45 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
46 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
47 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
48 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
56 -60, 3042, 1198, 538, 334, 172, 58, -30,
57 3042, 1198, 538, 334, 172, 58, -30, -60
60 0, -2557, -1612, -1121, -786, -530, -323, -150,
61 2557, 1612, 1121, 786, 530, 323, 150, 0
64 -17, -17, -17, -17, -3101, -2738, -2376, -2088,
65 -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982,
66 -899, -822, -750, -682, -618, -558, -501, -447,
67 -396, -347, -300, -254, -211, -170, -130, -91,
68 3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399,
69 1279, 1170, 1072, 982, 899, 822, 750, 682,
70 618, 558, 501, 447, 396, 347, 300, 254,
71 211, 170, 130, 91, 54, 17, -54, -17
74 static inline void s_zero(
int cur_diff,
struct G722Band *band)
78 #define ACCUM(k, x, d) do { \
80 band->zero_mem[k] = ((band->zero_mem[k] * 255) >> 8) + \
81 d*((band->diff_mem[k]^cur_diff) < 0 ? -128 : 128); \
82 band->diff_mem[k] = tmp; \
83 s_zero += (tmp * band->zero_mem[k]) >> 15; \
86 ACCUM(5, band->diff_mem[4], 1);
87 ACCUM(4, band->diff_mem[3], 1);
88 ACCUM(3, band->diff_mem[2], 1);
89 ACCUM(2, band->diff_mem[1], 1);
90 ACCUM(1, band->diff_mem[0], 1);
91 ACCUM(0, cur_diff * 2, 1);
93 ACCUM(5, band->diff_mem[4], 0);
94 ACCUM(4, band->diff_mem[3], 0);
95 ACCUM(3, band->diff_mem[2], 0);
96 ACCUM(2, band->diff_mem[1], 0);
97 ACCUM(1, band->diff_mem[0], 0);
98 ACCUM(0, cur_diff * 2, 0);
112 int sg[2], limit, cur_qtzd_reconst;
114 const int cur_part_reconst = band->s_zero + cur_diff < 0;
116 sg[0] =
sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
117 sg[1] =
sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
118 band->part_reconst_mem[1] = band->part_reconst_mem[0];
119 band->part_reconst_mem[0] = cur_part_reconst;
121 band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
122 (sg[1] * 128) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
124 limit = 15360 - band->pole_mem[1];
125 band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
129 cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) * 2);
130 band->s_predictor = av_clip_int16(band->s_zero +
131 (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
132 (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
133 band->prev_qtzd_reconst = cur_qtzd_reconst;
139 const int shift = log_factor >> 11;
140 return shift < 0 ? wd1 >> -shift : wd1 <<
shift;
149 band->log_factor = av_clip((band->log_factor * 127 >> 7) +
160 band->log_factor = av_clip((band->log_factor * 127 >> 7) +
static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
adaptive predictor
static int shift(int a, int b)
const int16_t ff_g722_low_inv_quant4[16]
static const int16_t low_log_factor_step[16]
low_log_factor_step[index] == wl[rl42[index]]
static int linear_scale_factor(const int log_factor)
static const int8_t sign_lookup[2]
const int16_t ff_g722_low_inv_quant6[64]
static const int16_t high_log_factor_step[2]
void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
static const int16_t inv_log2_table[32]
const int16_t ff_g722_high_inv_quant[4]
static void s_zero(int cur_diff, struct G722Band *band)
void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, const int ihigh)