40 #if !CONFIG_HARDCODED_TABLES
82 if(n <= 2)
return i&1;
92 #if (!CONFIG_HARDCODED_TABLES) && (!FFT_FIXED_32)
95 double freq = 2*
M_PI/
m;
98 tab[i] =
FIX15(cos(i*freq));
105 0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
125 for (i = 0; i <
n; i += 16) {
128 for (k = 0; k < 16; k++)
133 for (k = 0; k < 16; k++) {
135 j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
149 if (nbits < 2 || nbits > 17)
194 for(j=4; j<=
nbits; j++) {
207 j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
232 for(j=0;j<np;j++) s->
tmp_buf[revtab[j]] = z[j];
234 for(j=0;j<np;j++) s->
tmp_buf[revtab32[j]] = z[j];
252 FFTSample tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
254 const int fft_size = (1 << s->
nbits);
257 num_transforms = (0x2aab >> (16 - s->
nbits)) | 1;
259 for (n=0; n<num_transforms; n++){
263 tmp1 = tmpz[0].
re + tmpz[1].
re;
264 tmp5 = tmpz[2].
re + tmpz[3].
re;
265 tmp2 = tmpz[0].
im + tmpz[1].
im;
266 tmp6 = tmpz[2].
im + tmpz[3].
im;
267 tmp3 = tmpz[0].
re - tmpz[1].
re;
268 tmp8 = tmpz[2].
im - tmpz[3].
im;
269 tmp4 = tmpz[0].
im - tmpz[1].
im;
270 tmp7 = tmpz[2].
re - tmpz[3].
re;
272 tmpz[0].
re = tmp1 + tmp5;
273 tmpz[2].
re = tmp1 - tmp5;
274 tmpz[0].
im = tmp2 + tmp6;
275 tmpz[2].
im = tmp2 - tmp6;
276 tmpz[1].
re = tmp3 + tmp8;
277 tmpz[3].
re = tmp3 - tmp8;
278 tmpz[1].
im = tmp4 - tmp7;
279 tmpz[3].
im = tmp4 + tmp7;
285 num_transforms = (num_transforms >> 1) | 1;
287 for (n=0; n<num_transforms; n++){
291 tmp1 = tmpz[4].
re + tmpz[5].
re;
292 tmp3 = tmpz[6].
re + tmpz[7].
re;
293 tmp2 = tmpz[4].
im + tmpz[5].
im;
294 tmp4 = tmpz[6].
im + tmpz[7].
im;
300 tmp1 = tmpz[4].
re - tmpz[5].
re;
301 tmp2 = tmpz[4].
im - tmpz[5].
im;
302 tmp3 = tmpz[6].
re - tmpz[7].
re;
303 tmp4 = tmpz[6].
im - tmpz[7].
im;
305 tmpz[4].
re = tmpz[0].
re - tmp5;
306 tmpz[0].
re = tmpz[0].
re + tmp5;
307 tmpz[4].
im = tmpz[0].
im - tmp6;
308 tmpz[0].
im = tmpz[0].
im + tmp6;
309 tmpz[6].
re = tmpz[2].
re - tmp8;
310 tmpz[2].
re = tmpz[2].
re + tmp8;
311 tmpz[6].
im = tmpz[2].
im + tmp7;
312 tmpz[2].
im = tmpz[2].
im - tmp7;
315 tmp5 = (
int32_t)((accu + 0x40000000) >> 31);
317 tmp7 = (
int32_t)((accu + 0x40000000) >> 31);
319 tmp6 = (
int32_t)((accu + 0x40000000) >> 31);
321 tmp8 = (
int32_t)((accu + 0x40000000) >> 31);
327 tmpz[5].
re = tmpz[1].
re - tmp1;
328 tmpz[1].
re = tmpz[1].
re + tmp1;
329 tmpz[5].
im = tmpz[1].
im - tmp2;
330 tmpz[1].
im = tmpz[1].
im + tmp2;
331 tmpz[7].
re = tmpz[3].
re - tmp4;
332 tmpz[3].
re = tmpz[3].
re + tmp4;
333 tmpz[7].
im = tmpz[3].
im + tmp3;
334 tmpz[3].
im = tmpz[3].
im - tmp3;
340 for (nbits=4; nbits<=s->
nbits; nbits++){
343 num_transforms = (num_transforms >> 1) | 1;
345 for (n=0; n<num_transforms; n++){
351 tmp5 = tmpz[ n2].
re + tmpz[n34].
re;
352 tmp1 = tmpz[ n2].
re - tmpz[n34].
re;
353 tmp6 = tmpz[ n2].
im + tmpz[n34].
im;
354 tmp2 = tmpz[ n2].
im - tmpz[n34].
im;
356 tmpz[ n2].
re = tmpz[ 0].
re - tmp5;
357 tmpz[ 0].
re = tmpz[ 0].
re + tmp5;
358 tmpz[ n2].
im = tmpz[ 0].
im - tmp6;
359 tmpz[ 0].
im = tmpz[ 0].
im + tmp6;
360 tmpz[n34].
re = tmpz[n4].
re - tmp2;
361 tmpz[ n4].
re = tmpz[n4].
re + tmp2;
362 tmpz[n34].
im = tmpz[n4].
im + tmp1;
363 tmpz[ n4].
im = tmpz[n4].
im - tmp1;
365 for (i=1; i<n4; i++){
368 accu = (int64_t)w_re*tmpz[ n2+i].
re;
369 accu += (int64_t)w_im*tmpz[ n2+i].
im;
370 tmp1 = (
int32_t)((accu + 0x40000000) >> 31);
371 accu = (int64_t)w_re*tmpz[ n2+i].
im;
372 accu -= (int64_t)w_im*tmpz[ n2+i].
re;
373 tmp2 = (
int32_t)((accu + 0x40000000) >> 31);
374 accu = (int64_t)w_re*tmpz[n34+i].
re;
375 accu -= (int64_t)w_im*tmpz[n34+i].
im;
376 tmp3 = (
int32_t)((accu + 0x40000000) >> 31);
377 accu = (int64_t)w_re*tmpz[n34+i].
im;
378 accu += (int64_t)w_im*tmpz[n34+i].
re;
379 tmp4 = (
int32_t)((accu + 0x40000000) >> 31);
386 tmpz[ n2+i].
re = tmpz[ i].
re - tmp5;
387 tmpz[ i].
re = tmpz[ i].
re + tmp5;
388 tmpz[ n2+i].
im = tmpz[ i].
im - tmp6;
389 tmpz[ i].
im = tmpz[ i].
im + tmp6;
390 tmpz[n34+i].
re = tmpz[n4+i].
re - tmp2;
391 tmpz[ n4+i].
re = tmpz[n4+i].
re + tmp2;
392 tmpz[n34+i].
im = tmpz[n4+i].
im + tmp1;
393 tmpz[ n4+i].
im = tmpz[n4+i].
im - tmp1;
406 #define BUTTERFLIES(a0,a1,a2,a3) {\
408 BF(a2.re, a0.re, a0.re, t5);\
409 BF(a3.im, a1.im, a1.im, t3);\
411 BF(a3.re, a1.re, a1.re, t4);\
412 BF(a2.im, a0.im, a0.im, t6);\
418 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
419 FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
421 BF(a2.re, a0.re, r0, t5);\
422 BF(a3.im, a1.im, i1, t3);\
424 BF(a3.re, a1.re, r1, t4);\
425 BF(a2.im, a0.im, i0, t6);\
428 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
429 CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
430 CMUL(t5, t6, a3.re, a3.im, wre, wim);\
431 BUTTERFLIES(a0,a1,a2,a3)\
434 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
439 BUTTERFLIES(a0,a1,a2,a3)\
444 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
446 FFTDouble t1, t2, t3, t4, t5, t6;\
450 const FFTSample *wim = wre+o1;\
453 TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
454 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
459 TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
460 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
466 #define BUTTERFLIES BUTTERFLIES_BIG
469 #define DECL_FFT(n,n2,n4)\
470 static void fft##n(FFTComplex *z)\
475 pass(z,FFT_NAME(ff_cos_##n),n4/2);\
482 BF(t3, t1, z[0].
re, z[1].re);
483 BF(t8, t6, z[3].re, z[2].re);
484 BF(z[2].re, z[0].re, t1, t6);
485 BF(t4, t2, z[0].
im, z[1].im);
486 BF(t7, t5, z[2].im, z[3].im);
487 BF(z[3].im, z[1].im, t4, t8);
488 BF(z[3].re, z[1].re, t3, t7);
489 BF(z[2].im, z[0].im, t2, t5);
498 BF(t1, z[5].
re, z[4].re, -z[5].re);
499 BF(t2, z[5].
im, z[4].im, -z[5].im);
500 BF(t5, z[7].re, z[6].re, -z[7].re);
501 BF(t6, z[7].im, z[6].im, -z[7].im);
520 TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
521 TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
532 #define pass pass_big
544 fft4,
fft8,
fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
545 fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
static void fft_permute_c(FFTContext *s, FFTComplex *z)
#define BUTTERFLIES(a0, a1, a2, a3)
void(* mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
static const int avx_tab[]
void(* fft_permute)(struct FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling fft_calc().
static int split_radix_permutation(int i, int n, int inverse)
#define MAX_LOG2_NFFT
Specifies maximum allowed fft size.
void ff_fft_lut_init(uint16_t *table, int off, int size, int *index)
av_cold void ff_fft_init_arm(FFTContext *s)
void ff_fft_init_ppc(FFTContext *s)
const int32_t ff_w_tab_sr[MAX_FFT_SIZE/(4 *16)]
#define DECL_FFT(n, n2, n4)
static void(*const fft_dispatch[])(FFTComplex *)
static const uint8_t offset[127][2]
av_cold void ff_fft_fixed_init_arm(FFTContext *s)
static av_cold void fft_perm_avx(FFTContext *s)
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
Set up a complex FFT.
enum fft_permutation_type fft_permutation
static int is_second_half_of_fft32(int i, int n)
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
uint16_t ff_fft_offsets_lut[21845]
#define TRANSFORM(a0, a1, a2, a3, wre, wim)
#define TRANSFORM_ZERO(a0, a1, a2, a3)
static void fft4(FFTComplex *z)
av_cold void ff_fft_end(FFTContext *s)
void ff_mdct_calcw_c(FFTContext *s, FFTDouble *output, const FFTSample *input)
av_cold void ff_fft_init_aarch64(FFTContext *s)
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
void ff_fft_init_mips(FFTContext *s)
FFT transform.
static void fft8(FFTComplex *z)
COSTABLE_CONST FFTSample *const FFT_NAME(ff_cos_tabs)[]
static const struct twinvq_data tab
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
av_cold void ff_init_ff_cos_tabs(int index)
Initialize the cosine table in ff_cos_tabs[index].
static void fft_calc_c(FFTContext *s, FFTComplex *z)
static void fft16(FFTComplex *z)
definitions and tables for FFT
void(* mdct_calcw)(struct FFTContext *s, FFTDouble *output, const FFTSample *input)
void ff_fft_init_x86(FFTContext *s)