25 #define LPC_USE_DOUBLE
41 c = 2.0 / (len - 1.0);
47 w_data[i] = data[i] * w;
48 w_data[len-1-i] = data[len-1-i] * w;
58 w_data[-i-1] = data[-i-1] * w;
59 w_data[+i ] = data[+i ] * w;
72 for(j=0; j<lag; j+=2){
73 double sum0 = 1.0, sum1 = 1.0;
75 sum0 += data[i] * data[i-j];
76 sum1 += data[i] * data[i-j-1];
84 for(i=j-1; i<
len; i+=2){
85 sum += data[i ] * data[i-j ]
86 + data[i+1] * data[i-j+1];
96 int32_t *lpc_out,
int *
shift,
int max_shift,
int zero_shift)
104 qmax = (1 << (precision - 1)) - 1;
108 for(i=0; i<order; i++) {
109 cmax=
FFMAX(cmax, fabs(lpc_in[i]));
113 if(cmax * (1 << max_shift) < 1.0) {
115 memset(lpc_out, 0,
sizeof(
int32_t) * order);
121 while((cmax * (1 << sh) > qmax) && (sh > 0)) {
127 if(sh == 0 && cmax > qmax) {
128 double scale = ((double)qmax) / cmax;
129 for(i=0; i<order; i++) {
136 for(i=0; i<order; i++) {
137 error -= lpc_in[i] * (1 << sh);
138 lpc_out[i] = av_clip(
lrintf(error), -qmax, qmax);
149 for(i=max_order-1; i>=min_order-1; i--) {
159 const int32_t *samples,
int order,
double *ref)
171 int order,
double *ref)
174 double signal = 0.0f, avg_err = 0.0f;
176 const double a = 0.5f,
b = 1.0f -
a;
179 for (i = 0; i <
len; i++) {
187 for (i = 0; i < order; i++)
188 avg_err = (avg_err + error[i])/2.0f;
189 return signal/avg_err;
199 const int32_t *samples,
int blocksize,
int min_order,
200 int max_order,
int precision,
203 int omethod,
int max_shift,
int zero_shift)
205 double autoc[MAX_LPC_ORDER+1];
232 for(i=0; i<max_order; i++)
233 ref[i] = fabs(lpc[i][i]);
242 memset(var, 0,
FFALIGN(MAX_LPC_ORDER+1,4)*
sizeof(*var));
244 for(j=0; j<max_order; j++)
245 m[0].
coeff[max_order-1][j] = -lpc[max_order-1][j];
247 for(; pass<lpc_passes; pass++){
251 for(i=max_order; i<blocksize; i++){
252 for(j=0; j<=max_order; j++)
253 var[j]= samples[i-j];
256 double eval, inv, rinv;
257 eval= m[pass&1].
evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
258 eval= (512>>
pass) + fabs(eval - var[0]);
261 for(j=0; j<=max_order; j++)
272 for(i=0; i<max_order; i++){
273 for(j=0; j<max_order; j++)
274 lpc[i][j]=-m[(pass-1)&1].
coeff[i][j];
275 ref[i]= sqrt(m[(pass-1)&1].variance[i] /
weight) * (blocksize - max_order) / 4000;
277 for(i=max_order-1; i>0; i--)
278 ref[i] = ref[i-1] - ref[i];
281 opt_order = max_order;
286 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
288 for(i=min_order-1; i<max_order; i++) {
289 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
static int shift(int a, int b)
Linear least squares model.
ptrdiff_t const GLvoid * data
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int max_shift, int zero_shift)
Calculate LPC coefficients for multiple orders.
static void lpc_compute_autocorr_c(const double *data, int len, int lag, double *autoc)
Calculate autocorrelation data from audio samples A Welch window function is applied before calculati...
static void compute_ref_coefs(const LPC_TYPE *autoc, int max_order, LPC_TYPE *ref, LPC_TYPE *error)
Schur recursion.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
av_cold void ff_lpc_init_x86(LPCContext *c)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
int ff_lpc_calc_ref_coefs(LPCContext *s, const int32_t *samples, int order, double *ref)
simple assert() macros that are a bit more flexible than ISO C assert().
av_cold void avpriv_init_lls(LLSModel *m, int indep_count)
static int estimate_best_order(double *ref, int min_order, int max_order)
av_cold void ff_lpc_end(LPCContext *s)
Uninitialize LPCContext.
static void lpc_apply_welch_window_c(const int32_t *data, int len, double *w_data)
Apply Welch window function to audio block.
static int AAC_RENAME() compute_lpc_coefs(const LPC_TYPE *autoc, int max_order, LPC_TYPE *lpc, int lpc_stride, int fail, int normalize)
Levinson-Durbin recursion.
static void quantize_lpc_coefs(double *lpc_in, int order, int precision, int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
Quantize LPC coefficients.
void avpriv_solve_lls(LLSModel *m, double threshold, unsigned short min_order)
double(* evaluate_lls)(struct LLSModel *m, const double *var, int order)
Inner product of var[] and the LPC coefs.
Levinson-Durbin recursion.
double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len, int order, double *ref)
double * windowed_samples
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, enum FFLPCType lpc_type)
Initialize LPCContext.
static int weight(int i, int blen, int offset)
FFLPCType
LPC analysis type.
common internal and external API header
#define LOCAL_ALIGNED(a, t, v,...)
void(* update_lls)(struct LLSModel *m, const double *var)
Take the outer-product of var[] with itself, and add to the covariance matrix.
void(* lpc_compute_autocorr)(const double *data, int len, int lag, double *autoc)
Perform autocorrelation on input samples with delay of 0 to lag.
static const double coeff[2][5]
void(* lpc_apply_welch_window)(const int32_t *data, int len, double *w_data)
Apply a Welch window to an array of input samples.
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...