36 #define FREQUENCY_DOMAIN 1
89 int len, i, channel_id = 0;
92 if (sscanf(*arg,
"%7[A-Z]%n", buf, &len)) {
96 for (i = 32; i > 0; i >>= 1) {
97 if (layout >= 1LL << i) {
102 if (channel_id >= 64 || layout0 != 1LL << channel_id)
104 *rchannel = channel_id;
124 for (i = 0; i < 64; i++) {
128 while ((arg =
av_strtok(p,
"|", &tokenizer))) {
162 int *write = &td->
write[jobnr];
163 const int *
const delay = td->
delay[jobnr];
164 const float *
const ir = td->
ir[jobnr];
167 float *temp_src = td->
temp_src[jobnr];
168 const int ir_len = s->
ir_len;
169 const float *
src = (
const float *)in->
data[0];
170 float *dst = (
float *)
out->data[0];
171 const int in_channels = in->
channels;
173 const uint32_t modulo = (uint32_t)buffer_length - 1;
180 for (l = 0; l < in_channels; l++) {
181 buffer[l] = ringbuffer + l * buffer_length;
185 const float *temp_ir = ir;
188 for (l = 0; l < in_channels; l++) {
189 *(buffer[l] + wr) = src[l];
192 for (l = 0; l < in_channels; l++) {
193 const float *
const bptr = buffer[l];
197 temp_ir +=
FFALIGN(ir_len, 16);
201 read = (wr - *(delay + l) - (ir_len - 1) + buffer_length) & modulo;
203 if (read + ir_len < buffer_length) {
204 memcpy(temp_src, bptr + read, ir_len *
sizeof(*temp_src));
206 int len =
FFMIN(ir_len - (read % ir_len), buffer_length - read);
208 memcpy(temp_src, bptr + read, len *
sizeof(*temp_src));
209 memcpy(temp_src + len, bptr, (ir_len - len) *
sizeof(*temp_src));
213 temp_ir +=
FFALIGN(ir_len, 16);
221 wr = (wr + 1) & modulo;
235 int *write = &td->
write[jobnr];
239 const int ir_len = s->
ir_len;
240 const float *
src = (
const float *)in->
data[0];
241 float *dst = (
float *)
out->data[0];
242 const int in_channels = in->
channels;
244 const uint32_t modulo = (uint32_t)buffer_length - 1;
248 const int n_fft = s->
n_fft;
249 const float fft_scale = 1.0f / s->
n_fft;
258 for (j = 0; j < n_read; j++) {
259 dst[2 * j] = ringbuffer[wr];
260 ringbuffer[wr] = 0.0;
261 wr = (wr + 1) & modulo;
268 for (i = 0; i < in_channels; i++) {
271 dst[2 * j] += src[i + j * in_channels] * s->
gain_lfe;
277 hrtf_offset = hrtf +
offset;
279 memset(fft_in, 0,
sizeof(
FFTComplex) * n_fft);
282 fft_in[j].
re = src[j * in_channels + i];
287 for (j = 0; j < n_fft; j++) {
289 const float re = fft_in[j].
re;
290 const float im = fft_in[j].
im;
292 fft_in[j].
re = re * hcomplex->
re - im * hcomplex->
im;
293 fft_in[j].
im = re * hcomplex->
im + im * hcomplex->
re;
300 dst[2 * j] += fft_in[j].
re * fft_scale;
303 for (j = 0; j < ir_len - 1; j++) {
304 int write_pos = (wr + j) & modulo;
306 *(ringbuffer + write_pos) += fft_in[in->
nb_samples + j].
re * fft_scale;
310 for (i = 0; i <
out->nb_samples; i++) {
311 if (fabs(*dst) > 1) {
327 int ir_len, max_ir_len, input_number;
329 for (input_number = 0; input_number < s->
nb_inputs; input_number++)
330 if (inlink == ctx->
inputs[input_number])
339 if (ir_len > max_ir_len) {
343 s->
in[input_number].
ir_len = ir_len;
353 int n_clippings[2] = { 0 };
367 td.delay =
s->delay;
td.ir =
s->data_ir;
td.n_clippings = n_clippings;
368 td.ringbuffer =
s->ringbuffer;
td.temp_src =
s->temp_src;
369 td.temp_fft =
s->temp_fft;
378 if (n_clippings[0] + n_clippings[1] > 0) {
380 n_clippings[0] + n_clippings[1],
out->nb_samples * 2);
392 float gain_lin =
expf((s->
gain - 3 * nb_input_channels) / 20 *
M_LN10);
397 float *data_ir_l =
NULL;
398 float *data_ir_r =
NULL;
407 fft_in_l =
av_calloc(n_fft,
sizeof(*fft_in_l));
408 fft_in_r =
av_calloc(n_fft,
sizeof(*fft_in_r));
409 if (!fft_in_l || !fft_in_r) {
460 for (i = 0; i < s->
nb_irs; i++) {
481 if (!data_hrtf_r || !data_hrtf_l) {
487 for (i = 0; i < s->
nb_irs; i++) {
494 for (j = 0; j < inlink->
channels; j++) {
511 offset = idx *
FFALIGN(len, 16);
512 for (j = 0; j <
len; j++) {
513 data_ir_l[offset + j] = ptr[len * 2 - j * 2 - 2] * gain_lin;
514 data_ir_r[offset + j] = ptr[len * 2 - j * 2 - 1] * gain_lin;
517 memset(fft_in_l, 0, n_fft *
sizeof(*fft_in_l));
518 memset(fft_in_r, 0, n_fft *
sizeof(*fft_in_r));
520 offset = idx *
n_fft;
521 for (j = 0; j <
len; j++) {
522 fft_in_l[delay_l + j].
re = ptr[j * 2 ] * gain_lin;
523 fft_in_r[delay_r + j].
re = ptr[j * 2 + 1] * gain_lin;
528 memcpy(data_hrtf_l + offset, fft_in_l, n_fft *
sizeof(*fft_in_l));
531 memcpy(data_hrtf_r + offset, fft_in_r, n_fft *
sizeof(*fft_in_r));
536 memcpy(s->
data_ir[0], data_ir_l,
sizeof(
float) * nb_irs *
FFALIGN(ir_len, 16));
537 memcpy(s->
data_ir[1], data_ir_r,
sizeof(
float) * nb_irs *
FFALIGN(ir_len, 16));
784 #define OFFSET(x) offsetof(HeadphoneContext, x)
785 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
811 .description =
NULL_IF_CONFIG_SMALL(
"Apply headphone binaural spatialization with HRTFs in additional streams."),
813 .priv_class = &headphone_class,
static int config_output(AVFilterLink *outlink)
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
int av_audio_fifo_read(AVAudioFifo *af, void **data, int nb_samples)
Read data from an AVAudioFifo.
This structure describes decoded (raw) audio or video data.
av_cold void av_fft_end(FFTContext *s)
static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
#define AV_LOG_WARNING
Something somehow does not look correct.
Main libavfilter public API header.
int max_samples
Maximum number of samples to filter at once.
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
#define AVFILTER_FLAG_DYNAMIC_INPUTS
The number of the filter inputs is not determined just by AVFilter.inputs.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
float(* scalarproduct_float)(const float *v1, const float *v2, int len)
Calculate the scalar product of two vectors of floats.
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
#define AV_CH_LAYOUT_STEREO
struct AVFilterChannelLayouts * in_channel_layouts
static int read_ir(AVFilterLink *inlink, AVFrame *frame)
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
static int headphone_frame(HeadphoneContext *s, AVFilterLink *outlink)
const char * name
Pad name.
uint64_t av_get_channel_layout(const char *name)
Return a channel layout id that matches name, or 0 if no match is found.
AVFilterLink ** inputs
array of pointers to input links
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static int parse_channel_name(HeadphoneContext *s, int x, char **arg, int *rchannel, char *buf)
static int request_frame(AVFilterLink *outlink)
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
#define AV_CH_LOW_FREQUENCY
#define AVERROR_EOF
End of file.
static int config_input(AVFilterLink *inlink)
A filter pad used for either input or output.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
A link between two filters.
AVFilterPad * input_pads
array of input pads
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
int min_samples
Minimum number of samples to filter at once.
int sample_rate
samples per second
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
static void parse_map(AVFilterContext *ctx)
static const AVFilterPad outputs[]
struct AVFilterChannelLayouts * out_channel_layouts
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
static const uint8_t offset[127][2]
static av_cold void uninit(AVFilterContext *ctx)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Context for an Audio FIFO Buffer.
AVFILTER_DEFINE_CLASS(headphone)
char * av_asprintf(const char *fmt,...)
static int headphone_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
FFTComplex * data_hrtf[2]
int channels
number of audio channels, only used for audio.
audio channel layout utility functions
static int query_formats(AVFilterContext *ctx)
AVFilterContext * src
source filter
int partial_buf_size
Size of the partial buffer to allocate.
int format
agreed upon media format
static const AVOption headphone_options[]
A list of supported channel layouts.
static const AVFilterPad inputs[]
char * av_strdup(const char *s)
Duplicate a string.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
Rational number (pair of numerator and denominator).
const char * name
Filter name.
const VDPAUPixFmtMap * map
AVFilterLink ** outputs
array of pointers to output links
enum MovChannelLayoutTag * layouts
static av_cold int init(AVFilterContext *ctx)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int av_audio_fifo_write(AVAudioFifo *af, void **data, int nb_samples)
Write data to an AVAudioFifo.
struct HeadphoneContext::headphone_inputs * in
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok()...
static void fft(const int32_t in[2 *256], cplx32 out[256])
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
uint64_t channel_layout
channel layout of current buffer (see libavutil/channel_layout.h)
int channels
Number of channels.
AVFilterContext * dst
dest filter
static int headphone_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define av_malloc_array(a, b)
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
uint8_t ** extended_data
pointers to the data planes/channels.
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
int nb_samples
number of audio samples (per channel) described by this frame
#define AV_NOPTS_VALUE
Undefined timestamp value.
static int ff_insert_inpad(AVFilterContext *f, unsigned index, AVFilterPad *p)
Insert a new input pad for the filter.