FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/imgutils.h"
30 #include "libavutil/timer.h"
31 #include "internal.h"
32 #include "cabac.h"
33 #include "cabac_functions.h"
34 #include "error_resilience.h"
35 #include "avcodec.h"
36 #include "h264.h"
37 #include "h264data.h"
38 #include "h264chroma.h"
39 #include "h264_mvpred.h"
40 #include "golomb.h"
41 #include "mathops.h"
42 #include "mpegutils.h"
43 #include "rectangle.h"
44 #include "thread.h"
45 
46 
47 static const uint8_t rem6[QP_MAX_NUM + 1] = {
48  0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
49  3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
50  0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
51  3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
52  0, 1, 2, 3,
53 };
54 
55 static const uint8_t div6[QP_MAX_NUM + 1] = {
56  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
57  3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
58  7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10,
59  10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13,
60  14,14,14,14,
61 };
62 
63 static const uint8_t field_scan[16+1] = {
64  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
65  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
66  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
67  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
68 };
69 
70 static const uint8_t field_scan8x8[64+1] = {
71  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
72  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
73  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
74  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
75  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
76  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
77  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
78  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
79  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
80  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
81  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
82  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
83  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
84  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
85  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
86  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
87 };
88 
89 static const uint8_t field_scan8x8_cavlc[64+1] = {
90  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
91  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
92  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
93  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
94  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
95  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
96  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
97  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
98  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
99  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
100  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
101  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
102  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
103  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
104  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
105  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
106 };
107 
108 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
109 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
110  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
111  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
112  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
113  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
114  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
115  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
116  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
117  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
118  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
119  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
120  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
121  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
122  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
123  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
124  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
125  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
126 };
127 
128 static const uint8_t dequant4_coeff_init[6][3] = {
129  { 10, 13, 16 },
130  { 11, 14, 18 },
131  { 13, 16, 20 },
132  { 14, 18, 23 },
133  { 16, 20, 25 },
134  { 18, 23, 29 },
135 };
136 
137 static const uint8_t dequant8_coeff_init_scan[16] = {
138  0, 3, 4, 3, 3, 1, 5, 1, 4, 5, 2, 5, 3, 1, 5, 1
139 };
140 
141 static const uint8_t dequant8_coeff_init[6][6] = {
142  { 20, 18, 32, 19, 25, 24 },
143  { 22, 19, 35, 21, 28, 26 },
144  { 26, 23, 42, 24, 33, 31 },
145  { 28, 25, 45, 26, 35, 33 },
146  { 32, 28, 51, 30, 40, 38 },
147  { 36, 32, 58, 34, 46, 43 },
148 };
149 
150 
151 static void release_unused_pictures(H264Context *h, int remove_current)
152 {
153  int i;
154 
155  /* release non reference frames */
156  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
157  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
158  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
159  ff_h264_unref_picture(h, &h->DPB[i]);
160  }
161  }
162 }
163 
164 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
165 {
166  const H264Context *h = sl->h264;
167  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
168 
169  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
170  // edge emu needs blocksize + filter length - 1
171  // (= 21x21 for h264)
172  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
173 
175  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
177  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
178 
179  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
180  !sl->top_borders[0] || !sl->top_borders[1]) {
183  av_freep(&sl->top_borders[0]);
184  av_freep(&sl->top_borders[1]);
185 
188  sl->top_borders_allocated[0] = 0;
189  sl->top_borders_allocated[1] = 0;
190  return AVERROR(ENOMEM);
191  }
192 
193  return 0;
194 }
195 
197 {
198  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
199  const int mb_array_size = h->mb_stride * h->mb_height;
200  const int b4_stride = h->mb_width * 4 + 1;
201  const int b4_array_size = b4_stride * h->mb_height * 4;
202 
203  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
205  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
206  sizeof(uint32_t), av_buffer_allocz);
207  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
208  sizeof(int16_t), av_buffer_allocz);
209  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
210 
211  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
212  !h->ref_index_pool) {
217  return AVERROR(ENOMEM);
218  }
219 
220  return 0;
221 }
222 
224 {
225  int i, ret = 0;
226 
227  av_assert0(!pic->f->data[0]);
228 
229  pic->tf.f = pic->f;
230  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
232  if (ret < 0)
233  goto fail;
234 
235  pic->crop = h->sps.crop;
236  pic->crop_top = h->sps.crop_top;
237  pic->crop_left= h->sps.crop_left;
238 
239  if (h->avctx->hwaccel) {
240  const AVHWAccel *hwaccel = h->avctx->hwaccel;
242  if (hwaccel->frame_priv_data_size) {
244  if (!pic->hwaccel_priv_buf)
245  return AVERROR(ENOMEM);
247  }
248  }
249  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
250  int h_chroma_shift, v_chroma_shift;
252  &h_chroma_shift, &v_chroma_shift);
253 
254  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
255  memset(pic->f->data[1] + pic->f->linesize[1]*i,
256  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
257  memset(pic->f->data[2] + pic->f->linesize[2]*i,
258  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
259  }
260  }
261 
262  if (!h->qscale_table_pool) {
263  ret = init_table_pools(h);
264  if (ret < 0)
265  goto fail;
266  }
267 
270  if (!pic->qscale_table_buf || !pic->mb_type_buf)
271  goto fail;
272 
273  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
274  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
275 
276  for (i = 0; i < 2; i++) {
279  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
280  goto fail;
281 
282  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
283  pic->ref_index[i] = pic->ref_index_buf[i]->data;
284  }
285 
286  return 0;
287 fail:
288  ff_h264_unref_picture(h, pic);
289  return (ret < 0) ? ret : AVERROR(ENOMEM);
290 }
291 
292 static inline int pic_is_unused(H264Context *h, H264Picture *pic)
293 {
294  if (!pic->f->buf[0])
295  return 1;
296  return 0;
297 }
298 
300 {
301  int i;
302 
303  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
304  if (pic_is_unused(h, &h->DPB[i]))
305  break;
306  }
307  if (i == H264_MAX_PICTURE_COUNT)
308  return AVERROR_INVALIDDATA;
309 
310  return i;
311 }
312 
313 
315 {
316  int i, j, q, x;
317  const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
318 
319  for (i = 0; i < 6; i++) {
320  h->dequant8_coeff[i] = h->dequant8_buffer[i];
321  for (j = 0; j < i; j++)
322  if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i],
323  64 * sizeof(uint8_t))) {
324  h->dequant8_coeff[i] = h->dequant8_buffer[j];
325  break;
326  }
327  if (j < i)
328  continue;
329 
330  for (q = 0; q < max_qp + 1; q++) {
331  int shift = div6[q];
332  int idx = rem6[q];
333  for (x = 0; x < 64; x++)
334  h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] =
335  ((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] *
336  h->pps.scaling_matrix8[i][x]) << shift;
337  }
338  }
339 }
340 
342 {
343  int i, j, q, x;
344  const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
345  for (i = 0; i < 6; i++) {
346  h->dequant4_coeff[i] = h->dequant4_buffer[i];
347  for (j = 0; j < i; j++)
348  if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i],
349  16 * sizeof(uint8_t))) {
350  h->dequant4_coeff[i] = h->dequant4_buffer[j];
351  break;
352  }
353  if (j < i)
354  continue;
355 
356  for (q = 0; q < max_qp + 1; q++) {
357  int shift = div6[q] + 2;
358  int idx = rem6[q];
359  for (x = 0; x < 16; x++)
360  h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] =
361  ((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] *
362  h->pps.scaling_matrix4[i][x]) << shift;
363  }
364  }
365 }
366 
368 {
369  int i, x;
371  memset(h->dequant8_coeff, 0, sizeof(h->dequant8_coeff));
372 
373  if (h->pps.transform_8x8_mode)
375  if (h->sps.transform_bypass) {
376  for (i = 0; i < 6; i++)
377  for (x = 0; x < 16; x++)
378  h->dequant4_coeff[i][0][x] = 1 << 6;
380  for (i = 0; i < 6; i++)
381  for (x = 0; x < 64; x++)
382  h->dequant8_coeff[i][0][x] = 1 << 6;
383  }
384 }
385 
386 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
387 
388 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
389  (((pic) && (pic) >= (old_ctx)->DPB && \
390  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
391  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
392 
394  H264Context *new_base,
395  H264Context *old_base)
396 {
397  int i;
398 
399  for (i = 0; i < count; i++) {
400  av_assert1(!from[i] ||
401  IN_RANGE(from[i], old_base, 1) ||
402  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
403  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
404  }
405 }
406 
407 static int copy_parameter_set(void **to, void **from, int count, int size)
408 {
409  int i;
410 
411  for (i = 0; i < count; i++) {
412  if (to[i] && !from[i]) {
413  av_freep(&to[i]);
414  } else if (from[i] && !to[i]) {
415  to[i] = av_malloc(size);
416  if (!to[i])
417  return AVERROR(ENOMEM);
418  }
419 
420  if (from[i])
421  memcpy(to[i], from[i], size);
422  }
423 
424  return 0;
425 }
426 
427 #define copy_fields(to, from, start_field, end_field) \
428  memcpy(&(to)->start_field, &(from)->start_field, \
429  (char *)&(to)->end_field - (char *)&(to)->start_field)
430 
432 
434  const AVCodecContext *src)
435 {
436  H264Context *h = dst->priv_data, *h1 = src->priv_data;
437  int inited = h->context_initialized, err = 0;
438  int need_reinit = 0;
439  int i, ret;
440 
441  if (dst == src)
442  return 0;
443 
444  if (inited &&
445  (h->width != h1->width ||
446  h->height != h1->height ||
447  h->mb_width != h1->mb_width ||
448  h->mb_height != h1->mb_height ||
449  h->sps.bit_depth_luma != h1->sps.bit_depth_luma ||
450  h->sps.chroma_format_idc != h1->sps.chroma_format_idc ||
451  h->sps.colorspace != h1->sps.colorspace)) {
452 
453  need_reinit = 1;
454  }
455 
456  /* copy block_offset since frame_start may not be called */
457  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
458 
459  // SPS/PPS
460  if ((ret = copy_parameter_set((void **)h->sps_buffers,
461  (void **)h1->sps_buffers,
462  MAX_SPS_COUNT, sizeof(SPS))) < 0)
463  return ret;
464  h->sps = h1->sps;
465  if ((ret = copy_parameter_set((void **)h->pps_buffers,
466  (void **)h1->pps_buffers,
467  MAX_PPS_COUNT, sizeof(PPS))) < 0)
468  return ret;
469  h->pps = h1->pps;
470 
471  if (need_reinit || !inited) {
472  h->width = h1->width;
473  h->height = h1->height;
474  h->mb_height = h1->mb_height;
475  h->mb_width = h1->mb_width;
476  h->mb_num = h1->mb_num;
477  h->mb_stride = h1->mb_stride;
478  h->b_stride = h1->b_stride;
479 
480  if (h->context_initialized || h1->context_initialized) {
481  if ((err = h264_slice_header_init(h)) < 0) {
482  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
483  return err;
484  }
485  }
486  /* copy block_offset since frame_start may not be called */
487  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
488  }
489 
490  h->avctx->coded_height = h1->avctx->coded_height;
491  h->avctx->coded_width = h1->avctx->coded_width;
492  h->avctx->width = h1->avctx->width;
493  h->avctx->height = h1->avctx->height;
494  h->coded_picture_number = h1->coded_picture_number;
495  h->first_field = h1->first_field;
496  h->picture_structure = h1->picture_structure;
497  h->droppable = h1->droppable;
498  h->low_delay = h1->low_delay;
499  h->backup_width = h1->backup_width;
500  h->backup_height = h1->backup_height;
501  h->backup_pix_fmt = h1->backup_pix_fmt;
502 
503  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
504  ff_h264_unref_picture(h, &h->DPB[i]);
505  if (h1->DPB[i].f->buf[0] &&
506  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
507  return ret;
508  }
509 
510  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
512  if (h1->cur_pic.f->buf[0]) {
513  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
514  if (ret < 0)
515  return ret;
516  }
517 
518  h->enable_er = h1->enable_er;
519  h->workaround_bugs = h1->workaround_bugs;
520  h->low_delay = h1->low_delay;
521  h->droppable = h1->droppable;
522 
523  // extradata/NAL handling
524  h->is_avc = h1->is_avc;
525  h->nal_length_size = h1->nal_length_size;
526  h->x264_build = h1->x264_build;
527 
528  // Dequantization matrices
529  // FIXME these are big - can they be only copied when PPS changes?
530  copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
531 
532  for (i = 0; i < 6; i++)
533  h->dequant4_coeff[i] = h->dequant4_buffer[0] +
534  (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
535 
536  for (i = 0; i < 6; i++)
537  h->dequant8_coeff[i] = h->dequant8_buffer[0] +
538  (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
539 
540  h->dequant_coeff_pps = h1->dequant_coeff_pps;
541 
542  // POC timing
543  copy_fields(h, h1, poc_lsb, current_slice);
544 
545  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
546  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
547  copy_picture_range(h->delayed_pic, h1->delayed_pic,
548  MAX_DELAYED_PIC_COUNT + 2, h, h1);
549 
550  h->frame_recovered = h1->frame_recovered;
551 
552  if (!h->cur_pic_ptr)
553  return 0;
554 
555  if (!h->droppable) {
557  h->prev_poc_msb = h->poc_msb;
558  h->prev_poc_lsb = h->poc_lsb;
559  }
561  h->prev_frame_num = h->frame_num;
562 
563  h->recovery_frame = h1->recovery_frame;
564 
565  return err;
566 }
567 
569 {
570  H264Picture *pic;
571  int i, ret;
572  const int pixel_shift = h->pixel_shift;
573  int c[4] = {
574  1<<(h->sps.bit_depth_luma-1),
575  1<<(h->sps.bit_depth_chroma-1),
576  1<<(h->sps.bit_depth_chroma-1),
577  -1
578  };
579 
580  if (!ff_thread_can_start_frame(h->avctx)) {
581  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
582  return -1;
583  }
584 
586  h->cur_pic_ptr = NULL;
587 
588  i = find_unused_picture(h);
589  if (i < 0) {
590  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
591  return i;
592  }
593  pic = &h->DPB[i];
594 
595  pic->reference = h->droppable ? 0 : h->picture_structure;
598  pic->frame_num = h->frame_num;
599 
600  /*
601  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
602  * in later.
603  * See decode_nal_units().
604  */
605  pic->f->key_frame = 0;
606  pic->mmco_reset = 0;
607  pic->recovered = 0;
608  pic->invalid_gap = 0;
610 
611  if ((ret = alloc_picture(h, pic)) < 0)
612  return ret;
613  if(!h->frame_recovered && !h->avctx->hwaccel
616 #endif
617  )
618  ff_color_frame(pic->f, c);
619 
620  h->cur_pic_ptr = pic;
622  if (CONFIG_ERROR_RESILIENCE) {
624  }
625 
626  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
627  return ret;
628 
629  for (i = 0; i < h->nb_slice_ctx; i++) {
630  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
631  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
632  }
633 
634  if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
638  }
639 
640  for (i = 0; i < 16; i++) {
641  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
642  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
643  }
644  for (i = 0; i < 16; i++) {
645  h->block_offset[16 + i] =
646  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
647  h->block_offset[48 + 16 + i] =
648  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
649  }
650 
651  /* We mark the current picture as non-reference after allocating it, so
652  * that if we break out due to an error it can be released automatically
653  * in the next ff_mpv_frame_start().
654  */
655  h->cur_pic_ptr->reference = 0;
656 
657  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
658 
659  h->next_output_pic = NULL;
660 
661  assert(h->cur_pic_ptr->long_ref == 0);
662 
663  return 0;
664 }
665 
667  uint8_t *src_y,
668  uint8_t *src_cb, uint8_t *src_cr,
669  int linesize, int uvlinesize,
670  int simple)
671 {
672  uint8_t *top_border;
673  int top_idx = 1;
674  const int pixel_shift = h->pixel_shift;
675  int chroma444 = CHROMA444(h);
676  int chroma422 = CHROMA422(h);
677 
678  src_y -= linesize;
679  src_cb -= uvlinesize;
680  src_cr -= uvlinesize;
681 
682  if (!simple && FRAME_MBAFF(h)) {
683  if (sl->mb_y & 1) {
684  if (!MB_MBAFF(sl)) {
685  top_border = sl->top_borders[0][sl->mb_x];
686  AV_COPY128(top_border, src_y + 15 * linesize);
687  if (pixel_shift)
688  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
689  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
690  if (chroma444) {
691  if (pixel_shift) {
692  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
693  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
694  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
695  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
696  } else {
697  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
698  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
699  }
700  } else if (chroma422) {
701  if (pixel_shift) {
702  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
703  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
704  } else {
705  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
706  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
707  }
708  } else {
709  if (pixel_shift) {
710  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
711  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
712  } else {
713  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
714  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
715  }
716  }
717  }
718  }
719  } else if (MB_MBAFF(sl)) {
720  top_idx = 0;
721  } else
722  return;
723  }
724 
725  top_border = sl->top_borders[top_idx][sl->mb_x];
726  /* There are two lines saved, the line above the top macroblock
727  * of a pair, and the line above the bottom macroblock. */
728  AV_COPY128(top_border, src_y + 16 * linesize);
729  if (pixel_shift)
730  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
731 
732  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
733  if (chroma444) {
734  if (pixel_shift) {
735  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
736  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
737  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
738  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
739  } else {
740  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
741  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
742  }
743  } else if (chroma422) {
744  if (pixel_shift) {
745  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
746  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
747  } else {
748  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
749  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
750  }
751  } else {
752  if (pixel_shift) {
753  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
754  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
755  } else {
756  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
757  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
758  }
759  }
760  }
761 }
762 
763 /**
764  * Initialize implicit_weight table.
765  * @param field 0/1 initialize the weight for interlaced MBAFF
766  * -1 initializes the rest
767  */
768 static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
769 {
770  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
771 
772  for (i = 0; i < 2; i++) {
773  sl->luma_weight_flag[i] = 0;
774  sl->chroma_weight_flag[i] = 0;
775  }
776 
777  if (field < 0) {
778  if (h->picture_structure == PICT_FRAME) {
779  cur_poc = h->cur_pic_ptr->poc;
780  } else {
781  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
782  }
783  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
784  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2 * cur_poc) {
785  sl->use_weight = 0;
786  sl->use_weight_chroma = 0;
787  return;
788  }
789  ref_start = 0;
790  ref_count0 = sl->ref_count[0];
791  ref_count1 = sl->ref_count[1];
792  } else {
793  cur_poc = h->cur_pic_ptr->field_poc[field];
794  ref_start = 16;
795  ref_count0 = 16 + 2 * sl->ref_count[0];
796  ref_count1 = 16 + 2 * sl->ref_count[1];
797  }
798 
799  sl->use_weight = 2;
800  sl->use_weight_chroma = 2;
801  sl->luma_log2_weight_denom = 5;
802  sl->chroma_log2_weight_denom = 5;
803 
804  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
805  int64_t poc0 = sl->ref_list[0][ref0].poc;
806  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
807  int w = 32;
808  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
809  int poc1 = sl->ref_list[1][ref1].poc;
810  int td = av_clip_int8(poc1 - poc0);
811  if (td) {
812  int tb = av_clip_int8(cur_poc - poc0);
813  int tx = (16384 + (FFABS(td) >> 1)) / td;
814  int dist_scale_factor = (tb * tx + 32) >> 8;
815  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
816  w = 64 - dist_scale_factor;
817  }
818  }
819  if (field < 0) {
820  sl->implicit_weight[ref0][ref1][0] =
821  sl->implicit_weight[ref0][ref1][1] = w;
822  } else {
823  sl->implicit_weight[ref0][ref1][field] = w;
824  }
825  }
826  }
827 }
828 
829 /**
830  * initialize scan tables
831  */
833 {
834  int i;
835  for (i = 0; i < 16; i++) {
836 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
837  h->zigzag_scan[i] = TRANSPOSE(zigzag_scan[i]);
838  h->field_scan[i] = TRANSPOSE(field_scan[i]);
839 #undef TRANSPOSE
840  }
841  for (i = 0; i < 64; i++) {
842 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
847 #undef TRANSPOSE
848  }
849  if (h->sps.transform_bypass) { // FIXME same ugly
850  memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 ));
851  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
853  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
854  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
856  } else {
857  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
858  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
860  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
861  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
863  }
864 }
865 
866 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
867 {
868 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
869  CONFIG_H264_D3D11VA_HWACCEL + \
870  CONFIG_H264_VAAPI_HWACCEL + \
871  (CONFIG_H264_VDA_HWACCEL * 2) + \
872  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
873  CONFIG_H264_VDPAU_HWACCEL)
875  const enum AVPixelFormat *choices = pix_fmts;
876  int i;
877 
878  switch (h->sps.bit_depth_luma) {
879  case 9:
880  if (CHROMA444(h)) {
881  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
882  *fmt++ = AV_PIX_FMT_GBRP9;
883  } else
884  *fmt++ = AV_PIX_FMT_YUV444P9;
885  } else if (CHROMA422(h))
886  *fmt++ = AV_PIX_FMT_YUV422P9;
887  else
888  *fmt++ = AV_PIX_FMT_YUV420P9;
889  break;
890  case 10:
891  if (CHROMA444(h)) {
892  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
893  *fmt++ = AV_PIX_FMT_GBRP10;
894  } else
895  *fmt++ = AV_PIX_FMT_YUV444P10;
896  } else if (CHROMA422(h))
897  *fmt++ = AV_PIX_FMT_YUV422P10;
898  else
899  *fmt++ = AV_PIX_FMT_YUV420P10;
900  break;
901  case 12:
902  if (CHROMA444(h)) {
903  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
904  *fmt++ = AV_PIX_FMT_GBRP12;
905  } else
906  *fmt++ = AV_PIX_FMT_YUV444P12;
907  } else if (CHROMA422(h))
908  *fmt++ = AV_PIX_FMT_YUV422P12;
909  else
910  *fmt++ = AV_PIX_FMT_YUV420P12;
911  break;
912  case 14:
913  if (CHROMA444(h)) {
914  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
915  *fmt++ = AV_PIX_FMT_GBRP14;
916  } else
917  *fmt++ = AV_PIX_FMT_YUV444P14;
918  } else if (CHROMA422(h))
919  *fmt++ = AV_PIX_FMT_YUV422P14;
920  else
921  *fmt++ = AV_PIX_FMT_YUV420P14;
922  break;
923  case 8:
924 #if CONFIG_H264_VDPAU_HWACCEL
925  *fmt++ = AV_PIX_FMT_VDPAU;
926 #endif
927  if (CHROMA444(h)) {
928  if (h->avctx->colorspace == AVCOL_SPC_RGB)
929  *fmt++ = AV_PIX_FMT_GBRP;
930  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
931  *fmt++ = AV_PIX_FMT_YUVJ444P;
932  else
933  *fmt++ = AV_PIX_FMT_YUV444P;
934  } else if (CHROMA422(h)) {
936  *fmt++ = AV_PIX_FMT_YUVJ422P;
937  else
938  *fmt++ = AV_PIX_FMT_YUV422P;
939  } else {
940 #if CONFIG_H264_DXVA2_HWACCEL
941  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
942 #endif
943 #if CONFIG_H264_D3D11VA_HWACCEL
944  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
945 #endif
946 #if CONFIG_H264_VAAPI_HWACCEL
947  *fmt++ = AV_PIX_FMT_VAAPI;
948 #endif
949 #if CONFIG_H264_VDA_HWACCEL
950  *fmt++ = AV_PIX_FMT_VDA_VLD;
951  *fmt++ = AV_PIX_FMT_VDA;
952 #endif
953 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
954  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
955 #endif
956  if (h->avctx->codec->pix_fmts)
957  choices = h->avctx->codec->pix_fmts;
958  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
959  *fmt++ = AV_PIX_FMT_YUVJ420P;
960  else
961  *fmt++ = AV_PIX_FMT_YUV420P;
962  }
963  break;
964  default:
966  "Unsupported bit depth %d\n", h->sps.bit_depth_luma);
967  return AVERROR_INVALIDDATA;
968  }
969 
970  *fmt = AV_PIX_FMT_NONE;
971 
972  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
973  if (choices[i] == h->avctx->pix_fmt && !force_callback)
974  return choices[i];
975  return ff_thread_get_format(h->avctx, choices);
976 }
977 
978 /* export coded and cropped frame dimensions to AVCodecContext */
980 {
981  int width = h->width - (h->sps.crop_right + h->sps.crop_left);
982  int height = h->height - (h->sps.crop_top + h->sps.crop_bottom);
983  av_assert0(h->sps.crop_right + h->sps.crop_left < (unsigned)h->width);
984  av_assert0(h->sps.crop_top + h->sps.crop_bottom < (unsigned)h->height);
985 
986  /* handle container cropping */
987  if (FFALIGN(h->avctx->width, 16) == FFALIGN(width, 16) &&
988  FFALIGN(h->avctx->height, 16) == FFALIGN(height, 16) &&
989  h->avctx->width <= width &&
990  h->avctx->height <= height
991  ) {
992  width = h->avctx->width;
993  height = h->avctx->height;
994  }
995 
996  if (width <= 0 || height <= 0) {
997  av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n",
998  width, height);
1000  return AVERROR_INVALIDDATA;
1001 
1002  av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n");
1003  h->sps.crop_bottom =
1004  h->sps.crop_top =
1005  h->sps.crop_right =
1006  h->sps.crop_left =
1007  h->sps.crop = 0;
1008 
1009  width = h->width;
1010  height = h->height;
1011  }
1012 
1013  h->avctx->coded_width = h->width;
1014  h->avctx->coded_height = h->height;
1015  h->avctx->width = width;
1016  h->avctx->height = height;
1017 
1018  return 0;
1019 }
1020 
1022 {
1023  int nb_slices = (HAVE_THREADS &&
1025  h->avctx->thread_count : 1;
1026  int i, ret;
1027 
1028  ff_set_sar(h->avctx, h->sps.sar);
1030  &h->chroma_x_shift, &h->chroma_y_shift);
1031 
1032  if (h->sps.timing_info_present_flag) {
1033  int64_t den = h->sps.time_scale;
1034  if (h->x264_build < 44U)
1035  den *= 2;
1037  h->sps.num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
1038  }
1039 
1041 
1042  h->first_field = 0;
1043  h->prev_interlaced_frame = 1;
1044 
1045  init_scan_tables(h);
1046  ret = ff_h264_alloc_tables(h);
1047  if (ret < 0) {
1048  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
1049  goto fail;
1050  }
1051 
1052 #if FF_API_CAP_VDPAU
1053  if (h->avctx->codec &&
1055  (h->sps.bit_depth_luma != 8 || h->sps.chroma_format_idc > 1)) {
1057  "VDPAU decoding does not support video colorspace.\n");
1058  ret = AVERROR_INVALIDDATA;
1059  goto fail;
1060  }
1061 #endif
1062 
1063  if (h->sps.bit_depth_luma < 8 || h->sps.bit_depth_luma > 14 ||
1064  h->sps.bit_depth_luma == 11 || h->sps.bit_depth_luma == 13
1065  ) {
1066  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
1067  h->sps.bit_depth_luma);
1068  ret = AVERROR_INVALIDDATA;
1069  goto fail;
1070  }
1071 
1072  h->cur_bit_depth_luma =
1075  h->pixel_shift = h->sps.bit_depth_luma > 8;
1078 
1080  h->sps.chroma_format_idc);
1084  h->sps.chroma_format_idc);
1086 
1087  if (nb_slices > H264_MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) {
1088  int max_slices;
1089  if (h->mb_height)
1090  max_slices = FFMIN(H264_MAX_THREADS, h->mb_height);
1091  else
1092  max_slices = H264_MAX_THREADS;
1093  av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices %d,"
1094  " reducing to %d\n", nb_slices, max_slices);
1095  nb_slices = max_slices;
1096  }
1097  h->slice_context_count = nb_slices;
1098  h->max_contexts = FFMIN(h->max_contexts, nb_slices);
1099 
1100  if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
1101  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
1102  if (ret < 0) {
1103  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1104  goto fail;
1105  }
1106  } else {
1107  for (i = 0; i < h->slice_context_count; i++) {
1108  H264SliceContext *sl = &h->slice_ctx[i];
1109 
1110  sl->h264 = h;
1111  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
1112  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
1113  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
1114 
1115  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
1116  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1117  goto fail;
1118  }
1119  }
1120  }
1121 
1122  h->context_initialized = 1;
1123 
1124  return 0;
1125 fail:
1127  h->context_initialized = 0;
1128  return ret;
1129 }
1130 
1132 {
1133  switch (a) {
1137  default:
1138  return a;
1139  }
1140 }
1141 
1142 /**
1143  * Decode a slice header.
1144  * This will (re)intialize the decoder and call h264_frame_start() as needed.
1145  *
1146  * @param h h264context
1147  *
1148  * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
1149  */
1151 {
1152  unsigned int first_mb_in_slice;
1153  unsigned int pps_id;
1154  int ret;
1155  unsigned int slice_type, tmp, i, j;
1156  int last_pic_structure, last_pic_droppable;
1157  int must_reinit;
1158  int needs_reinit = 0;
1159  int field_pic_flag, bottom_field_flag;
1160  int first_slice = sl == h->slice_ctx && !h->current_slice;
1161  int frame_num, droppable, picture_structure;
1162  int mb_aff_frame, last_mb_aff_frame;
1163  PPS *pps;
1164 
1165  if (first_slice)
1167 
1170 
1171  first_mb_in_slice = get_ue_golomb_long(&sl->gb);
1172 
1173  if (first_mb_in_slice == 0) { // FIXME better field boundary detection
1174  if (h->current_slice) {
1175  if (h->setup_finished) {
1176  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
1177  return AVERROR_INVALIDDATA;
1178  }
1179  if (h->max_contexts > 1) {
1180  if (!h->single_decode_warning) {
1181  av_log(h->avctx, AV_LOG_WARNING, "Cannot decode multiple access units as slice threads\n");
1182  h->single_decode_warning = 1;
1183  }
1184  h->max_contexts = 1;
1185  return SLICE_SINGLETHREAD;
1186  }
1187 
1188  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
1189  ret = ff_h264_field_end(h, h->slice_ctx, 1);
1190  h->current_slice = 0;
1191  if (ret < 0)
1192  return ret;
1193  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == NAL_IDR_SLICE) {
1194  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
1195  ret = ff_h264_field_end(h, h->slice_ctx, 1);
1196  h->current_slice = 0;
1197  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1198  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1199  h->cur_pic_ptr = NULL;
1200  if (ret < 0)
1201  return ret;
1202  } else
1203  return AVERROR_INVALIDDATA;
1204  }
1205 
1206  if (!h->first_field) {
1207  if (h->cur_pic_ptr && !h->droppable) {
1210  }
1211  h->cur_pic_ptr = NULL;
1212  }
1213  }
1214 
1215  if (!h->current_slice)
1216  av_assert0(sl == h->slice_ctx);
1217 
1218  slice_type = get_ue_golomb_31(&sl->gb);
1219  if (slice_type > 9) {
1221  "slice type %d too large at %d\n",
1222  slice_type, first_mb_in_slice);
1223  return AVERROR_INVALIDDATA;
1224  }
1225  if (slice_type > 4) {
1226  slice_type -= 5;
1227  sl->slice_type_fixed = 1;
1228  } else
1229  sl->slice_type_fixed = 0;
1230 
1231  slice_type = golomb_to_pict_type[slice_type];
1232  sl->slice_type = slice_type;
1233  sl->slice_type_nos = slice_type & 3;
1234 
1235  if (h->nal_unit_type == NAL_IDR_SLICE &&
1237  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1238  return AVERROR_INVALIDDATA;
1239  }
1240 
1241  if (h->current_slice == 0 && !h->first_field) {
1242  if (
1243  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
1247  h->avctx->skip_frame >= AVDISCARD_ALL) {
1248  return SLICE_SKIPED;
1249  }
1250  }
1251 
1252  // to make a few old functions happy, it's wrong though
1253  if (!h->setup_finished)
1254  h->pict_type = sl->slice_type;
1255 
1256  pps_id = get_ue_golomb(&sl->gb);
1257  if (pps_id >= MAX_PPS_COUNT) {
1258  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id);
1259  return AVERROR_INVALIDDATA;
1260  }
1261  if (!h->pps_buffers[pps_id]) {
1263  "non-existing PPS %u referenced\n",
1264  pps_id);
1265  return AVERROR_INVALIDDATA;
1266  }
1267  if (h->au_pps_id >= 0 && pps_id != h->au_pps_id) {
1269  "PPS change from %d to %d forbidden\n",
1270  h->au_pps_id, pps_id);
1271  return AVERROR_INVALIDDATA;
1272  }
1273 
1274  pps = h->pps_buffers[pps_id];
1275 
1276  if (!h->sps_buffers[pps->sps_id]) {
1278  "non-existing SPS %u referenced\n",
1279  h->pps.sps_id);
1280  return AVERROR_INVALIDDATA;
1281  }
1282 
1283  if (first_slice) {
1284  h->pps = *h->pps_buffers[pps_id];
1285  } else if (h->setup_finished && h->dequant_coeff_pps != pps_id) {
1286  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
1287  return AVERROR_INVALIDDATA;
1288  }
1289 
1290  if (pps->sps_id != h->sps.sps_id ||
1291  pps->sps_id != h->current_sps_id ||
1292  h->sps_buffers[pps->sps_id]->new) {
1293 
1294  if (!first_slice) {
1296  "SPS changed in the middle of the frame\n");
1297  return AVERROR_INVALIDDATA;
1298  }
1299 
1300  h->sps = *h->sps_buffers[h->pps.sps_id];
1301 
1302  if (h->mb_width != h->sps.mb_width ||
1303  h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) ||
1306  )
1307  needs_reinit = 1;
1308 
1309  if (h->bit_depth_luma != h->sps.bit_depth_luma ||
1311  needs_reinit = 1;
1312 
1313  if (h->flags & AV_CODEC_FLAG_LOW_DELAY ||
1315  !h->sps.num_reorder_frames)) {
1316  if (h->avctx->has_b_frames > 1 || h->delayed_pic[0])
1317  av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. "
1318  "Reenabling low delay requires a codec flush.\n");
1319  else
1320  h->low_delay = 1;
1321  }
1322 
1323  if (h->avctx->has_b_frames < 2)
1324  h->avctx->has_b_frames = !h->low_delay;
1325 
1326  }
1327 
1328  must_reinit = (h->context_initialized &&
1329  ( 16*h->sps.mb_width != h->avctx->coded_width
1330  || 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height
1333  || h->mb_width != h->sps.mb_width
1334  || h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag)
1335  ));
1336  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1338  must_reinit = 1;
1339 
1340  if (first_slice && av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio))
1341  must_reinit = 1;
1342 
1343  if (!h->setup_finished) {
1344  h->avctx->profile = ff_h264_get_profile(&h->sps);
1345  h->avctx->level = h->sps.level_idc;
1346  h->avctx->refs = h->sps.ref_frame_count;
1347 
1348  h->mb_width = h->sps.mb_width;
1349  h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
1350  h->mb_num = h->mb_width * h->mb_height;
1351  h->mb_stride = h->mb_width + 1;
1352 
1353  h->b_stride = h->mb_width * 4;
1354 
1355  h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
1356 
1357  h->width = 16 * h->mb_width;
1358  h->height = 16 * h->mb_height;
1359 
1360  ret = init_dimensions(h);
1361  if (ret < 0)
1362  return ret;
1363 
1366  : AVCOL_RANGE_MPEG;
1368  if (h->avctx->colorspace != h->sps.colorspace)
1369  needs_reinit = 1;
1371  h->avctx->color_trc = h->sps.color_trc;
1372  h->avctx->colorspace = h->sps.colorspace;
1373  }
1374  }
1375  }
1376 
1377  if (h->context_initialized &&
1378  (must_reinit || needs_reinit)) {
1379  h->context_initialized = 0;
1380  if (sl != h->slice_ctx) {
1382  "changing width %d -> %d / height %d -> %d on "
1383  "slice %d\n",
1384  h->width, h->avctx->coded_width,
1385  h->height, h->avctx->coded_height,
1386  h->current_slice + 1);
1387  return AVERROR_INVALIDDATA;
1388  }
1389 
1390  av_assert1(first_slice);
1391 
1393 
1394  if ((ret = get_pixel_format(h, 1)) < 0)
1395  return ret;
1396  h->avctx->pix_fmt = ret;
1397 
1398  av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, "
1399  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1400 
1401  if ((ret = h264_slice_header_init(h)) < 0) {
1403  "h264_slice_header_init() failed\n");
1404  return ret;
1405  }
1406  }
1407  if (!h->context_initialized) {
1408  if (sl != h->slice_ctx) {
1410  "Cannot (re-)initialize context during parallel decoding.\n");
1411  return AVERROR_PATCHWELCOME;
1412  }
1413 
1414  if ((ret = get_pixel_format(h, 1)) < 0)
1415  return ret;
1416  h->avctx->pix_fmt = ret;
1417 
1418  if ((ret = h264_slice_header_init(h)) < 0) {
1420  "h264_slice_header_init() failed\n");
1421  return ret;
1422  }
1423  }
1424 
1425  if (!h->current_slice && h->dequant_coeff_pps != pps_id) {
1426  h->dequant_coeff_pps = pps_id;
1428  }
1429 
1430  frame_num = get_bits(&sl->gb, h->sps.log2_max_frame_num);
1431  if (!first_slice) {
1432  if (h->frame_num != frame_num) {
1433  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1434  h->frame_num, frame_num);
1435  return AVERROR_INVALIDDATA;
1436  }
1437  }
1438 
1439  if (!h->setup_finished)
1440  h->frame_num = frame_num;
1441 
1442  sl->mb_mbaff = 0;
1443  mb_aff_frame = 0;
1444  last_mb_aff_frame = h->mb_aff_frame;
1445  last_pic_structure = h->picture_structure;
1446  last_pic_droppable = h->droppable;
1447 
1448  droppable = h->nal_ref_idc == 0;
1449  if (h->sps.frame_mbs_only_flag) {
1450  picture_structure = PICT_FRAME;
1451  } else {
1452  if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1453  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1454  return -1;
1455  }
1456  field_pic_flag = get_bits1(&sl->gb);
1457 
1458  if (field_pic_flag) {
1459  bottom_field_flag = get_bits1(&sl->gb);
1460  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1461  } else {
1462  picture_structure = PICT_FRAME;
1463  mb_aff_frame = h->sps.mb_aff;
1464  }
1465  }
1466 
1467  if (h->current_slice) {
1468  if (last_pic_structure != picture_structure ||
1469  last_pic_droppable != droppable ||
1470  last_mb_aff_frame != mb_aff_frame) {
1472  "Changing field mode (%d -> %d) between slices is not allowed\n",
1473  last_pic_structure, h->picture_structure);
1474  return AVERROR_INVALIDDATA;
1475  } else if (!h->cur_pic_ptr) {
1477  "unset cur_pic_ptr on slice %d\n",
1478  h->current_slice + 1);
1479  return AVERROR_INVALIDDATA;
1480  }
1481  }
1482 
1483  if (!h->setup_finished) {
1484  h->droppable = droppable;
1485  h->picture_structure = picture_structure;
1486  h->mb_aff_frame = mb_aff_frame;
1487  }
1488  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1489 
1490  if (h->current_slice == 0) {
1491  /* Shorten frame num gaps so we don't have to allocate reference
1492  * frames just to throw them away */
1493  if (h->frame_num != h->prev_frame_num) {
1494  int unwrap_prev_frame_num = h->prev_frame_num;
1495  int max_frame_num = 1 << h->sps.log2_max_frame_num;
1496 
1497  if (unwrap_prev_frame_num > h->frame_num)
1498  unwrap_prev_frame_num -= max_frame_num;
1499 
1500  if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
1501  unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
1502  if (unwrap_prev_frame_num < 0)
1503  unwrap_prev_frame_num += max_frame_num;
1504 
1505  h->prev_frame_num = unwrap_prev_frame_num;
1506  }
1507  }
1508 
1509  /* See if we have a decoded first field looking for a pair...
1510  * Here, we're using that to see if we should mark previously
1511  * decode frames as "finished".
1512  * We have to do that before the "dummy" in-between frame allocation,
1513  * since that can modify h->cur_pic_ptr. */
1514  if (h->first_field) {
1515  av_assert0(h->cur_pic_ptr);
1516  av_assert0(h->cur_pic_ptr->f->buf[0]);
1517  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1518 
1519  /* Mark old field/frame as completed */
1520  if (h->cur_pic_ptr->tf.owner == h->avctx) {
1522  last_pic_structure == PICT_BOTTOM_FIELD);
1523  }
1524 
1525  /* figure out if we have a complementary field pair */
1526  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1527  /* Previous field is unmatched. Don't display it, but let it
1528  * remain for reference if marked as such. */
1529  if (last_pic_structure != PICT_FRAME) {
1531  last_pic_structure == PICT_TOP_FIELD);
1532  }
1533  } else {
1534  if (h->cur_pic_ptr->frame_num != h->frame_num) {
1535  /* This and previous field were reference, but had
1536  * different frame_nums. Consider this field first in
1537  * pair. Throw away previous field except for reference
1538  * purposes. */
1539  if (last_pic_structure != PICT_FRAME) {
1541  last_pic_structure == PICT_TOP_FIELD);
1542  }
1543  } else {
1544  /* Second field in complementary pair */
1545  if (!((last_pic_structure == PICT_TOP_FIELD &&
1547  (last_pic_structure == PICT_BOTTOM_FIELD &&
1550  "Invalid field mode combination %d/%d\n",
1551  last_pic_structure, h->picture_structure);
1552  h->picture_structure = last_pic_structure;
1553  h->droppable = last_pic_droppable;
1554  return AVERROR_INVALIDDATA;
1555  } else if (last_pic_droppable != h->droppable) {
1557  "Found reference and non-reference fields in the same frame, which");
1558  h->picture_structure = last_pic_structure;
1559  h->droppable = last_pic_droppable;
1560  return AVERROR_PATCHWELCOME;
1561  }
1562  }
1563  }
1564  }
1565 
1566  while (h->frame_num != h->prev_frame_num && !h->first_field &&
1567  h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) {
1568  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1569  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1570  h->frame_num, h->prev_frame_num);
1572  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1573  h->last_pocs[i] = INT_MIN;
1574  ret = h264_frame_start(h);
1575  if (ret < 0) {
1576  h->first_field = 0;
1577  return ret;
1578  }
1579 
1580  h->prev_frame_num++;
1581  h->prev_frame_num %= 1 << h->sps.log2_max_frame_num;
1584  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1585  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1587  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1588  return ret;
1590  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1591  return ret;
1592  /* Error concealment: If a ref is missing, copy the previous ref
1593  * in its place.
1594  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1595  * many assumptions about there being no actual duplicates.
1596  * FIXME: This does not copy padding for out-of-frame motion
1597  * vectors. Given we are concealing a lost frame, this probably
1598  * is not noticeable by comparison, but it should be fixed. */
1599  if (h->short_ref_count) {
1600  if (prev &&
1601  h->short_ref[0]->f->width == prev->f->width &&
1602  h->short_ref[0]->f->height == prev->f->height &&
1603  h->short_ref[0]->f->format == prev->f->format) {
1604  av_image_copy(h->short_ref[0]->f->data,
1605  h->short_ref[0]->f->linesize,
1606  (const uint8_t **)prev->f->data,
1607  prev->f->linesize,
1608  prev->f->format,
1609  prev->f->width,
1610  prev->f->height);
1611  h->short_ref[0]->poc = prev->poc + 2;
1612  }
1613  h->short_ref[0]->frame_num = h->prev_frame_num;
1614  }
1615  }
1616 
1617  /* See if we have a decoded first field looking for a pair...
1618  * We're using that to see whether to continue decoding in that
1619  * frame, or to allocate a new one. */
1620  if (h->first_field) {
1621  av_assert0(h->cur_pic_ptr);
1622  av_assert0(h->cur_pic_ptr->f->buf[0]);
1623  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1624 
1625  /* figure out if we have a complementary field pair */
1626  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1627  /* Previous field is unmatched. Don't display it, but let it
1628  * remain for reference if marked as such. */
1629  h->missing_fields ++;
1630  h->cur_pic_ptr = NULL;
1631  h->first_field = FIELD_PICTURE(h);
1632  } else {
1633  h->missing_fields = 0;
1634  if (h->cur_pic_ptr->frame_num != h->frame_num) {
1637  /* This and the previous field had different frame_nums.
1638  * Consider this field first in pair. Throw away previous
1639  * one except for reference purposes. */
1640  h->first_field = 1;
1641  h->cur_pic_ptr = NULL;
1642  } else {
1643  /* Second field in complementary pair */
1644  h->first_field = 0;
1645  }
1646  }
1647  } else {
1648  /* Frame or first field in a potentially complementary pair */
1649  h->first_field = FIELD_PICTURE(h);
1650  }
1651 
1652  if (!FIELD_PICTURE(h) || h->first_field) {
1653  if (h264_frame_start(h) < 0) {
1654  h->first_field = 0;
1655  return AVERROR_INVALIDDATA;
1656  }
1657  } else {
1659  }
1660  /* Some macroblocks can be accessed before they're available in case
1661  * of lost slices, MBAFF or threading. */
1662  if (FIELD_PICTURE(h)) {
1663  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1664  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1665  } else {
1666  memset(h->slice_table, -1,
1667  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1668  }
1669  }
1670 
1671  av_assert1(h->mb_num == h->mb_width * h->mb_height);
1672  if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1673  first_mb_in_slice >= h->mb_num) {
1674  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1675  return AVERROR_INVALIDDATA;
1676  }
1677  sl->resync_mb_x = sl->mb_x = first_mb_in_slice % h->mb_width;
1678  sl->resync_mb_y = sl->mb_y = (first_mb_in_slice / h->mb_width) <<
1681  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
1682  av_assert1(sl->mb_y < h->mb_height);
1683 
1684  if (h->picture_structure == PICT_FRAME) {
1685  h->curr_pic_num = h->frame_num;
1686  h->max_pic_num = 1 << h->sps.log2_max_frame_num;
1687  } else {
1688  h->curr_pic_num = 2 * h->frame_num + 1;
1689  h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1);
1690  }
1691 
1692  if (h->nal_unit_type == NAL_IDR_SLICE)
1693  get_ue_golomb_long(&sl->gb); /* idr_pic_id */
1694 
1695  if (h->sps.poc_type == 0) {
1696  int poc_lsb = get_bits(&sl->gb, h->sps.log2_max_poc_lsb);
1697 
1698  if (!h->setup_finished)
1699  h->poc_lsb = poc_lsb;
1700 
1701  if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) {
1702  int delta_poc_bottom = get_se_golomb(&sl->gb);
1703  if (!h->setup_finished)
1704  h->delta_poc_bottom = delta_poc_bottom;
1705  }
1706  }
1707 
1708  if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) {
1709  int delta_poc = get_se_golomb(&sl->gb);
1710 
1711  if (!h->setup_finished)
1712  h->delta_poc[0] = delta_poc;
1713 
1714  if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) {
1715  delta_poc = get_se_golomb(&sl->gb);
1716 
1717  if (!h->setup_finished)
1718  h->delta_poc[1] = delta_poc;
1719  }
1720  }
1721 
1722  if (!h->setup_finished)
1724 
1726  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1727 
1728  ret = ff_set_ref_count(h, sl);
1729  if (ret < 0)
1730  return ret;
1731 
1732  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1734  if (ret < 0) {
1735  sl->ref_count[1] = sl->ref_count[0] = 0;
1736  return ret;
1737  }
1738  }
1739 
1740  if ((h->pps.weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1741  (h->pps.weighted_bipred_idc == 1 &&
1743  ff_pred_weight_table(h, sl);
1744  else if (h->pps.weighted_bipred_idc == 2 &&
1746  implicit_weight_table(h, sl, -1);
1747  } else {
1748  sl->use_weight = 0;
1749  for (i = 0; i < 2; i++) {
1750  sl->luma_weight_flag[i] = 0;
1751  sl->chroma_weight_flag[i] = 0;
1752  }
1753  }
1754 
1755  // If frame-mt is enabled, only update mmco tables for the first slice
1756  // in a field. Subsequent slices can temporarily clobber h->mmco_index
1757  // or h->mmco, which will cause ref list mix-ups and decoding errors
1758  // further down the line. This may break decoding if the first slice is
1759  // corrupt, thus we only do this if frame-mt is enabled.
1760  if (h->nal_ref_idc) {
1761  ret = ff_h264_decode_ref_pic_marking(h, &sl->gb,
1763  h->current_slice == 0);
1764  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1765  return AVERROR_INVALIDDATA;
1766  }
1767 
1768  if (FRAME_MBAFF(h)) {
1770 
1771  if (h->pps.weighted_bipred_idc == 2 && sl->slice_type_nos == AV_PICTURE_TYPE_B) {
1772  implicit_weight_table(h, sl, 0);
1773  implicit_weight_table(h, sl, 1);
1774  }
1775  }
1776 
1780 
1781  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) {
1782  tmp = get_ue_golomb_31(&sl->gb);
1783  if (tmp > 2) {
1784  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1785  return AVERROR_INVALIDDATA;
1786  }
1787  sl->cabac_init_idc = tmp;
1788  }
1789 
1790  sl->last_qscale_diff = 0;
1791  tmp = h->pps.init_qp + get_se_golomb(&sl->gb);
1792  if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) {
1793  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1794  return AVERROR_INVALIDDATA;
1795  }
1796  sl->qscale = tmp;
1797  sl->chroma_qp[0] = get_chroma_qp(h, 0, sl->qscale);
1798  sl->chroma_qp[1] = get_chroma_qp(h, 1, sl->qscale);
1799  // FIXME qscale / qp ... stuff
1800  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1801  get_bits1(&sl->gb); /* sp_for_switch_flag */
1802  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
1804  get_se_golomb(&sl->gb); /* slice_qs_delta */
1805 
1806  sl->deblocking_filter = 1;
1807  sl->slice_alpha_c0_offset = 0;
1808  sl->slice_beta_offset = 0;
1810  tmp = get_ue_golomb_31(&sl->gb);
1811  if (tmp > 2) {
1813  "deblocking_filter_idc %u out of range\n", tmp);
1814  return AVERROR_INVALIDDATA;
1815  }
1816  sl->deblocking_filter = tmp;
1817  if (sl->deblocking_filter < 2)
1818  sl->deblocking_filter ^= 1; // 1<->0
1819 
1820  if (sl->deblocking_filter) {
1821  sl->slice_alpha_c0_offset = get_se_golomb(&sl->gb) * 2;
1822  sl->slice_beta_offset = get_se_golomb(&sl->gb) * 2;
1823  if (sl->slice_alpha_c0_offset > 12 ||
1824  sl->slice_alpha_c0_offset < -12 ||
1825  sl->slice_beta_offset > 12 ||
1826  sl->slice_beta_offset < -12) {
1828  "deblocking filter parameters %d %d out of range\n",
1830  return AVERROR_INVALIDDATA;
1831  }
1832  }
1833  }
1834 
1835  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1837  h->nal_unit_type != NAL_IDR_SLICE) ||
1843  h->nal_ref_idc == 0))
1844  sl->deblocking_filter = 0;
1845 
1846  if (sl->deblocking_filter == 1 && h->max_contexts > 1) {
1847  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
1848  /* Cheat slightly for speed:
1849  * Do not bother to deblock across slices. */
1850  sl->deblocking_filter = 2;
1851  } else {
1852  h->max_contexts = 1;
1853  if (!h->single_decode_warning) {
1854  av_log(h->avctx, AV_LOG_INFO,
1855  "Cannot parallelize slice decoding with deblocking filter type 1, decoding such frames in sequential order\n"
1856  "To parallelize slice decoding you need video encoded with disable_deblocking_filter_idc set to 2 (deblock only edges that do not cross slices).\n"
1857  "Setting the flags2 libavcodec option to +fast (-flags2 +fast) will disable deblocking across slices and enable parallel slice decoding "
1858  "but will generate non-standard-compliant output.\n");
1859  h->single_decode_warning = 1;
1860  }
1861  if (sl != h->slice_ctx) {
1863  "Deblocking switched inside frame.\n");
1864  return SLICE_SINGLETHREAD;
1865  }
1866  }
1867  }
1868  sl->qp_thresh = 15 -
1870  FFMAX3(0,
1872  h->pps.chroma_qp_index_offset[1]) +
1873  6 * (h->sps.bit_depth_luma - 8);
1874 
1875  sl->slice_num = ++h->current_slice;
1876 
1877  if (sl->slice_num)
1878  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
1879  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
1880  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
1881  && sl->slice_num >= MAX_SLICES) {
1882  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
1883  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
1884  }
1885 
1886  for (j = 0; j < 2; j++) {
1887  int id_list[16];
1888  int *ref2frm = sl->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
1889  for (i = 0; i < 16; i++) {
1890  id_list[i] = 60;
1891  if (j < sl->list_count && i < sl->ref_count[j] &&
1892  sl->ref_list[j][i].parent->f->buf[0]) {
1893  int k;
1894  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
1895  for (k = 0; k < h->short_ref_count; k++)
1896  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
1897  id_list[i] = k;
1898  break;
1899  }
1900  for (k = 0; k < h->long_ref_count; k++)
1901  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
1902  id_list[i] = h->short_ref_count + k;
1903  break;
1904  }
1905  }
1906  }
1907 
1908  ref2frm[0] =
1909  ref2frm[1] = -1;
1910  for (i = 0; i < 16; i++)
1911  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
1912  ref2frm[18 + 0] =
1913  ref2frm[18 + 1] = -1;
1914  for (i = 16; i < 48; i++)
1915  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
1916  (sl->ref_list[j][i].reference & 3);
1917  }
1918 
1919  h->au_pps_id = pps_id;
1920  h->sps.new =
1921  h->sps_buffers[h->pps.sps_id]->new = 0;
1922  h->current_sps_id = h->pps.sps_id;
1923 
1924  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
1926  "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
1927  sl->slice_num,
1928  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
1929  first_mb_in_slice,
1931  sl->slice_type_fixed ? " fix" : "",
1932  h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
1933  pps_id, h->frame_num,
1934  h->cur_pic_ptr->field_poc[0],
1935  h->cur_pic_ptr->field_poc[1],
1936  sl->ref_count[0], sl->ref_count[1],
1937  sl->qscale,
1938  sl->deblocking_filter,
1940  sl->use_weight,
1941  sl->use_weight == 1 && sl->use_weight_chroma ? "c" : "",
1942  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
1943  }
1944 
1945  return 0;
1946 }
1947 
1949 {
1950  switch (sl->slice_type) {
1951  case AV_PICTURE_TYPE_P:
1952  return 0;
1953  case AV_PICTURE_TYPE_B:
1954  return 1;
1955  case AV_PICTURE_TYPE_I:
1956  return 2;
1957  case AV_PICTURE_TYPE_SP:
1958  return 3;
1959  case AV_PICTURE_TYPE_SI:
1960  return 4;
1961  default:
1962  return AVERROR_INVALIDDATA;
1963  }
1964 }
1965 
1967  H264SliceContext *sl,
1968  int mb_type, int top_xy,
1969  int left_xy[LEFT_MBS],
1970  int top_type,
1971  int left_type[LEFT_MBS],
1972  int mb_xy, int list)
1973 {
1974  int b_stride = h->b_stride;
1975  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
1976  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
1977  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
1978  if (USES_LIST(top_type, list)) {
1979  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
1980  const int b8_xy = 4 * top_xy + 2;
1981  int *ref2frm = sl->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list] + (MB_MBAFF(sl) ? 20 : 2);
1982  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
1983  ref_cache[0 - 1 * 8] =
1984  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
1985  ref_cache[2 - 1 * 8] =
1986  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
1987  } else {
1988  AV_ZERO128(mv_dst - 1 * 8);
1989  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1990  }
1991 
1992  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
1993  if (USES_LIST(left_type[LTOP], list)) {
1994  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
1995  const int b8_xy = 4 * left_xy[LTOP] + 1;
1996  int *ref2frm = sl->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list] + (MB_MBAFF(sl) ? 20 : 2);
1997  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
1998  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
1999  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2000  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2001  ref_cache[-1 + 0] =
2002  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2003  ref_cache[-1 + 16] =
2004  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2005  } else {
2006  AV_ZERO32(mv_dst - 1 + 0);
2007  AV_ZERO32(mv_dst - 1 + 8);
2008  AV_ZERO32(mv_dst - 1 + 16);
2009  AV_ZERO32(mv_dst - 1 + 24);
2010  ref_cache[-1 + 0] =
2011  ref_cache[-1 + 8] =
2012  ref_cache[-1 + 16] =
2013  ref_cache[-1 + 24] = LIST_NOT_USED;
2014  }
2015  }
2016  }
2017 
2018  if (!USES_LIST(mb_type, list)) {
2019  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2020  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2021  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2022  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2023  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2024  return;
2025  }
2026 
2027  {
2028  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2029  int *ref2frm = sl->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list] + (MB_MBAFF(sl) ? 20 : 2);
2030  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2031  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2032  AV_WN32A(&ref_cache[0 * 8], ref01);
2033  AV_WN32A(&ref_cache[1 * 8], ref01);
2034  AV_WN32A(&ref_cache[2 * 8], ref23);
2035  AV_WN32A(&ref_cache[3 * 8], ref23);
2036  }
2037 
2038  {
2039  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2040  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2041  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2042  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2043  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2044  }
2045 }
2046 
2047 /**
2048  *
2049  * @return non zero if the loop filter can be skipped
2050  */
2051 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2052 {
2053  const int mb_xy = sl->mb_xy;
2054  int top_xy, left_xy[LEFT_MBS];
2055  int top_type, left_type[LEFT_MBS];
2056  uint8_t *nnz;
2057  uint8_t *nnz_cache;
2058 
2059  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2060 
2061  /* Wow, what a mess, why didn't they simplify the interlacing & intra
2062  * stuff, I can't imagine that these complex rules are worth it. */
2063 
2064  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2065  if (FRAME_MBAFF(h)) {
2066  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2067  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2068  if (sl->mb_y & 1) {
2069  if (left_mb_field_flag != curr_mb_field_flag)
2070  left_xy[LTOP] -= h->mb_stride;
2071  } else {
2072  if (curr_mb_field_flag)
2073  top_xy += h->mb_stride &
2074  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2075  if (left_mb_field_flag != curr_mb_field_flag)
2076  left_xy[LBOT] += h->mb_stride;
2077  }
2078  }
2079 
2080  sl->top_mb_xy = top_xy;
2081  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2082  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2083  {
2084  /* For sufficiently low qp, filtering wouldn't do anything.
2085  * This is a conservative estimate: could also check beta_offset
2086  * and more accurate chroma_qp. */
2087  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2088  int qp = h->cur_pic.qscale_table[mb_xy];
2089  if (qp <= qp_thresh &&
2090  (left_xy[LTOP] < 0 ||
2091  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2092  (top_xy < 0 ||
2093  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2094  if (!FRAME_MBAFF(h))
2095  return 1;
2096  if ((left_xy[LTOP] < 0 ||
2097  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2098  (top_xy < h->mb_stride ||
2099  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2100  return 1;
2101  }
2102  }
2103 
2104  top_type = h->cur_pic.mb_type[top_xy];
2105  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2106  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2107  if (sl->deblocking_filter == 2) {
2108  if (h->slice_table[top_xy] != sl->slice_num)
2109  top_type = 0;
2110  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2111  left_type[LTOP] = left_type[LBOT] = 0;
2112  } else {
2113  if (h->slice_table[top_xy] == 0xFFFF)
2114  top_type = 0;
2115  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2116  left_type[LTOP] = left_type[LBOT] = 0;
2117  }
2118  sl->top_type = top_type;
2119  sl->left_type[LTOP] = left_type[LTOP];
2120  sl->left_type[LBOT] = left_type[LBOT];
2121 
2122  if (IS_INTRA(mb_type))
2123  return 0;
2124 
2125  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2126  top_type, left_type, mb_xy, 0);
2127  if (sl->list_count == 2)
2128  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2129  top_type, left_type, mb_xy, 1);
2130 
2131  nnz = h->non_zero_count[mb_xy];
2132  nnz_cache = sl->non_zero_count_cache;
2133  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2134  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2135  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2136  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2137  sl->cbp = h->cbp_table[mb_xy];
2138 
2139  if (top_type) {
2140  nnz = h->non_zero_count[top_xy];
2141  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2142  }
2143 
2144  if (left_type[LTOP]) {
2145  nnz = h->non_zero_count[left_xy[LTOP]];
2146  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2147  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2148  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2149  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2150  }
2151 
2152  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2153  * from what the loop filter needs */
2154  if (!CABAC(h) && h->pps.transform_8x8_mode) {
2155  if (IS_8x8DCT(top_type)) {
2156  nnz_cache[4 + 8 * 0] =
2157  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2158  nnz_cache[6 + 8 * 0] =
2159  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2160  }
2161  if (IS_8x8DCT(left_type[LTOP])) {
2162  nnz_cache[3 + 8 * 1] =
2163  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2164  }
2165  if (IS_8x8DCT(left_type[LBOT])) {
2166  nnz_cache[3 + 8 * 3] =
2167  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2168  }
2169 
2170  if (IS_8x8DCT(mb_type)) {
2171  nnz_cache[scan8[0]] =
2172  nnz_cache[scan8[1]] =
2173  nnz_cache[scan8[2]] =
2174  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2175 
2176  nnz_cache[scan8[0 + 4]] =
2177  nnz_cache[scan8[1 + 4]] =
2178  nnz_cache[scan8[2 + 4]] =
2179  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2180 
2181  nnz_cache[scan8[0 + 8]] =
2182  nnz_cache[scan8[1 + 8]] =
2183  nnz_cache[scan8[2 + 8]] =
2184  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2185 
2186  nnz_cache[scan8[0 + 12]] =
2187  nnz_cache[scan8[1 + 12]] =
2188  nnz_cache[scan8[2 + 12]] =
2189  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2190  }
2191  }
2192 
2193  return 0;
2194 }
2195 
2196 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2197 {
2198  uint8_t *dest_y, *dest_cb, *dest_cr;
2199  int linesize, uvlinesize, mb_x, mb_y;
2200  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2201  const int old_slice_type = sl->slice_type;
2202  const int pixel_shift = h->pixel_shift;
2203  const int block_h = 16 >> h->chroma_y_shift;
2204 
2205  if (sl->deblocking_filter) {
2206  for (mb_x = start_x; mb_x < end_x; mb_x++)
2207  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2208  int mb_xy, mb_type;
2209  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2210  sl->slice_num = h->slice_table[mb_xy];
2211  mb_type = h->cur_pic.mb_type[mb_xy];
2212  sl->list_count = h->list_counts[mb_xy];
2213 
2214  if (FRAME_MBAFF(h))
2215  sl->mb_mbaff =
2216  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2217 
2218  sl->mb_x = mb_x;
2219  sl->mb_y = mb_y;
2220  dest_y = h->cur_pic.f->data[0] +
2221  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2222  dest_cb = h->cur_pic.f->data[1] +
2223  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2224  mb_y * sl->uvlinesize * block_h;
2225  dest_cr = h->cur_pic.f->data[2] +
2226  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2227  mb_y * sl->uvlinesize * block_h;
2228  // FIXME simplify above
2229 
2230  if (MB_FIELD(sl)) {
2231  linesize = sl->mb_linesize = sl->linesize * 2;
2232  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2233  if (mb_y & 1) { // FIXME move out of this function?
2234  dest_y -= sl->linesize * 15;
2235  dest_cb -= sl->uvlinesize * (block_h - 1);
2236  dest_cr -= sl->uvlinesize * (block_h - 1);
2237  }
2238  } else {
2239  linesize = sl->mb_linesize = sl->linesize;
2240  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2241  }
2242  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2243  uvlinesize, 0);
2244  if (fill_filter_caches(h, sl, mb_type))
2245  continue;
2246  sl->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]);
2247  sl->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]);
2248 
2249  if (FRAME_MBAFF(h)) {
2250  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2251  linesize, uvlinesize);
2252  } else {
2253  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2254  dest_cr, linesize, uvlinesize);
2255  }
2256  }
2257  }
2258  sl->slice_type = old_slice_type;
2259  sl->mb_x = end_x;
2260  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2261  sl->chroma_qp[0] = get_chroma_qp(h, 0, sl->qscale);
2262  sl->chroma_qp[1] = get_chroma_qp(h, 1, sl->qscale);
2263 }
2264 
2266 {
2267  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2268  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2269  h->cur_pic.mb_type[mb_xy - 1] :
2270  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2271  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2272  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2273 }
2274 
2275 /**
2276  * Draw edges and report progress for the last MB row.
2277  */
2279 {
2280  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2281  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2282  int height = 16 << FRAME_MBAFF(h);
2283  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2284 
2285  if (sl->deblocking_filter) {
2286  if ((top + height) >= pic_height)
2287  height += deblock_border;
2288  top -= deblock_border;
2289  }
2290 
2291  if (top >= pic_height || (top + height) < 0)
2292  return;
2293 
2294  height = FFMIN(height, pic_height - top);
2295  if (top < 0) {
2296  height = top + height;
2297  top = 0;
2298  }
2299 
2300  ff_h264_draw_horiz_band(h, sl, top, height);
2301 
2302  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2303  return;
2304 
2305  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2307 }
2308 
2310  int startx, int starty,
2311  int endx, int endy, int status)
2312 {
2313  if (!sl->h264->enable_er)
2314  return;
2315 
2316  if (CONFIG_ERROR_RESILIENCE) {
2317  ERContext *er = &sl->h264->slice_ctx[0].er;
2318 
2319  ff_er_add_slice(er, startx, starty, endx, endy, status);
2320  }
2321 }
2322 
2323 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2324 {
2325  H264SliceContext *sl = arg;
2326  const H264Context *h = sl->h264;
2327  int lf_x_start = sl->mb_x;
2328  int ret;
2329 
2330  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2331  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2332 
2333  ret = alloc_scratch_buffers(sl, sl->linesize);
2334  if (ret < 0)
2335  return ret;
2336 
2337  sl->mb_skip_run = -1;
2338 
2339  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2340 
2341  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2342  avctx->codec_id != AV_CODEC_ID_H264 ||
2343  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2344 
2346  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2347  if (start_i) {
2348  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2349  prev_status &= ~ VP_START;
2350  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2351  h->slice_ctx[0].er.error_occurred = 1;
2352  }
2353  }
2354 
2355  if (h->pps.cabac) {
2356  /* realign */
2357  align_get_bits(&sl->gb);
2358 
2359  /* init cabac */
2360  ret = ff_init_cabac_decoder(&sl->cabac,
2361  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2362  (get_bits_left(&sl->gb) + 7) / 8);
2363  if (ret < 0)
2364  return ret;
2365 
2367 
2368  for (;;) {
2369  // START_TIMER
2370  int ret, eos;
2371  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2372  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2373  sl->next_slice_idx);
2374  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2375  sl->mb_y, ER_MB_ERROR);
2376  return AVERROR_INVALIDDATA;
2377  }
2378 
2379  ret = ff_h264_decode_mb_cabac(h, sl);
2380  // STOP_TIMER("decode_mb_cabac")
2381 
2382  if (ret >= 0)
2383  ff_h264_hl_decode_mb(h, sl);
2384 
2385  // FIXME optimal? or let mb_decode decode 16x32 ?
2386  if (ret >= 0 && FRAME_MBAFF(h)) {
2387  sl->mb_y++;
2388 
2389  ret = ff_h264_decode_mb_cabac(h, sl);
2390 
2391  if (ret >= 0)
2392  ff_h264_hl_decode_mb(h, sl);
2393  sl->mb_y--;
2394  }
2395  eos = get_cabac_terminate(&sl->cabac);
2396 
2397  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2398  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2399  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2400  sl->mb_y, ER_MB_END);
2401  if (sl->mb_x >= lf_x_start)
2402  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2403  return 0;
2404  }
2405  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2406  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2407  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2409  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2410  sl->mb_x, sl->mb_y,
2411  sl->cabac.bytestream_end - sl->cabac.bytestream);
2412  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2413  sl->mb_y, ER_MB_ERROR);
2414  return AVERROR_INVALIDDATA;
2415  }
2416 
2417  if (++sl->mb_x >= h->mb_width) {
2418  loop_filter(h, sl, lf_x_start, sl->mb_x);
2419  sl->mb_x = lf_x_start = 0;
2420  decode_finish_row(h, sl);
2421  ++sl->mb_y;
2422  if (FIELD_OR_MBAFF_PICTURE(h)) {
2423  ++sl->mb_y;
2424  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2426  }
2427  }
2428 
2429  if (eos || sl->mb_y >= h->mb_height) {
2430  ff_tlog(h->avctx, "slice end %d %d\n",
2431  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2432  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2433  sl->mb_y, ER_MB_END);
2434  if (sl->mb_x > lf_x_start)
2435  loop_filter(h, sl, lf_x_start, sl->mb_x);
2436  return 0;
2437  }
2438  }
2439  } else {
2440  for (;;) {
2441  int ret;
2442 
2443  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2444  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2445  sl->next_slice_idx);
2446  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2447  sl->mb_y, ER_MB_ERROR);
2448  return AVERROR_INVALIDDATA;
2449  }
2450 
2451  ret = ff_h264_decode_mb_cavlc(h, sl);
2452 
2453  if (ret >= 0)
2454  ff_h264_hl_decode_mb(h, sl);
2455 
2456  // FIXME optimal? or let mb_decode decode 16x32 ?
2457  if (ret >= 0 && FRAME_MBAFF(h)) {
2458  sl->mb_y++;
2459  ret = ff_h264_decode_mb_cavlc(h, sl);
2460 
2461  if (ret >= 0)
2462  ff_h264_hl_decode_mb(h, sl);
2463  sl->mb_y--;
2464  }
2465 
2466  if (ret < 0) {
2468  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2469  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2470  sl->mb_y, ER_MB_ERROR);
2471  return ret;
2472  }
2473 
2474  if (++sl->mb_x >= h->mb_width) {
2475  loop_filter(h, sl, lf_x_start, sl->mb_x);
2476  sl->mb_x = lf_x_start = 0;
2477  decode_finish_row(h, sl);
2478  ++sl->mb_y;
2479  if (FIELD_OR_MBAFF_PICTURE(h)) {
2480  ++sl->mb_y;
2481  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2483  }
2484  if (sl->mb_y >= h->mb_height) {
2485  ff_tlog(h->avctx, "slice end %d %d\n",
2486  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2487 
2488  if ( get_bits_left(&sl->gb) == 0
2489  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2490  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2491  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2492 
2493  return 0;
2494  } else {
2495  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2496  sl->mb_x, sl->mb_y, ER_MB_END);
2497 
2498  return AVERROR_INVALIDDATA;
2499  }
2500  }
2501  }
2502 
2503  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2504  ff_tlog(h->avctx, "slice end %d %d\n",
2505  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2506 
2507  if (get_bits_left(&sl->gb) == 0) {
2508  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2509  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2510  if (sl->mb_x > lf_x_start)
2511  loop_filter(h, sl, lf_x_start, sl->mb_x);
2512 
2513  return 0;
2514  } else {
2515  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2516  sl->mb_y, ER_MB_ERROR);
2517 
2518  return AVERROR_INVALIDDATA;
2519  }
2520  }
2521  }
2522  }
2523 }
2524 
2525 /**
2526  * Call decode_slice() for each context.
2527  *
2528  * @param h h264 master context
2529  * @param context_count number of contexts to execute
2530  */
2531 int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
2532 {
2533  AVCodecContext *const avctx = h->avctx;
2534  H264SliceContext *sl;
2535  int i, j;
2536 
2537  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2538 
2539  h->slice_ctx[0].next_slice_idx = INT_MAX;
2540 
2541  if (h->avctx->hwaccel
2542 #if FF_API_CAP_VDPAU
2544 #endif
2545  )
2546  return 0;
2547  if (context_count == 1) {
2548  int ret;
2549 
2550  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2551 
2552  ret = decode_slice(avctx, &h->slice_ctx[0]);
2553  h->mb_y = h->slice_ctx[0].mb_y;
2554  return ret;
2555  } else {
2556  av_assert0(context_count > 0);
2557  for (i = 0; i < context_count; i++) {
2558  int next_slice_idx = h->mb_width * h->mb_height;
2559  int slice_idx;
2560 
2561  sl = &h->slice_ctx[i];
2562  if (CONFIG_ERROR_RESILIENCE) {
2563  sl->er.error_count = 0;
2564  }
2565 
2566  /* make sure none of those slices overlap */
2567  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2568  for (j = 0; j < context_count; j++) {
2569  H264SliceContext *sl2 = &h->slice_ctx[j];
2570  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2571 
2572  if (i == j || slice_idx2 < slice_idx)
2573  continue;
2574  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2575  }
2576  sl->next_slice_idx = next_slice_idx;
2577  }
2578 
2579  avctx->execute(avctx, decode_slice, h->slice_ctx,
2580  NULL, context_count, sizeof(h->slice_ctx[0]));
2581 
2582  /* pull back stuff from slices to master context */
2583  sl = &h->slice_ctx[context_count - 1];
2584  h->mb_y = sl->mb_y;
2585  if (CONFIG_ERROR_RESILIENCE) {
2586  for (i = 1; i < context_count; i++)
2588  }
2589  }
2590 
2591  return 0;
2592 }
int chroma_format_idc
Definition: h264.h:179
int video_signal_type_present_flag
Definition: h264.h:204
struct H264Context * h264
Definition: h264.h:368
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:2827
#define ff_tlog(ctx,...)
Definition: internal.h:65
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:47
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
int ff_thread_can_start_frame(AVCodecContext *avctx)
const struct AVCodec * codec
Definition: avcodec.h:1541
AVRational framerate
Definition: avcodec.h:3212
discard all frames except keyframes
Definition: avcodec.h:687
void ff_h264_flush_change(H264Context *h)
Definition: h264.c:1090
static const uint8_t dequant8_coeff_init[6][6]
Definition: h264_slice.c:141
int workaround_bugs
Definition: h264.h:559
int long_ref
1->long term reference 0->short term reference
Definition: h264.h:340
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int single_decode_warning
1 if the single thread fallback warning has already been displayed, 0 otherwise.
Definition: h264.h:713
int sei_recovery_frame_cnt
Definition: h264.h:349
enum AVPixelFormat backup_pix_fmt
Definition: h264.h:551
static int shift(int a, int b)
Definition: sonic.c:82
int low_delay
Definition: h264.h:555
int mb_num
Definition: h264.h:626
int ff_h264_decode_ref_pic_list_reordering(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:241
int mb_aff_frame
Definition: h264.h:594
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264.h:491
int delta_poc[2]
Definition: h264.h:654
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:340
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:183
#define CHROMA444(h)
Definition: h264.h:100
#define LEFT_MBS
Definition: h264.h:76
int edge_emu_buffer_allocated
Definition: h264.h:479
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1726
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2278
const char * fmt
Definition: avisynth_c.h:632
#define H264_MAX_PICTURE_COUNT
Definition: h264.h:47
int first_field
Definition: h264.h:596
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:709
uint8_t field_scan8x8_q0[64]
Definition: h264.h:618
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:68
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:260
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
AVFrame * f
Definition: thread.h:36
int weighted_bipred_idc
Definition: h264.h:248
int left_mb_xy[LEFT_MBS]
Definition: h264.h:411
int chroma_qp_index_offset[2]
Definition: h264.h:251
const uint8_t * bytestream_end
Definition: cabac.h:49
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:357
hardware decoding through Videotoolbox
Definition: pixfmt.h:290
H264ChromaContext h264chroma
Definition: h264.h:527
uint16_t * cbp_table
Definition: h264.h:601
MMCO mmco[MAX_MMCO_COUNT]
memory management control operations buffer.
Definition: h264.h:683
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:768
#define MAX_PPS_COUNT
Definition: h264.h:51
Sequence parameter set.
Definition: h264.h:175
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2262
int mb_y
Definition: h264.h:623
int coded_picture_number
Definition: h264.h:554
int bitstream_restriction_flag
Definition: h264.h:215
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:181
int num
numerator
Definition: rational.h:44
AVBufferRef * mb_type_buf
Definition: h264.h:324
int bipred_scratchpad_allocated
Definition: h264.h:478
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:64
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:110
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:346
#define VP_START
< current MB is the first after a resync marker
AVBufferPool * mb_type_pool
Definition: h264.h:834
int chroma_x_shift
Definition: h264.h:543
qpel_mc_func(* qpel_put)[16]
Definition: h264.h:839
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
const uint8_t * buffer
Definition: get_bits.h:55
Picture parameter set.
Definition: h264.h:240
int crop
Definition: h264.h:351
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264.c:101
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:1935
int16_t(*[2] motion_val)[2]
Definition: h264.h:322
int flags
Definition: h264.h:558
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1752
int frame_mbs_only_flag
Definition: h264.h:192
int mb_height
Definition: h264.h:624
H264Picture * delayed_pic[MAX_DELAYED_PIC_COUNT+2]
Definition: h264.h:675
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:66
int is_avc
Used to parse AVC variant of h264.
Definition: h264.h:637
int mmco_index
Definition: h264.h:684
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
AVBufferPool * ref_index_pool
Definition: h264.h:836
static const uint8_t dequant4_coeff_init[6][3]
Definition: h264_slice.c:128
void ff_h264_free_tables(H264Context *h)
Definition: h264.c:358
uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264.h:610
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:334
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
ERPicture last_pic
int ff_h264_get_profile(SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264.c:1224
int next_slice_idx
Definition: h264.h:435
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:109
uint32_t dequant8_buffer[6][QP_MAX_NUM+1][64]
Definition: h264.h:587
H264Context.
Definition: h264.h:522
discard all non intra frames
Definition: avcodec.h:686
discard all
Definition: avcodec.h:688
AVFrame * f
Definition: h264.h:315
int prev_poc_msb
poc_msb of the last reference pic for POC type 0
Definition: h264.h:656
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2924
uint32_t num_units_in_tick
Definition: h264.h:211
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:63
H264Picture * long_ref[32]
Definition: h264.h:674
int profile
profile
Definition: avcodec.h:3028
int picture_structure
Definition: h264.h:595
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
Definition: pixfmt.h:421
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
#define AV_COPY32(d, s)
Definition: intreadwrite.h:586
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264.h:392
unsigned current_sps_id
id of the current SPS
Definition: h264.h:580
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264.h:465
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:386
int ff_set_ref_count(H264Context *h, H264SliceContext *sl)
Definition: h264.c:1244
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:388
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:433
Switching Intra.
Definition: avutil.h:270
int setup_finished
Definition: h264.h:817
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:3139
static const uint8_t golomb_to_pict_type[5]
Definition: h264data.h:37
struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:2843
unsigned int crop_top
frame_cropping_rect_top_offset
Definition: h264.h:200
#define USES_LIST(a, list)
Definition: mpegutils.h:101
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:697
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int is_complex
Definition: h264.h:437
#define IS_8x8DCT(a)
Definition: h264.h:107
uint8_t scaling_matrix4[6][16]
Definition: h264.h:256
const uint8_t * bytestream
Definition: cabac.h:48
int deblocking_filter_parameters_present
deblocking_filter_parameters_present_flag
Definition: h264.h:252
#define MB_FIELD(sl)
Definition: h264.h:73
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int copy_parameter_set(void **to, void **from, int count, int size)
Definition: h264_slice.c:407
uint32_t(*[6] dequant4_coeff)[16]
Definition: h264.h:588
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:1131
uint8_t
int prev_frame_num_offset
for POC type 2
Definition: h264.h:659
#define av_malloc(s)
int full_range
Definition: h264.h:205
unsigned int crop_left
frame_cropping_rect_left_offset
Definition: h264.h:198
int gaps_in_frame_num_allowed_flag
Definition: h264.h:189
int slice_alpha_c0_offset
Definition: h264.h:384
int poc
Definition: h264.h:361
int field_picture
whether or not picture was encoded in separate fields
Definition: h264.h:344
int bit_depth_chroma
bit_depth_chroma_minus8 + 8
Definition: h264.h:229
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2764
static void init_dequant4_coeff_table(H264Context *h)
Definition: h264_slice.c:341
enum AVColorPrimaries color_primaries
Definition: h264.h:207
int poc
frame POC
Definition: h264.h:334
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:51
int slice_type
Definition: h264.h:373
Multithreading support functions.
#define ER_MB_ERROR
int cabac
entropy_coding_mode_flag
Definition: h264.h:242
#define AV_CODEC_FLAG_LOW_DELAY
Force low delay.
Definition: avcodec.h:779
static const uint8_t dequant8_coeff_init_scan[16]
Definition: h264_slice.c:137
static void init_dequant8_coeff_table(H264Context *h)
Definition: h264_slice.c:314
const char * from
Definition: jacosubdec.c:65
unsigned int crop_right
frame_cropping_rect_right_offset
Definition: h264.h:199
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:504
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:345
uint8_t(*[2] top_borders)[(16 *3)*2]
Definition: h264.h:477
int invalid_gap
Definition: h264.h:348
#define FF_API_CAP_VDPAU
Definition: version.h:74
ERPicture cur_pic
int frame_recovered
Initial frame has been completely recovered.
Definition: h264.h:807
int height
Definition: h264.h:542
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:38
int transform_bypass
qpprime_y_zero_transform_bypass_flag
Definition: h264.h:180
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:212
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:91
#define AV_CODEC_CAP_HWACCEL_VDPAU
Codec can export data for HW decoding (VDPAU).
Definition: avcodec.h:892
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:76
#define ER_MV_END
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:224
qpel_mc_func(* qpel_avg)[16]
Definition: h264.h:840
int redundant_pic_cnt_present
redundant_pic_cnt_present_flag
Definition: h264.h:254
int chroma_y_shift
Definition: h264.h:543
#define MAX_DELAYED_PIC_COUNT
Definition: h264.h:55
static void fill_rectangle(SDL_Surface *screen, int x, int y, int w, int h, int color, int update)
Definition: ffplay.c:805
ptrdiff_t size
Definition: opengl_enc.c:101
AVBufferRef * qscale_table_buf
Definition: h264.h:318
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:335
H264Picture * parent
Definition: h264.h:364
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a CABAC coded macroblock.
Definition: h264_cabac.c:1915
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:762
high precision timer, useful to profile code
int recovered
picture at IDR or recovery point + recovery count
Definition: h264.h:347
#define AV_COPY64(d, s)
Definition: intreadwrite.h:590
#define FFALIGN(x, a)
Definition: macros.h:48
int chroma_qp[2]
Definition: h264.h:378
qpel_mc_func avg_h264_qpel_pixels_tab[4][16]
Definition: h264qpel.h:29
#define av_log(a,...)
AVCodecContext * owner
Definition: thread.h:37
int resync_mb_x
Definition: h264.h:432
int last_pocs[MAX_DELAYED_PIC_COUNT]
Definition: h264.h:676
const char * to
Definition: webvttdec.c:34
int width
Definition: h264.h:542
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:568
H.264 / AVC / MPEG4 part10 codec.
int slice_num
Definition: h264.h:372
#define U(x)
Definition: vp56_arith.h:37
int frame_num
Definition: h264.h:655
#define HWACCEL_MAX
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:818
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:607
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264.h:531
int mb_aff
mb_adaptive_frame_field_flag
Definition: h264.h:193
enum AVColorTransferCharacteristic color_trc
Definition: h264.h:208
H264PredContext hpc
Definition: h264.h:562
int width
width and height of the video frame
Definition: frame.h:230
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:1846
#define td
Definition: regdef.h:70
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:53
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:164
int poc_type
pic_order_cnt_type
Definition: h264.h:182
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
int context_initialized
Definition: h264.h:557
#define PTRDIFF_SPECIFIER
Definition: internal.h:250
ERContext er
Definition: h264.h:370
int nal_unit_type
Definition: h264.h:632
int num_reorder_frames
Definition: h264.h:216
discard all bidirectional frames
Definition: avcodec.h:685
#define AVERROR(e)
Definition: error.h:43
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264.h:328
int backup_height
Definition: h264.h:550
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2185
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2973
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:70
int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc)
Definition: h264.c:1139
int backup_width
Backup frame properties: needed, because they can be different between returned frame and last decode...
Definition: h264.h:549
int capabilities
Codec capabilities.
Definition: avcodec.h:3411
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
int ff_pred_weight_table(H264Context *h, H264SliceContext *sl)
Definition: h264.c:1002
PPS pps
current pps
Definition: h264.h:582
static int init_dimensions(H264Context *h)
Definition: h264_slice.c:979
const char * arg
Definition: jacosubdec.c:66
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264.h:383
uint8_t(*[2] mvd_table)[2]
Definition: h264.h:605
int prev_interlaced_frame
Complement sei_pic_struct SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced...
Definition: h264.h:730
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2051
ThreadFrame tf
Definition: h264.h:316
simple assert() macros that are a bit more flexible than ISO C assert().
int weighted_pred
weighted_pred_flag
Definition: h264.h:247
#define PICT_TOP_FIELD
Definition: mpegutils.h:37
H264QpelContext h264qpel
Definition: h264.h:528
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:333
int direct_spatial_mv_pred
Definition: h264.h:449
#define CABAC(h)
Definition: h264.h:95
HW acceleration through VDA, data[3] contains a CVPixelBufferRef.
Definition: pixfmt.h:224
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264.h:335
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264.h:1021
#define MAX_SLICES
Definition: dxva2_hevc.c:32
GLsizei count
Definition: opengl_enc.c:109
uint8_t * list_counts
Array of list_count per MB specifying the slice type.
Definition: h264.h:598
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:1948
#define fail()
Definition: checkasm.h:80
qpel_mc_func put_h264_qpel_pixels_tab[4][16]
Definition: h264qpel.h:28
int delta_pic_order_always_zero_flag
Definition: h264.h:184
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
Definition: imgutils.c:302
int new
flag to keep track if the decoder context needs re-init due to changed SPS
Definition: h264.h:232
int * mb_index2xy
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264.h:92
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264.h:374
int mb_skip_run
Definition: h264.h:436
uint8_t zigzag_scan8x8[64]
Definition: h264.h:609
AVBufferRef * hwaccel_priv_buf
Definition: h264.h:327
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:67
static const uint8_t scan8[16 *3+3]
Definition: h264.h:1005
int crop_left
Definition: h264.h:352
int crop
frame_cropping_flag
Definition: h264.h:195
uint8_t * error_status_table
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
int use_weight
Definition: h264.h:388
uint8_t scaling_matrix8[6][64]
Definition: h264.h:257
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264.h:638
useful rectangle filling function
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:328
int refs
number of reference frames
Definition: avcodec.h:2205
AVBufferRef * motion_val_buf[2]
Definition: h264.h:321
int ref_frame_count
num_ref_frames
Definition: h264.h:188
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
Definition: avcodec.h:3413
int frame_num_offset
for POC type 2
Definition: h264.h:658
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2811
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
int x264_build
Definition: h264.h:621
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2965
#define FFMIN(a, b)
Definition: common.h:96
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264.h:591
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:393
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:67
uint8_t field_scan8x8_cavlc[64]
Definition: h264.h:613
#define H264_MAX_THREADS
Definition: h264.h:48
#define IS_DIRECT(a)
Definition: mpegutils.h:86
CABACContext cabac
Cabac.
Definition: h264.h:510
int colour_description_present_flag
Definition: h264.h:206
int reference
Definition: h264.h:346
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2309
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:75
AVRational sar
Definition: h264.h:203
#define FIELD_PICTURE(h)
Definition: h264.h:75
int width
picture width / height.
Definition: avcodec.h:1711
int redundant_pic_count
Definition: h264.h:442
int nb_slice_ctx
Definition: h264.h:537
int long_ref_count
number of actual long term references
Definition: h264.h:687
#define ER_DC_END
uint32_t * mb_type
Definition: h264.h:325
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:68
int top_mb_xy
Definition: h264.h:409
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
int size_in_bits
Definition: get_bits.h:57
SPS sps
current sps
Definition: h264.h:581
PPS * pps_buffers[MAX_PPS_COUNT]
Definition: h264.h:644
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:178
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2241
#define MAX_SPS_COUNT
Definition: h264.h:50
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:2966
Context Adaptive Binary Arithmetic Coder inline functions.
int level
level
Definition: avcodec.h:3117
int init_qp
pic_init_qp_minus26 + 26
Definition: h264.h:249
H264SliceContext * slice_ctx
Definition: h264.h:536
int direct_8x8_inference_flag
Definition: h264.h:194
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2822
int poc_lsb
Definition: h264.h:651
int reference
Definition: h264.h:360
int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl)
Decode a slice header.
Definition: h264_slice.c:1150
int max_pic_num
max_frame_num or 2 * max_frame_num for field pics.
Definition: h264.h:670
int ticks_per_frame
For some codecs, the time base is closer to the field rate than the frame rate.
Definition: avcodec.h:1670
int top_borders_allocated[2]
Definition: h264.h:480
int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice)
Definition: h264_refs.c:590
static int pic_is_unused(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:292
int curr_pic_num
frame_num for frames or 2 * frame_num + 1 for field pics.
Definition: h264.h:665
int chroma_log2_weight_denom
Definition: h264.h:391
#define src
Definition: vp9dsp.c:530
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:832
static int av_unused get_cabac_terminate(CABACContext *c)
#define MB_MBAFF(h)
Definition: h264.h:72
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:329
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:348
uint32_t dequant4_buffer[6][QP_MAX_NUM+1][16]
Definition: h264.h:586
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1264
unsigned int sps_id
Definition: h264.h:176
#define FF_ARRAY_ELEMS(a)
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:2954
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:443
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:196
uint8_t * edge_emu_buffer
Definition: h264.h:476
int top_type
Definition: h264.h:414
int dequant_coeff_pps
reinit tables when pps changes
Definition: h264.h:646
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:85
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int pic_order_present
pic_order_present_flag
Definition: h264.h:243
SPS * sps_buffers[MAX_SPS_COUNT]
Definition: h264.h:643
uint8_t zigzag_scan_q0[16]
Definition: h264.h:614
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:242
int bit_depth_luma
luma bit depth from sps to detect changes
Definition: h264.h:640
int chroma_format_idc
chroma format from sps to detect changes
Definition: h264.h:641
VideoDSPContext vdsp
Definition: h264.h:525
int timing_info_present_flag
Definition: h264.h:210
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:622
int coded_picture_number
picture number in bitstream order
Definition: frame.h:279
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264.c:462
int mb_stride
Definition: h264.h:625
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
#define IS_INTERLACED(a)
Definition: mpegutils.h:85
AVCodecContext * avctx
Definition: h264.h:524
uint8_t zigzag_scan8x8_q0[64]
Definition: h264.h:615
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:338
Libavcodec external API header.
H264 / AVC / MPEG4 part10 codec data table
int last_qscale_diff
Definition: h264.h:380
enum AVCodecID codec_id
Definition: avcodec.h:1549
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:100
static const uint8_t zigzag_scan[16+1]
Definition: h264data.h:54
int prev_frame_num
frame_num of the last pic for POC type 1/2
Definition: h264.h:660
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:209
H264Picture * short_ref[32]
Definition: h264.h:673
#define LTOP
Definition: h264.h:77
int poc_msb
Definition: h264.h:652
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:802
int field_poc[2]
top/bottom POC
Definition: h264.h:333
int debug
debug
Definition: avcodec.h:2763
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int max_contexts
Max number of threads / contexts.
Definition: h264.h:705
int recovery_frame
recovery_frame is the frame_num at which the next frame should be fully constructed.
Definition: h264.h:794
main external API structure.
Definition: avcodec.h:1532
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264.h:379
uint8_t * data
The data buffer.
Definition: buffer.h:89
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264.c:401
#define QP_MAX_NUM
Definition: h264.h:109
void * buf
Definition: avisynth_c.h:553
int resync_mb_y
Definition: h264.h:433
int8_t * qscale_table
Definition: h264.h:319
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:82
AVBuffer * buffer
Definition: buffer.h:82
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:89
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:312
BYTE int const BYTE int int int height
Definition: avisynth_c.h:676
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:330
int coded_height
Definition: avcodec.h:1726
Switching Predicted.
Definition: avutil.h:271
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264.h:486
#define CHROMA422(h)
Definition: h264.h:99
uint32_t(*[6] dequant8_coeff)[64]
Definition: h264.h:589
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:250
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2255
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2248
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:209
int8_t * ref_index[2]
Definition: h264.h:331
int use_weight_chroma
Definition: h264.h:389
A reference counted buffer type.
int pixel_shift
0 for 8-bit H264, 1 for high-bit-depth H264
Definition: h264.h:539
int mmco_reset
MMCO_RESET set this 1.
Definition: h264.h:336
static const uint8_t rem6[QP_MAX_NUM+1]
Definition: h264_slice.c:47
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb, int first_slice)
Definition: h264_refs.c:831
H264Picture * cur_pic_ptr
Definition: h264.h:532
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
ptrdiff_t mb_uvlinesize
Definition: h264.h:428
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:1021
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264.h:440
enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
int enable_er
Definition: h264.h:831
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:327
#define IS_INTER(a)
Definition: mpegutils.h:81
unsigned int sps_id
Definition: h264.h:241
#define TRANSPOSE(x)
int log2_max_poc_lsb
log2_max_pic_order_cnt_lsb_minus4
Definition: h264.h:183
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264.h:427
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
Definition: pixfmt.h:149
int16_t slice_row[MAX_SLICES]
to detect when MAX_SLICES is too low
Definition: h264.h:825
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:262
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:223
ptrdiff_t linesize
Definition: h264.h:426
int block_offset[2 *(16 *3)]
block_offset[ 0..23] for frame macroblocks block_offset[24..47] for field macroblocks ...
Definition: h264.h:573
uint32_t time_scale
Definition: h264.h:212
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:339
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:347
int transform_8x8_mode
transform_8x8_mode_flag
Definition: h264.h:255
ptrdiff_t uvlinesize
Definition: h264.h:426
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:331
unsigned int list_count
Definition: h264.h:466
uint8_t zigzag_scan[16]
Definition: h264.h:608
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:337
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:192
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:151
#define LBOT
Definition: h264.h:78
#define AV_ZERO128(d)
Definition: intreadwrite.h:622
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:442
int left_type[LEFT_MBS]
Definition: h264.h:416
#define copy_fields(to, from, start_field, end_field)
Definition: h264_slice.c:427
hardware decoding through VDA
Definition: pixfmt.h:180
discard all non reference
Definition: avcodec.h:684
AVBufferPool * qscale_table_pool
Definition: h264.h:833
H264Picture * next_output_pic
Definition: h264.h:677
volatile int error_count
int slice_context_count
Definition: h264.h:707
int mb_height
pic_height_in_map_units_minus1 + 1
Definition: h264.h:191
AVBufferPool * motion_val_pool
Definition: h264.h:835
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:499
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:63
#define SLICE_SINGLETHREAD
Definition: h264.h:1220
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:282
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
Definition: buffer.c:217
#define AV_COPY128(d, s)
Definition: intreadwrite.h:594
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:866
int log2_max_frame_num
log2_max_frame_num_minus4 + 4
Definition: h264.h:181
int missing_fields
Definition: h264.h:811
static double c[64]
H.264 / AVC / MPEG4 part10 motion vector predicion.
void ff_h264_fill_mbaff_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:372
Bi-dir predicted.
Definition: avutil.h:268
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:77
int implicit_weight[48][48][2]
Definition: h264.h:397
int cur_chroma_format_idc
Definition: h264.h:823
int8_t * intra4x4_pred_mode
Definition: h264.h:406
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:3125
int den
denominator
Definition: rational.h:45
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2265
int ref2frm[MAX_SLICES][2][64]
reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 ...
Definition: h264.h:470
int bit_depth_luma
bit_depth_luma_minus8 + 8
Definition: h264.h:228
static av_always_inline int get_chroma_qp(const H264Context *h, int t, int qscale)
Get the chroma qp.
Definition: h264.h:1042
static const uint8_t div6[QP_MAX_NUM+1]
Definition: h264_slice.c:55
#define IS_INTRA(x, y)
void * priv_data
Definition: avcodec.h:1574
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:154
#define PICT_FRAME
Definition: mpegutils.h:39
int prev_poc_lsb
poc_lsb of the last reference pic for POC type 0
Definition: h264.h:657
int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
Call decode_slice() for each context.
Definition: h264_slice.c:2531
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:666
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:131
uint8_t zigzag_scan8x8_cavlc_q0[64]
Definition: h264.h:616
int8_t ref_cache[2][5 *8]
Definition: h264.h:492
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:2994
#define SLICE_SKIPED
Definition: h264.h:1221
#define FRAME_MBAFF(h)
Definition: h264.h:74
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:3594
#define FF_BUG_TRUNCATED
Definition: avcodec.h:2727
int luma_log2_weight_denom
Definition: h264.h:390
H264Picture cur_pic
Definition: h264.h:533
void ff_h264_init_dequant_tables(H264Context *h)
Definition: h264_slice.c:367
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:247
#define AV_ZERO32(d)
Definition: intreadwrite.h:614
int mb_width
Definition: h264.h:624
enum AVPictureType pict_type
Definition: h264.h:715
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:299
int current_slice
current slice number, used to initialize slice_num of each thread/context
Definition: h264.h:697
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:457
int mb_width
pic_width_in_mbs_minus1 + 1
Definition: h264.h:190
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1634
uint32_t * mb2b_xy
Definition: h264.h:575
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264.h:467
uint8_t field_scan8x8_cavlc_q0[64]
Definition: h264.h:619
int cur_bit_depth_luma
Definition: h264.h:824
AVBufferRef * ref_index_buf[2]
Definition: h264.h:330
int delta_poc_bottom
Definition: h264.h:653
int au_pps_id
pps_id of current access unit
Definition: h264.h:584
H264DSPContext h264dsp
Definition: h264.h:526
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:230
int crop_top
Definition: h264.h:353
uint8_t(*[2] mvd_table)[2]
Definition: h264.h:505
uint8_t field_scan8x8[64]
Definition: h264.h:612
int slice_type_fixed
Definition: h264.h:375
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:1966
#define av_freep(p)
#define av_always_inline
Definition: attributes.h:39
HW decoding through Direct3D11, Picture.data[3] contains a ID3D11VideoDecoderOutputView pointer...
Definition: pixfmt.h:243
int slice_beta_offset
Definition: h264.h:385
int8_t * intra4x4_pred_mode
Definition: h264.h:561
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:355
#define ER_AC_END
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2323
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2078
uint8_t field_scan_q0[16]
Definition: h264.h:617
#define LIST_NOT_USED
Definition: h264.h:566
int mb_field_decoding_flag
Definition: h264.h:439
uint8_t(* non_zero_count)[48]
Definition: h264.h:564
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2196
unsigned int crop_bottom
frame_cropping_rect_bottom_offset
Definition: h264.h:201
exp golomb vlc stuff
uint8_t * bipred_scratchpad
Definition: h264.h:475
AVPixelFormat
Pixel format.
Definition: pixfmt.h:61
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
int sei_recovery_frame_cnt
recovery_frame_cnt from SEI message
Definition: h264.h:779
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1241
int droppable
Definition: h264.h:553
int level_idc
Definition: h264.h:178
int nal_ref_idc
Definition: h264.h:631
GetBitContext gb
Definition: h264.h:369
uint8_t field_scan[16]
Definition: h264.h:611
int cabac_init_idc
Definition: h264.h:512
for(j=16;j >0;--j)
#define FFMAX3(a, b, c)
Definition: common.h:95
int b_stride
Definition: h264.h:577
Predicted.
Definition: avutil.h:267
#define tb
Definition: regdef.h:68
Context Adaptive Binary Arithmetic Coder.
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264.h:393
int short_ref_count
number of actual short term references
Definition: h264.h:688
static int width
enum AVColorSpace colorspace
Definition: h264.h:209