDDATA;
873  }
874  }
875  }
876  }
877 
878  //assign 0th elements of env_facs_q from last elements
879  memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
880  sizeof(ch_data->env_facs_q[0]));
881 
882  return 0;
883 }
884 
886  SBRData *ch_data, int ch)
887 {
888  int i, j;
889  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
890  int t_lav, f_lav;
891  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
892 
893  if (sbr->bs_coupling && ch) {
898  } else {
903  }
904 
905  for (i = 0; i < ch_data->bs_num_noise; i++) {
906  if (ch_data->bs_df_noise[i]) {
907  for (j = 0; j < sbr->n_q; j++) {
908  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
909  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
910  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
911  return AVERROR_INVALIDDATA;
912  }
913  }
914  } else {
915  ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
916  for (j = 1; j < sbr->n_q; j++) {
917  ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
918  if (ch_data->noise_facs_q[i + 1][j] > 30U) {
919  av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
920  return AVERROR_INVALIDDATA;
921  }
922  }
923  }
924  }
925 
926  //assign 0th elements of noise_facs_q from last elements
927  memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
928  sizeof(ch_data->noise_facs_q[0]));
929  return 0;
930 }
931 
933  GetBitContext *gb,
934  int bs_extension_id, int *num_bits_left)
935 {
936  switch (bs_extension_id) {
937  case EXTENSION_ID_PS:
938  if (!ac->oc[1].m4ac.ps) {
939  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
940  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
941  *num_bits_left = 0;
942  } else {
943 #if 1
944  *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
946 #else
947  avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
948  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
949  *num_bits_left = 0;
950 #endif
951  }
952  break;
953  default:
954  // some files contain 0-padding
955  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
956  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
957  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
958  *num_bits_left = 0;
959  break;
960  }
961 }
962 
965  GetBitContext *gb)
966 {
967  int ret;
968 
969  if (get_bits1(gb)) // bs_data_extra
970  skip_bits(gb, 4); // bs_reserved
971 
972  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
973  return -1;
974  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
975  read_sbr_invf(sbr, gb, &sbr->data[0]);
976  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
977  return ret;
978  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
979  return ret;
980 
981  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
982  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
983 
984  return 0;
985 }
986 
989  GetBitContext *gb)
990 {
991  int ret;
992 
993  if (get_bits1(gb)) // bs_data_extra
994  skip_bits(gb, 8); // bs_reserved
995 
996  if ((sbr->bs_coupling = get_bits1(gb))) {
997  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
998  return -1;
999  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1000  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1001  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1002  read_sbr_invf(sbr, gb, &sbr->data[0]);
1003  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1004  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1005  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1006  return ret;
1007  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1008  return ret;
1009  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1010  return ret;
1011  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1012  return ret;
1013  } else {
1014  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1015  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1016  return -1;
1017  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1018  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1019  read_sbr_invf(sbr, gb, &sbr->data[0]);
1020  read_sbr_invf(sbr, gb, &sbr->data[1]);
1021  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1022  return ret;
1023  if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1024  return ret;
1025  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1026  return ret;
1027  if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1028  return ret;
1029  }
1030 
1031  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1032  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1033  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1034  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1035 
1036  return 0;
1037 }
1038 
1039 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1040  GetBitContext *gb, int id_aac)
1041 {
1042  unsigned int cnt = get_bits_count(gb);
1043 
1044  sbr->id_aac = id_aac;
1045  sbr->ready_for_dequant = 1;
1046 
1047  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1048  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1049  sbr_turnoff(sbr);
1050  return get_bits_count(gb) - cnt;
1051  }
1052  } else if (id_aac == TYPE_CPE) {
1053  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1054  sbr_turnoff(sbr);
1055  return get_bits_count(gb) - cnt;
1056  }
1057  } else {
1058  av_log(ac->avctx, AV_LOG_ERROR,
1059  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1060  sbr_turnoff(sbr);
1061  return get_bits_count(gb) - cnt;
1062  }
1063  if (get_bits1(gb)) { // bs_extended_data
1064  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1065  if (num_bits_left == 15)
1066  num_bits_left += get_bits(gb, 8); // bs_esc_count
1067 
1068  num_bits_left <<= 3;
1069  while (num_bits_left > 7) {
1070  num_bits_left -= 2;
1071  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1072  }
1073  if (num_bits_left < 0) {
1074  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1075  }
1076  if (num_bits_left > 0)
1077  skip_bits(gb, num_bits_left);
1078  }
1079 
1080  return get_bits_count(gb) - cnt;
1081 }
1082 
1084 {
1085  int err;
1086  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1087  if (err >= 0)
1088  err = sbr_make_f_derived(ac, sbr);
1089  if (err < 0) {
1090  av_log(ac->avctx, AV_LOG_ERROR,
1091  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1092  sbr_turnoff(sbr);
1093  }
1094 }
1095 
1096 /**
1097  * Decode Spectral Band Replication extension data; reference: table 4.55.
1098  *
1099  * @param crc flag indicating the presence of CRC checksum
1100  * @param cnt length of TYPE_FIL syntactic element in bytes
1101  *
1102  * @return Returns number of bytes consumed from the TYPE_FIL element.
1103  */
1105  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1106 {
1107  unsigned int num_sbr_bits = 0, num_align_bits;
1108  unsigned bytes_read;
1109  GetBitContext gbc = *gb_host, *gb = &gbc;
1110  skip_bits_long(gb_host, cnt*8 - 4);
1111 
1112  sbr->reset = 0;
1113 
1114  if (!sbr->sample_rate)
1115  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1116  if (!ac->oc[1].m4ac.ext_sample_rate)
1117  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1118 
1119  if (crc) {
1120  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1121  num_sbr_bits += 10;
1122  }
1123 
1124  //Save some state from the previous frame.
1125  sbr->kx[0] = sbr->kx[1];
1126  sbr->m[0] = sbr->m[1];
1127  sbr->kx_and_m_pushed = 1;
1128 
1129  num_sbr_bits++;
1130  if (get_bits1(gb)) // bs_header_flag
1131  num_sbr_bits += read_sbr_header(sbr, gb);
1132 
1133  if (sbr->reset)
1134  sbr_reset(ac, sbr);
1135 
1136  if (sbr->start)
1137  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1138 
1139  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1140  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1141 
1142  if (bytes_read > cnt) {
1143  av_log(ac->avctx, AV_LOG_ERROR,
1144  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1145  }
1146  return cnt;
1147 }
1148 
1149 /**
1150  * Analysis QMF Bank (14496-3 sp04 p206)
1151  *
1152  * @param x pointer to the beginning of the first sample window
1153  * @param W array of complex-valued samples split into subbands
1154  */
1155 #ifndef sbr_qmf_analysis
1156 #if USE_FIXED
1157 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1158 #else
1160 #endif /* USE_FIXED */
1161  SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1162  INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1163 {
1164  int i;
1165 #if USE_FIXED
1166  int j;
1167 #endif
1168  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1169  memcpy(x+288, in, 1024*sizeof(x[0]));
1170  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1171  // are not supported
1172  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1173  sbrdsp->sum64x5(z);
1174  sbrdsp->qmf_pre_shuffle(z);
1175 #if USE_FIXED
1176  for (j = 64; j < 128; j++) {
1177  if (z[j] > 1<<24) {
1179  "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1180  z[j], 1<<24);
1181  z[j] = 1<<24;
1182  } else if (z[j] < -(1<<24)) {
1184  "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1185  z[j], -(1<<24));
1186  z[j] = -(1<<24);
1187  }
1188  }
1189 #endif
1190  mdct->imdct_half(mdct, z, z+64);
1191  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1192  x += 32;
1193  }
1194 }
1195 #endif
1196 
1197 /**
1198  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1199  * (14496-3 sp04 p206)
1200  */
1201 #ifndef sbr_qmf_synthesis
1202 static void sbr_qmf_synthesis(FFTContext *mdct,
1203 #if USE_FIXED
1204  SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1205 #else
1206  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1207 #endif /* USE_FIXED */
1208  INTFLOAT *out, INTFLOAT X[2][38][64],
1209  INTFLOAT mdct_buf[2][64],
1210  INTFLOAT *v0, int *v_off, const unsigned int div)
1211 {
1212  int i, n;
1213  const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1214  const int step = 128 >> div;
1215  INTFLOAT *v;
1216  for (i = 0; i < 32; i++) {
1217  if (*v_off < step) {
1218  int saved_samples = (1280 - 128) >> div;
1219  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1220  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1221  } else {
1222  *v_off -= step;
1223  }
1224  v = v0 + *v_off;
1225  if (div) {
1226  for (n = 0; n < 32; n++) {
1227  X[0][i][ n] = -X[0][i][n];
1228  X[0][i][32+n] = X[1][i][31-n];
1229  }
1230  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1231  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1232  } else {
1233  sbrdsp->neg_odd_64(X[1][i]);
1234  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1235  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1236  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1237  }
1238  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1239  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1240  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1241  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1242  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1243  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1244  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1245  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1246  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1247  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1248  out += 64 >> div;
1249  }
1250 }
1251 #endif
1252 
1253 /// Generate the subband filtered lowband
1255  INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1256  int buf_idx)
1257 {
1258  int i, k;
1259  const int t_HFGen = 8;
1260  const int i_f = 32;
1261  memset(X_low, 0, 32*sizeof(*X_low));
1262  for (k = 0; k < sbr->kx[1]; k++) {
1263  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1264  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1265  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1266  }
1267  }
1268  buf_idx = 1-buf_idx;
1269  for (k = 0; k < sbr->kx[0]; k++) {
1270  for (i = 0; i < t_HFGen; i++) {
1271  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1272  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1273  }
1274  }
1275  return 0;
1276 }
1277 
1278 /// High Frequency Generator (14496-3 sp04 p215)
1280  INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1281  const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1282  const INTFLOAT bw_array[5], const uint8_t *t_env,
1283  int bs_num_env)
1284 {
1285  int j, x;
1286  int g = 0;
1287  int k = sbr->kx[1];
1288  for (j = 0; j < sbr->num_patches; j++) {
1289  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1290  const int p = sbr->patch_start_subband[j] + x;
1291  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1292  g++;
1293  g--;
1294 
1295  if (g < 0) {
1296  av_log(ac->avctx, AV_LOG_ERROR,
1297  "ERROR : no subband found for frequency %d\n", k);
1298  return -1;
1299  }
1300 
1301  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1302  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1303  alpha0[p], alpha1[p], bw_array[g],
1304  2 * t_env[0], 2 * t_env[bs_num_env]);
1305  }
1306  }
1307  if (k < sbr->m[1] + sbr->kx[1])
1308  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1309 
1310  return 0;
1311 }
1312 
1313 /// Generate the subband filtered lowband
1314 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1315  const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1316  const INTFLOAT X_low[32][40][2], int ch)
1317 {
1318  int k, i;
1319  const int i_f = 32;
1320  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1321  memset(X, 0, 2*sizeof(*X));
1322  for (k = 0; k < sbr->kx[0]; k++) {
1323  for (i = 0; i < i_Temp; i++) {
1324  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1325  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1326  }
1327  }
1328  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1329  for (i = 0; i < i_Temp; i++) {
1330  X[0][i][k] = Y0[i + i_f][k][0];
1331  X[1][i][k] = Y0[i + i_f][k][1];
1332  }
1333  }
1334 
1335  for (k = 0; k < sbr->kx[1]; k++) {
1336  for (i = i_Temp; i < 38; i++) {
1337  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1338  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1339  }
1340  }
1341  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1342  for (i = i_Temp; i < i_f; i++) {
1343  X[0][i][k] = Y1[i][k][0];
1344  X[1][i][k] = Y1[i][k][1];
1345  }
1346  }
1347  return 0;
1348 }
1349 
1350 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1351  * (14496-3 sp04 p217)
1352  */
1354  SBRData *ch_data, int e_a[2])
1355 {
1356  int e, i, m;
1357 
1358  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1359  for (e = 0; e < ch_data->bs_num_env; e++) {
1360  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1361  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1362  int k;
1363 
1364  if (sbr->kx[1] != table[0]) {
1365  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1366  "Derived frequency tables were not regenerated.\n");
1367  sbr_turnoff(sbr);
1368  return AVERROR_BUG;
1369  }
1370  for (i = 0; i < ilim; i++)
1371  for (m = table[i]; m < table[i + 1]; m++)
1372  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1373 
1374  // ch_data->bs_num_noise > 1 => 2 noise floors
1375  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1376  for (i = 0; i < sbr->n_q; i++)
1377  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1378  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1379 
1380  for (i = 0; i < sbr->n[1]; i++) {
1381  if (ch_data->bs_add_harmonic_flag) {
1382  const unsigned int m_midpoint =
1383  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1384 
1385  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1386  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1387  }
1388  }
1389 
1390  for (i = 0; i < ilim; i++) {
1391  int additional_sinusoid_present = 0;
1392  for (m = table[i]; m < table[i + 1]; m++) {
1393  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1394  additional_sinusoid_present = 1;
1395  break;
1396  }
1397  }
1398  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1399  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1400  }
1401  }
1402 
1403  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1404  return 0;
1405 }
1406 
1407 /// Estimation of current envelope (14496-3 sp04 p218)
1408 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1409  SpectralBandReplication *sbr, SBRData *ch_data)
1410 {
1411  int e, m;
1412  int kx1 = sbr->kx[1];
1413 
1414  if (sbr->bs_interpol_freq) {
1415  for (e = 0; e < ch_data->bs_num_env; e++) {
1416 #if USE_FIXED
1417  const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1418 #else
1419  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1420 #endif /* USE_FIXED */
1421  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1422  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1423 
1424  for (m = 0; m < sbr->m[1]; m++) {
1425  AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1426 #if USE_FIXED
1427  e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1428 #else
1429  e_curr[e][m] = sum * recip_env_size;
1430 #endif /* USE_FIXED */
1431  }
1432  }
1433  } else {
1434  int k, p;
1435 
1436  for (e = 0; e < ch_data->bs_num_env; e++) {
1437  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1438  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1439  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1440  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1441 
1442  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1443 #if USE_FIXED
1444  SoftFloat sum = FLOAT_0;
1445  const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1446  for (k = table[p]; k < table[p + 1]; k++) {
1447  sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1448  }
1449  sum = av_mul_sf(sum, den);
1450 #else
1451  float sum = 0.0f;
1452  const int den = env_size * (table[p + 1] - table[p]);
1453 
1454  for (k = table[p]; k < table[p + 1]; k++) {
1455  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1456  }
1457  sum /= den;
1458 #endif /* USE_FIXED */
1459  for (k = table[p]; k < table[p + 1]; k++) {
1460  e_curr[e][k - kx1] = sum;
1461  }
1462  }
1463  }
1464  }
1465 }
1466 
1468  INTFLOAT* L, INTFLOAT* R)
1469 {
1470  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1471  int ch;
1472  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1473  int err;
1474 
1475  if (id_aac != sbr->id_aac) {
1476  av_log(ac->avctx, AV_LOG_ERROR,
1477  "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1478  sbr_turnoff(sbr);
1479  }
1480 
1481  if (sbr->start && !sbr->ready_for_dequant) {
1482  av_log(ac->avctx, AV_LOG_ERROR,
1483  "No quantized data read for sbr_dequant.\n");
1484  sbr_turnoff(sbr);
1485  }
1486 
1487  if (!sbr->kx_and_m_pushed) {
1488  sbr->kx[0] = sbr->kx[1];
1489  sbr->m[0] = sbr->m[1];
1490  } else {
1491  sbr->kx_and_m_pushed = 0;
1492  }
1493 
1494  if (sbr->start) {
1495  sbr_dequant(sbr, id_aac);
1496  sbr->ready_for_dequant = 0;
1497  }
1498  for (ch = 0; ch < nch; ch++) {
1499  /* decode channel */
1500  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1501  (INTFLOAT*)sbr->qmf_filter_scratch,
1502  sbr->data[ch].W, sbr->data[ch].Ypos);
1503  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1504  (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1505  sbr->data[ch].Ypos);
1506  sbr->data[ch].Ypos ^= 1;
1507  if (sbr->start) {
1508  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1509  (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1510  sbr_chirp(sbr, &sbr->data[ch]);
1511  av_assert0(sbr->data[ch].bs_num_env > 0);
1512  sbr_hf_gen(ac, sbr, sbr->X_high,
1513  (const INTFLOAT (*)[40][2]) sbr->X_low,
1514  (const INTFLOAT (*)[2]) sbr->alpha0,
1515  (const INTFLOAT (*)[2]) sbr->alpha1,
1516  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1517  sbr->data[ch].bs_num_env);
1518 
1519  // hf_adj
1520  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1521  if (!err) {
1522  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1523  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1524  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1525  (const INTFLOAT (*)[40][2]) sbr->X_high,
1526  sbr, &sbr->data[ch],
1527  sbr->data[ch].e_a);
1528  }
1529  }
1530 
1531  /* synthesis */
1532  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1533  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1534  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1535  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1536  }
1537 
1538  if (ac->oc[1].m4ac.ps == 1) {
1539  if (sbr->ps.start) {
1540  AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1541  } else {
1542  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1543  }
1544  nch = 2;
1545  }
1546 
1547  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1548  L, sbr->X[0], sbr->qmf_filter_scratch,
1549  sbr->data[0].synthesis_filterbank_samples,
1550  &sbr->data[0].synthesis_filterbank_samples_offset,
1551  downsampled);
1552  if (nch == 2)
1553  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1554  R, sbr->X[1], sbr->qmf_filter_scratch,
1555  sbr->data[1].synthesis_filterbank_samples,
1556  &sbr->data[1].synthesis_filterbank_samples_offset,
1557  downsampled);
1558 }
1559 
1561 {
1562  c->sbr_lf_gen = sbr_lf_gen;
1564  c->sbr_x_gen = sbr_x_gen;
1566 
1567 #if !USE_FIXED
1568  if(ARCH_MIPS)
1570 #endif
1571 }
uint8_t s_indexmapped[8][48]
Definition: sbr.h:97
unsigned bs_add_harmonic_flag
Definition: sbr.h:68
void AAC_RENAME() ff_sbrdsp_init(SBRDSPContext *s)
static int qsort_comparison_function_int16(const void *a, const void *b)
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
static int array_min_int16(const int16_t *array, int nel)
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:275
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.h:69
unsigned bs_smoothing_mode
Definition: sbr.h:154
AVCodecContext * avctx
Definition: aac.h:295
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
AAC_FLOAT(* sum_square)(INTFLOAT(*x)[2], int n)
Definition: sbrdsp.h:30
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:260
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, INTFLOAT *out, INTFLOAT X[2][38][64], INTFLOAT mdct_buf[2][64], INTFLOAT *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
else temp
Definition: vf_mcdeint.c:259
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:217
const char * g
Definition: vf_curves.c:108
Definition: aac.h:56
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2], const INTFLOAT(*alpha0)[2], const INTFLOAT(*alpha1)[2], const INTFLOAT bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
Definition: aac.h:57
int e_a[2]
l_APrev and l_A
Definition: sbr.h:87
int AAC_RENAME() ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:158
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
const char * b
Definition: vf_curves.c:109
Definition: aacsbr.h:59
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:160
uint8_t noise_facs_q[3][5]
Noise scalefactors.
Definition: sbr.h:102
#define VLC_TYPE
Definition: get_bits.h:61
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:138
void(* sbr_hf_assemble)(INTFLOAT Y1[38][64][2], const INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Definition: sbr.h:124
GLfloat v0
Definition: opengl_enc.c:107
int(* sbr_x_gen)(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Definition: sbr.h:128
Definition: aacsbr.h:61
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:3037
uint8_t bs_xover_band
Definition: sbr.h:45
int profile
profile
Definition: avcodec.h:3028
SpectrumParameters spectrum_params
Definition: sbr.h:145
Definition: aac.h:58
Definition: aacsbr.h:60
#define USE_FIXED
Definition: aac_defines.h:25
#define AAC_RENAME_32(x)
Definition: aac_defines.h:84
int AAC_RENAME() ff_ps_apply(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:984
float INTFLOAT
Definition: aac_defines.h:85
static const SoftFloat FLOAT_0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static const int8_t sbr_offset[6][16]
Definition: aacsbrdata.h:261
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
AAC_SIGNE num_patches
Definition: sbr.h:184
uint8_t bits
Definition: crc.c:295
uint8_t
#define av_cold
Definition: attributes.h:82
AAC_FLOAT noise_facs[3][5]
Definition: sbr.h:103
float delta
AAC_SIGNE n_lim
Number of limiter bands.
Definition: sbr.h:173
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.h:36
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:179
void ff_aacsbr_func_ptr_init_mips(AACSBRContext *c)
Definition: aacsbr_mips.c:609
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:212
static INTFLOAT sbr_qmf_window_us[640]
AAC_SIGNE bs_num_noise
Definition: sbr.h:71
#define lrintf(x)
Definition: libm_mips.h:70
av_cold void AAC_RENAME() ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
SBRData data[2]
Definition: sbr.h:166
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
uint8_t bs_df_noise[2]
Definition: sbr.h:73
void(* sbr_hf_inverse_filter)(SBRDSPContext *dsp, INTFLOAT(*alpha0)[2], INTFLOAT(*alpha1)[2], const INTFLOAT X_low[32][40][2], int k0)
Definition: sbr.h:131
static int fixed_log(int x)
Definition: aacsbr_fixed.c:87
static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
#define av_log(a,...)
uint8_t patch_num_subbands[6]
Definition: sbr.h:185
unsigned m
Definition: audioconvert.c:187
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:181
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.h:72
#define U(x)
Definition: vp56_arith.h:37
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
MPEG4AudioConfig m4ac
Definition: aac.h:124
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:109
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:177
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:140
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:42
AAC_SIGNE k[5]
k0, k1, k2
Definition: sbr.h:157
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:162
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:73
static const struct endianess table[]
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
#define ff_mdct_init
Definition: fft.h:167
#define FFMAX(a, b)
Definition: common.h:94
unsigned bs_interpol_freq
Definition: sbr.h:153
uint8_t env_facs_q[6][48]
Envelope scalefactors.
Definition: sbr.h:99
#define AAC_RENAME(x)
Definition: aac_defines.h:83
unsigned f_indexnoise
Definition: sbr.h:110
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:107
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: fft.h:88
unsigned bs_amp_res
Definition: sbr.h:76
#define FFMIN(a, b)
Definition: common.h:96
uint8_t bs_freq_scale
Definition: sbr.h:51
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
unsigned bs_limiter_gains
Definition: sbr.h:152
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
static const int CONST_RECIP_LN2
Definition: aacsbr_fixed.c:78
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x, INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:295
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:198
float AAC_FLOAT
Definition: aac_defines.h:88
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:202
static void aacsbr_func_ptr_init(AACSBRContext *c)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:574
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
static void sbr_env_estimate(AAC_FLOAT(*e_curr)[48], INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
int n
Definition: avisynth_c.h:547
uint8_t bs_freq_res[7]
Definition: sbr.h:70
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:1014
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
#define L(x)
Definition: vp56_arith.h:36
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:219
#define src
Definition: vp9dsp.c:530
FILE * out
Definition: movenc-test.c:54
AAC_SIGNE bs_num_env
Definition: sbr.h:69
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:57
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:200
static const int8_t ceil_log2[]
ceil(log2(index+1))
void(* hf_gen)(INTFLOAT(*X_high)[2], const INTFLOAT(*X_low)[2], const INTFLOAT alpha0[2], const INTFLOAT alpha1[2], INTFLOAT bw, int start, int end)
Definition: sbrdsp.h:37
void AAC_RENAME() ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, INTFLOAT *L, INTFLOAT *R)
Apply one SBR element to one AAC element.
int AAC_RENAME() ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
main external API structure.
Definition: avcodec.h:1532
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the entry wise product of two vectors of floats, add a third vector of floats and store the...
Definition: float_dsp.h:121
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:312
static const int CONST_076923
Definition: aacsbr_fixed.c:79
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:305
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
#define W(a, i, v)
Definition: jpegls.h:122
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:195
av_cold void AAC_RENAME() ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:1046
AAC_FLOAT env_facs[6][48]
Definition: sbr.h:100
uint8_t bs_noise_bands
Definition: sbr.h:53
main AAC context
Definition: aac.h:293
Definition: vf_geq.c:46
AAC_SIGNE n_master
The number of frequency bands in f_master.
Definition: sbr.h:165
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
uint8_t bs_stop_freq
Definition: sbr.h:44
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:175
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:74
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:138
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Generate the subband filtered lowband.
OutputConfiguration oc[2]
Definition: aac.h:354
int(* sbr_lf_gen)(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Definition: sbr.h:121
if(ret< 0)
Definition: vf_mcdeint.c:282
#define log2f(x)
Definition: libm.h:409
#define ff_mdct_end
Definition: fft.h:168
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:98
static double c[64]
uint8_t patch_start_subband[6]
Definition: sbr.h:186
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:105
aacsbr functions pointers
Definition: sbr.h:120
static INTFLOAT sbr_qmf_window_ds[320]
< window coefficients for analysis/synthesis QMF banks
Definition: aacsbr.h:62
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:183
Spectral Band Replication per channel data.
Definition: sbr.h:62
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:54
#define SBR_VLC_ROW(name)
Definition: aacsbr.h:78
unsigned bs_limiter_bands
Definition: sbr.h:151
uint8_t bs_alter_scale
Definition: sbr.h:52
unsigned bs_frame_class
Definition: sbr.h:67
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
uint8_t bs_df_env[5]
Definition: sbr.h:72
VLC_TYPE(* table)[2]
code, bits
Definition: get_bits.h:65
SBRDSPContext dsp
Definition: sbr.h:213
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:156
#define Q23(x)
Definition: aac_defines.h:92
#define av_always_inline
Definition: attributes.h:39
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:40
static VLC vlc_sbr[10]
Definition: aacsbr.c:51
AAC_SIGNE n_q
Number of noise floor bands.
Definition: sbr.h:171
unsigned bs_coupling
Definition: sbr.h:156
Spectral Band Replication.
Definition: sbr.h:139
static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
static av_cold void aacsbr_tableinit(void)
float min
av_cold void AAC_RENAME() ff_aac_sbr_init(void)
Initialize SBR.
uint8_t bs_add_harmonic[48]
Definition: sbr.h:75
av_cold void AAC_RENAME() ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
Initialize one SBR context.
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
Definition: qsort.h:33
PSContext ps
Definition: sbr.h:167
uint8_t bs_start_freq
Definition: sbr.h:43
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:169
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)