36 ac_index = 3 * ac_index - 510;
45 return 3 * (ac_index + pitch_delay_min);
46 else if(ac_index < 12)
47 return 3 * pitch_delay_min + ac_index + 6;
49 return 3 * (ac_index + pitch_delay_min) - 18;
56 return 3 * pitch_delay_min + ac_index - 2;
62 return ac_index + 105;
64 return 6 * (ac_index - 368);
70 return 6 * pitch_delay_min + ac_index - 3;
74 int16_t* quant_energy,
76 int log2_ma_pred_order,
80 int avg_gain=quant_energy[(1 << log2_ma_pred_order) - 1];
82 for(i=(1 << log2_ma_pred_order) - 1; i>0; i--)
84 avg_gain += quant_energy[i-1];
85 quant_energy[i] = quant_energy[i-1];
89 quant_energy[0] =
FFMAX(avg_gain >> log2_ma_pred_order, -10240) - 4096;
91 quant_energy[0] = (6165 * ((
ff_log2_q15(gain_corr_factor) >> 2) - (13 << 13))) >> 13;
99 const int16_t* quant_energy,
108 for(i=0; i<ma_pred_order; i++)
109 mr_energy += quant_energy[i] * ma_prediction_coeff[i];
112 mr_energy += (((-6165LL *
ff_log2(dsp->scalarproduct_int16(fc_v, fc_v, subframe_size, 0))) >> 3) & ~0x3ff);
114 mr_energy = (5439 * (mr_energy >> 15)) >> 8;
117 ((
ff_exp2(mr_energy & 0x7fff) + 16) >> 5) * (gain_corr_factor >> 1),
118 (mr_energy >> 15) - 25
121 mr_energy = gain_corr_factor *
exp(
M_LN10 / (20 << 23) * mr_energy) /
123 return mr_energy >> 12;
129 const float *pred_table)
134 float val = fixed_gain_factor *
138 sqrtf(fixed_mean_energy);
141 memmove(&prediction_error[0], &prediction_error[1],
142 3 *
sizeof(prediction_error[0]));
143 prediction_error[3] = 20.0 *
log10f(fixed_gain_factor);
149 const int prev_lag_int,
const int subframe,
150 int third_as_first,
int resolution)
153 if (subframe == 0 || (subframe == 2 && third_as_first)) {
155 if (pitch_index < 197)
158 pitch_index = 3 * pitch_index - 335;
161 if (resolution == 4) {
166 if (pitch_index < 4) {
168 pitch_index = 3 * (pitch_index + search_range_min) + 1;
169 }
else if (pitch_index < 12) {
171 pitch_index += 3 * search_range_min + 7;
174 pitch_index = 3 * (pitch_index + search_range_min - 6) + 1;
180 if (resolution == 5) {
188 *lag_int = pitch_index * 10923 >> 15;
189 *lag_frac = pitch_index - 3 * *lag_int - 1;
void ff_decode_pitch_lag(int *lag_int, int *lag_frac, int pitch_index, const int prev_lag_int, const int subframe, int third_as_first, int resolution)
Decode the adaptive codebook index to the integer and fractional parts of the pitch lag for one subfr...
const char const char void * val
int32_t(* scalarproduct_int16)(const int16_t *v1, const int16_t *v2, int len)
Calculate scalar product of two vectors.
static const uint16_t ma_prediction_coeff[4]
MA prediction coefficients (3.9.1 of G.729, near Equation 69)
int ff_exp2(uint16_t power)
fixed-point implementation of exp2(x) in [0; 1] domain.
int ff_acelp_decode_6bit_to_2nd_delay6(int ac_index, int pitch_delay_min)
Decode pitch delay of the second subframe encoded by 6 bits with 1/6 precision.
int ff_acelp_decode_4bit_to_2nd_delay3(int ac_index, int pitch_delay_min)
Decode pitch delay with 1/3 precision.
int ff_acelp_decode_8bit_to_1st_delay3(int ac_index)
Decode pitch delay of the first subframe encoded by 8 bits with 1/3 resolution.
int ff_acelp_decode_9bit_to_1st_delay6(int ac_index)
Decode pitch delay of the first subframe encoded by 9 bits with 1/6 precision.
float avpriv_scalarproduct_float_c(const float *v1, const float *v2, int len)
Return the scalar product of two vectors.
int ff_acelp_decode_5_6_bit_to_2nd_delay3(int ac_index, int pitch_delay_min)
Decode pitch delay of the second subframe encoded by 5 or 6 bits with 1/3 precision.
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
int ff_log2_q15(uint32_t value)
Calculate log2(x).
void ff_acelp_update_past_gain(int16_t *quant_energy, int gain_corr_factor, int log2_ma_pred_order, int erasure)
Update past quantized energies.
Libavcodec external API header.
internal math functions header
common internal and external API header
static int bidir_sal(int value, int offset)
Shift value left or right depending on sign of offset parameter.
static const float energy_mean[8]
desired mean innovation energy, indexed by active mode
int16_t ff_acelp_decode_gain_code(AudioDSPContext *adsp, int gain_corr_factor, const int16_t *fc_v, int mr_energy, const int16_t *quant_energy, const int16_t *ma_prediction_coeff, int subframe_size, int ma_pred_order)
Decode the adaptive codebook gain and add correction (4.1.5 and 3.9.1 of G.729).
float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy, float *prediction_error, float energy_mean, const float *pred_table)
Calculate fixed gain (part of section 6.1.3 of AMR spec)