FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
h264dsp.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2004 Romain Dolbeau <romain@dolbeau.org>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #include <stdint.h>
24 #include <string.h>
25 
26 #include "libavutil/attributes.h"
27 #include "libavutil/cpu.h"
28 #include "libavutil/intreadwrite.h"
29 #include "libavutil/mem.h"
30 #include "libavutil/ppc/cpu.h"
32 
33 #include "libavcodec/h264dec.h"
34 #include "libavcodec/h264dsp.h"
35 
36 #if HAVE_ALTIVEC
37 
38 /****************************************************************************
39  * IDCT transform:
40  ****************************************************************************/
41 
42 #define VEC_1D_DCT(vb0,vb1,vb2,vb3,va0,va1,va2,va3) \
43  /* 1st stage */ \
44  vz0 = vec_add(vb0,vb2); /* temp[0] = Y[0] + Y[2] */ \
45  vz1 = vec_sub(vb0,vb2); /* temp[1] = Y[0] - Y[2] */ \
46  vz2 = vec_sra(vb1,vec_splat_u16(1)); \
47  vz2 = vec_sub(vz2,vb3); /* temp[2] = Y[1].1/2 - Y[3] */ \
48  vz3 = vec_sra(vb3,vec_splat_u16(1)); \
49  vz3 = vec_add(vb1,vz3); /* temp[3] = Y[1] + Y[3].1/2 */ \
50  /* 2nd stage: output */ \
51  va0 = vec_add(vz0,vz3); /* x[0] = temp[0] + temp[3] */ \
52  va1 = vec_add(vz1,vz2); /* x[1] = temp[1] + temp[2] */ \
53  va2 = vec_sub(vz1,vz2); /* x[2] = temp[1] - temp[2] */ \
54  va3 = vec_sub(vz0,vz3) /* x[3] = temp[0] - temp[3] */
55 
56 #define VEC_TRANSPOSE_4(a0,a1,a2,a3,b0,b1,b2,b3) \
57  b0 = vec_mergeh( a0, a0 ); \
58  b1 = vec_mergeh( a1, a0 ); \
59  b2 = vec_mergeh( a2, a0 ); \
60  b3 = vec_mergeh( a3, a0 ); \
61  a0 = vec_mergeh( b0, b2 ); \
62  a1 = vec_mergel( b0, b2 ); \
63  a2 = vec_mergeh( b1, b3 ); \
64  a3 = vec_mergel( b1, b3 ); \
65  b0 = vec_mergeh( a0, a2 ); \
66  b1 = vec_mergel( a0, a2 ); \
67  b2 = vec_mergeh( a1, a3 ); \
68  b3 = vec_mergel( a1, a3 )
69 
70 #if HAVE_BIGENDIAN
71 #define vdst_load(d) \
72  vdst_orig = vec_ld(0, dst); \
73  vdst = vec_perm(vdst_orig, zero_u8v, vdst_mask);
74 #else
75 #define vdst_load(d) vdst = vec_vsx_ld(0, dst)
76 #endif
77 
78 #define VEC_LOAD_U8_ADD_S16_STORE_U8(va) \
79  vdst_load(); \
80  vdst_ss = (vec_s16) VEC_MERGEH(zero_u8v, vdst); \
81  va = vec_add(va, vdst_ss); \
82  va_u8 = vec_packsu(va, zero_s16v); \
83  va_u32 = vec_splat((vec_u32)va_u8, 0); \
84  vec_ste(va_u32, element, (uint32_t*)dst);
85 
86 static void h264_idct_add_altivec(uint8_t *dst, int16_t *block, int stride)
87 {
88  vec_s16 va0, va1, va2, va3;
89  vec_s16 vz0, vz1, vz2, vz3;
90  vec_s16 vtmp0, vtmp1, vtmp2, vtmp3;
91  vec_u8 va_u8;
92  vec_u32 va_u32;
93  vec_s16 vdst_ss;
94  const vec_u16 v6us = vec_splat_u16(6);
95  vec_u8 vdst, vdst_orig;
96  vec_u8 vdst_mask = vec_lvsl(0, dst);
97  int element = ((unsigned long)dst & 0xf) >> 2;
98  LOAD_ZERO;
99 
100  block[0] += 32; /* add 32 as a DC-level for rounding */
101 
102  vtmp0 = vec_ld(0,block);
103  vtmp1 = vec_sld(vtmp0, vtmp0, 8);
104  vtmp2 = vec_ld(16,block);
105  vtmp3 = vec_sld(vtmp2, vtmp2, 8);
106  memset(block, 0, 16 * sizeof(int16_t));
107 
108  VEC_1D_DCT(vtmp0,vtmp1,vtmp2,vtmp3,va0,va1,va2,va3);
109  VEC_TRANSPOSE_4(va0,va1,va2,va3,vtmp0,vtmp1,vtmp2,vtmp3);
110  VEC_1D_DCT(vtmp0,vtmp1,vtmp2,vtmp3,va0,va1,va2,va3);
111 
112  va0 = vec_sra(va0,v6us);
113  va1 = vec_sra(va1,v6us);
114  va2 = vec_sra(va2,v6us);
115  va3 = vec_sra(va3,v6us);
116 
117  VEC_LOAD_U8_ADD_S16_STORE_U8(va0);
118  dst += stride;
119  VEC_LOAD_U8_ADD_S16_STORE_U8(va1);
120  dst += stride;
121  VEC_LOAD_U8_ADD_S16_STORE_U8(va2);
122  dst += stride;
123  VEC_LOAD_U8_ADD_S16_STORE_U8(va3);
124 }
125 
126 #define IDCT8_1D_ALTIVEC(s0, s1, s2, s3, s4, s5, s6, s7, d0, d1, d2, d3, d4, d5, d6, d7) {\
127  /* a0 = SRC(0) + SRC(4); */ \
128  vec_s16 a0v = vec_add(s0, s4); \
129  /* a2 = SRC(0) - SRC(4); */ \
130  vec_s16 a2v = vec_sub(s0, s4); \
131  /* a4 = (SRC(2)>>1) - SRC(6); */ \
132  vec_s16 a4v = vec_sub(vec_sra(s2, onev), s6); \
133  /* a6 = (SRC(6)>>1) + SRC(2); */ \
134  vec_s16 a6v = vec_add(vec_sra(s6, onev), s2); \
135  /* b0 = a0 + a6; */ \
136  vec_s16 b0v = vec_add(a0v, a6v); \
137  /* b2 = a2 + a4; */ \
138  vec_s16 b2v = vec_add(a2v, a4v); \
139  /* b4 = a2 - a4; */ \
140  vec_s16 b4v = vec_sub(a2v, a4v); \
141  /* b6 = a0 - a6; */ \
142  vec_s16 b6v = vec_sub(a0v, a6v); \
143  /* a1 = SRC(5) - SRC(3) - SRC(7) - (SRC(7)>>1); */ \
144  /* a1 = (SRC(5)-SRC(3)) - (SRC(7) + (SRC(7)>>1)); */ \
145  vec_s16 a1v = vec_sub( vec_sub(s5, s3), vec_add(s7, vec_sra(s7, onev)) ); \
146  /* a3 = SRC(7) + SRC(1) - SRC(3) - (SRC(3)>>1); */ \
147  /* a3 = (SRC(7)+SRC(1)) - (SRC(3) + (SRC(3)>>1)); */ \
148  vec_s16 a3v = vec_sub( vec_add(s7, s1), vec_add(s3, vec_sra(s3, onev)) );\
149  /* a5 = SRC(7) - SRC(1) + SRC(5) + (SRC(5)>>1); */ \
150  /* a5 = (SRC(7)-SRC(1)) + SRC(5) + (SRC(5)>>1); */ \
151  vec_s16 a5v = vec_add( vec_sub(s7, s1), vec_add(s5, vec_sra(s5, onev)) );\
152  /* a7 = SRC(5)+SRC(3) + SRC(1) + (SRC(1)>>1); */ \
153  vec_s16 a7v = vec_add( vec_add(s5, s3), vec_add(s1, vec_sra(s1, onev)) );\
154  /* b1 = (a7>>2) + a1; */ \
155  vec_s16 b1v = vec_add( vec_sra(a7v, twov), a1v); \
156  /* b3 = a3 + (a5>>2); */ \
157  vec_s16 b3v = vec_add(a3v, vec_sra(a5v, twov)); \
158  /* b5 = (a3>>2) - a5; */ \
159  vec_s16 b5v = vec_sub( vec_sra(a3v, twov), a5v); \
160  /* b7 = a7 - (a1>>2); */ \
161  vec_s16 b7v = vec_sub( a7v, vec_sra(a1v, twov)); \
162  /* DST(0, b0 + b7); */ \
163  d0 = vec_add(b0v, b7v); \
164  /* DST(1, b2 + b5); */ \
165  d1 = vec_add(b2v, b5v); \
166  /* DST(2, b4 + b3); */ \
167  d2 = vec_add(b4v, b3v); \
168  /* DST(3, b6 + b1); */ \
169  d3 = vec_add(b6v, b1v); \
170  /* DST(4, b6 - b1); */ \
171  d4 = vec_sub(b6v, b1v); \
172  /* DST(5, b4 - b3); */ \
173  d5 = vec_sub(b4v, b3v); \
174  /* DST(6, b2 - b5); */ \
175  d6 = vec_sub(b2v, b5v); \
176  /* DST(7, b0 - b7); */ \
177  d7 = vec_sub(b0v, b7v); \
178 }
179 
180 #if HAVE_BIGENDIAN
181 #define GET_2PERM(ldv, stv, d) \
182  ldv = vec_lvsl(0, d); \
183  stv = vec_lvsr(8, d);
184 #define dstv_load(d) \
185  vec_u8 hv = vec_ld( 0, d ); \
186  vec_u8 lv = vec_ld( 7, d); \
187  vec_u8 dstv = vec_perm( hv, lv, (vec_u8)perm_ldv );
188 #define dest_unligned_store(d) \
189  vec_u8 edgehv; \
190  vec_u8 bodyv = vec_perm( idstsum8, idstsum8, perm_stv ); \
191  vec_u8 edgelv = vec_perm( sel, zero_u8v, perm_stv ); \
192  lv = vec_sel( lv, bodyv, edgelv ); \
193  vec_st( lv, 7, d ); \
194  hv = vec_ld( 0, d ); \
195  edgehv = vec_perm( zero_u8v, sel, perm_stv ); \
196  hv = vec_sel( hv, bodyv, edgehv ); \
197  vec_st( hv, 0, d );
198 #else
199 
200 #define GET_2PERM(ldv, stv, d) {}
201 #define dstv_load(d) vec_u8 dstv = vec_vsx_ld(0, d)
202 #define dest_unligned_store(d)\
203  vec_u8 dst8 = vec_perm((vec_u8)idstsum8, dstv, vcprm(2,3,s2,s3));\
204  vec_vsx_st(dst8, 0, d)
205 #endif /* HAVE_BIGENDIAN */
206 
207 #define ALTIVEC_STORE_SUM_CLIP(dest, idctv, perm_ldv, perm_stv, sel) { \
208  /* unaligned load */ \
209  dstv_load(dest); \
210  vec_s16 idct_sh6 = vec_sra(idctv, sixv); \
211  vec_u16 dst16 = (vec_u16)VEC_MERGEH(zero_u8v, dstv); \
212  vec_s16 idstsum = vec_adds(idct_sh6, (vec_s16)dst16); \
213  vec_u8 idstsum8 = vec_packsu(zero_s16v, idstsum); \
214  /* unaligned store */ \
215  dest_unligned_store(dest);\
216 }
217 
218 static void h264_idct8_add_altivec(uint8_t *dst, int16_t *dct, int stride)
219 {
220  vec_s16 s0, s1, s2, s3, s4, s5, s6, s7;
221  vec_s16 d0, d1, d2, d3, d4, d5, d6, d7;
222  vec_s16 idct0, idct1, idct2, idct3, idct4, idct5, idct6, idct7;
223 
224  vec_u8 perm_ldv, perm_stv;
225  GET_2PERM(perm_ldv, perm_stv, dst);
226 
227  const vec_u16 onev = vec_splat_u16(1);
228  const vec_u16 twov = vec_splat_u16(2);
229  const vec_u16 sixv = vec_splat_u16(6);
230 
231  const vec_u8 sel = (vec_u8) {0,0,0,0,0,0,0,0,-1,-1,-1,-1,-1,-1,-1,-1};
232  LOAD_ZERO;
233 
234  dct[0] += 32; // rounding for the >>6 at the end
235 
236  s0 = vec_ld(0x00, (int16_t*)dct);
237  s1 = vec_ld(0x10, (int16_t*)dct);
238  s2 = vec_ld(0x20, (int16_t*)dct);
239  s3 = vec_ld(0x30, (int16_t*)dct);
240  s4 = vec_ld(0x40, (int16_t*)dct);
241  s5 = vec_ld(0x50, (int16_t*)dct);
242  s6 = vec_ld(0x60, (int16_t*)dct);
243  s7 = vec_ld(0x70, (int16_t*)dct);
244  memset(dct, 0, 64 * sizeof(int16_t));
245 
246  IDCT8_1D_ALTIVEC(s0, s1, s2, s3, s4, s5, s6, s7,
247  d0, d1, d2, d3, d4, d5, d6, d7);
248 
249  TRANSPOSE8( d0, d1, d2, d3, d4, d5, d6, d7 );
250 
251  IDCT8_1D_ALTIVEC(d0, d1, d2, d3, d4, d5, d6, d7,
252  idct0, idct1, idct2, idct3, idct4, idct5, idct6, idct7);
253 
254  ALTIVEC_STORE_SUM_CLIP(&dst[0*stride], idct0, perm_ldv, perm_stv, sel);
255  ALTIVEC_STORE_SUM_CLIP(&dst[1*stride], idct1, perm_ldv, perm_stv, sel);
256  ALTIVEC_STORE_SUM_CLIP(&dst[2*stride], idct2, perm_ldv, perm_stv, sel);
257  ALTIVEC_STORE_SUM_CLIP(&dst[3*stride], idct3, perm_ldv, perm_stv, sel);
258  ALTIVEC_STORE_SUM_CLIP(&dst[4*stride], idct4, perm_ldv, perm_stv, sel);
259  ALTIVEC_STORE_SUM_CLIP(&dst[5*stride], idct5, perm_ldv, perm_stv, sel);
260  ALTIVEC_STORE_SUM_CLIP(&dst[6*stride], idct6, perm_ldv, perm_stv, sel);
261  ALTIVEC_STORE_SUM_CLIP(&dst[7*stride], idct7, perm_ldv, perm_stv, sel);
262 }
263 
264 #if HAVE_BIGENDIAN
265 #define DST_LD vec_ld
266 #else
267 #define DST_LD vec_vsx_ld
268 #endif
269 static av_always_inline void h264_idct_dc_add_internal(uint8_t *dst, int16_t *block, int stride, int size)
270 {
271  vec_s16 dc16;
272  vec_u8 dcplus, dcminus, v0, v1, v2, v3, aligner;
273  vec_s32 v_dc32;
274  LOAD_ZERO;
275  DECLARE_ALIGNED(16, int, dc);
276  int i;
277 
278  dc = (block[0] + 32) >> 6;
279  block[0] = 0;
280  v_dc32 = vec_lde(0, &dc);
281  dc16 = VEC_SPLAT16((vec_s16)v_dc32, 1);
282 
283  if (size == 4)
284  dc16 = VEC_SLD16(dc16, zero_s16v, 8);
285  dcplus = vec_packsu(dc16, zero_s16v);
286  dcminus = vec_packsu(vec_sub(zero_s16v, dc16), zero_s16v);
287 
288 #if HAVE_BIGENDIAN
289  aligner = vec_lvsr(0, dst);
290  dcplus = vec_perm(dcplus, dcplus, aligner);
291  dcminus = vec_perm(dcminus, dcminus, aligner);
292 #endif
293 
294  for (i = 0; i < size; i += 4) {
295  v0 = DST_LD(0, dst+0*stride);
296  v1 = DST_LD(0, dst+1*stride);
297  v2 = DST_LD(0, dst+2*stride);
298  v3 = DST_LD(0, dst+3*stride);
299 
300  v0 = vec_adds(v0, dcplus);
301  v1 = vec_adds(v1, dcplus);
302  v2 = vec_adds(v2, dcplus);
303  v3 = vec_adds(v3, dcplus);
304 
305  v0 = vec_subs(v0, dcminus);
306  v1 = vec_subs(v1, dcminus);
307  v2 = vec_subs(v2, dcminus);
308  v3 = vec_subs(v3, dcminus);
309 
310  VEC_ST(v0, 0, dst+0*stride);
311  VEC_ST(v1, 0, dst+1*stride);
312  VEC_ST(v2, 0, dst+2*stride);
313  VEC_ST(v3, 0, dst+3*stride);
314 
315  dst += 4*stride;
316  }
317 }
318 
319 static void h264_idct_dc_add_altivec(uint8_t *dst, int16_t *block, int stride)
320 {
321  h264_idct_dc_add_internal(dst, block, stride, 4);
322 }
323 
324 static void h264_idct8_dc_add_altivec(uint8_t *dst, int16_t *block, int stride)
325 {
326  h264_idct_dc_add_internal(dst, block, stride, 8);
327 }
328 
329 static void h264_idct_add16_altivec(uint8_t *dst, const int *block_offset,
330  int16_t *block, int stride,
331  const uint8_t nnzc[15 * 8])
332 {
333  int i;
334  for(i=0; i<16; i++){
335  int nnz = nnzc[ scan8[i] ];
336  if(nnz){
337  if(nnz==1 && block[i*16]) h264_idct_dc_add_altivec(dst + block_offset[i], block + i*16, stride);
338  else h264_idct_add_altivec(dst + block_offset[i], block + i*16, stride);
339  }
340  }
341 }
342 
343 static void h264_idct_add16intra_altivec(uint8_t *dst, const int *block_offset,
344  int16_t *block, int stride,
345  const uint8_t nnzc[15 * 8])
346 {
347  int i;
348  for(i=0; i<16; i++){
349  if(nnzc[ scan8[i] ]) h264_idct_add_altivec(dst + block_offset[i], block + i*16, stride);
350  else if(block[i*16]) h264_idct_dc_add_altivec(dst + block_offset[i], block + i*16, stride);
351  }
352 }
353 
354 static void h264_idct8_add4_altivec(uint8_t *dst, const int *block_offset,
355  int16_t *block, int stride,
356  const uint8_t nnzc[15 * 8])
357 {
358  int i;
359  for(i=0; i<16; i+=4){
360  int nnz = nnzc[ scan8[i] ];
361  if(nnz){
362  if(nnz==1 && block[i*16]) h264_idct8_dc_add_altivec(dst + block_offset[i], block + i*16, stride);
363  else h264_idct8_add_altivec(dst + block_offset[i], block + i*16, stride);
364  }
365  }
366 }
367 
368 static void h264_idct_add8_altivec(uint8_t **dest, const int *block_offset,
369  int16_t *block, int stride,
370  const uint8_t nnzc[15 * 8])
371 {
372  int i, j;
373  for (j = 1; j < 3; j++) {
374  for(i = j * 16; i < j * 16 + 4; i++){
375  if(nnzc[ scan8[i] ])
376  h264_idct_add_altivec(dest[j-1] + block_offset[i], block + i*16, stride);
377  else if(block[i*16])
378  h264_idct_dc_add_altivec(dest[j-1] + block_offset[i], block + i*16, stride);
379  }
380  }
381 }
382 
383 #define transpose4x16(r0, r1, r2, r3) { \
384  register vec_u8 r4; \
385  register vec_u8 r5; \
386  register vec_u8 r6; \
387  register vec_u8 r7; \
388  \
389  r4 = vec_mergeh(r0, r2); /*0, 2 set 0*/ \
390  r5 = vec_mergel(r0, r2); /*0, 2 set 1*/ \
391  r6 = vec_mergeh(r1, r3); /*1, 3 set 0*/ \
392  r7 = vec_mergel(r1, r3); /*1, 3 set 1*/ \
393  \
394  r0 = vec_mergeh(r4, r6); /*all set 0*/ \
395  r1 = vec_mergel(r4, r6); /*all set 1*/ \
396  r2 = vec_mergeh(r5, r7); /*all set 2*/ \
397  r3 = vec_mergel(r5, r7); /*all set 3*/ \
398 }
399 
400 static inline void write16x4(uint8_t *dst, int dst_stride,
401  register vec_u8 r0, register vec_u8 r1,
402  register vec_u8 r2, register vec_u8 r3) {
403  DECLARE_ALIGNED(16, unsigned char, result)[64];
404  uint32_t *src_int = (uint32_t *)result, *dst_int = (uint32_t *)dst;
405  int int_dst_stride = dst_stride/4;
406 
407  vec_st(r0, 0, result);
408  vec_st(r1, 16, result);
409  vec_st(r2, 32, result);
410  vec_st(r3, 48, result);
411  /* FIXME: there has to be a better way!!!! */
412  *dst_int = *src_int;
413  *(dst_int+ int_dst_stride) = *(src_int + 1);
414  *(dst_int+ 2*int_dst_stride) = *(src_int + 2);
415  *(dst_int+ 3*int_dst_stride) = *(src_int + 3);
416  *(dst_int+ 4*int_dst_stride) = *(src_int + 4);
417  *(dst_int+ 5*int_dst_stride) = *(src_int + 5);
418  *(dst_int+ 6*int_dst_stride) = *(src_int + 6);
419  *(dst_int+ 7*int_dst_stride) = *(src_int + 7);
420  *(dst_int+ 8*int_dst_stride) = *(src_int + 8);
421  *(dst_int+ 9*int_dst_stride) = *(src_int + 9);
422  *(dst_int+10*int_dst_stride) = *(src_int + 10);
423  *(dst_int+11*int_dst_stride) = *(src_int + 11);
424  *(dst_int+12*int_dst_stride) = *(src_int + 12);
425  *(dst_int+13*int_dst_stride) = *(src_int + 13);
426  *(dst_int+14*int_dst_stride) = *(src_int + 14);
427  *(dst_int+15*int_dst_stride) = *(src_int + 15);
428 }
429 
430 /** @brief performs a 6x16 transpose of data in src, and stores it to dst
431  @todo FIXME: see if we can't spare some vec_lvsl() by them factorizing
432  out of unaligned_load() */
433 #define readAndTranspose16x6(src, src_stride, r8, r9, r10, r11, r12, r13) {\
434  register vec_u8 r0 = unaligned_load(0, src); \
435  register vec_u8 r1 = unaligned_load( src_stride, src); \
436  register vec_u8 r2 = unaligned_load(2* src_stride, src); \
437  register vec_u8 r3 = unaligned_load(3* src_stride, src); \
438  register vec_u8 r4 = unaligned_load(4* src_stride, src); \
439  register vec_u8 r5 = unaligned_load(5* src_stride, src); \
440  register vec_u8 r6 = unaligned_load(6* src_stride, src); \
441  register vec_u8 r7 = unaligned_load(7* src_stride, src); \
442  register vec_u8 r14 = unaligned_load(14*src_stride, src); \
443  register vec_u8 r15 = unaligned_load(15*src_stride, src); \
444  \
445  r8 = unaligned_load( 8*src_stride, src); \
446  r9 = unaligned_load( 9*src_stride, src); \
447  r10 = unaligned_load(10*src_stride, src); \
448  r11 = unaligned_load(11*src_stride, src); \
449  r12 = unaligned_load(12*src_stride, src); \
450  r13 = unaligned_load(13*src_stride, src); \
451  \
452  /*Merge first pairs*/ \
453  r0 = vec_mergeh(r0, r8); /*0, 8*/ \
454  r1 = vec_mergeh(r1, r9); /*1, 9*/ \
455  r2 = vec_mergeh(r2, r10); /*2,10*/ \
456  r3 = vec_mergeh(r3, r11); /*3,11*/ \
457  r4 = vec_mergeh(r4, r12); /*4,12*/ \
458  r5 = vec_mergeh(r5, r13); /*5,13*/ \
459  r6 = vec_mergeh(r6, r14); /*6,14*/ \
460  r7 = vec_mergeh(r7, r15); /*7,15*/ \
461  \
462  /*Merge second pairs*/ \
463  r8 = vec_mergeh(r0, r4); /*0,4, 8,12 set 0*/ \
464  r9 = vec_mergel(r0, r4); /*0,4, 8,12 set 1*/ \
465  r10 = vec_mergeh(r1, r5); /*1,5, 9,13 set 0*/ \
466  r11 = vec_mergel(r1, r5); /*1,5, 9,13 set 1*/ \
467  r12 = vec_mergeh(r2, r6); /*2,6,10,14 set 0*/ \
468  r13 = vec_mergel(r2, r6); /*2,6,10,14 set 1*/ \
469  r14 = vec_mergeh(r3, r7); /*3,7,11,15 set 0*/ \
470  r15 = vec_mergel(r3, r7); /*3,7,11,15 set 1*/ \
471  \
472  /*Third merge*/ \
473  r0 = vec_mergeh(r8, r12); /*0,2,4,6,8,10,12,14 set 0*/ \
474  r1 = vec_mergel(r8, r12); /*0,2,4,6,8,10,12,14 set 1*/ \
475  r2 = vec_mergeh(r9, r13); /*0,2,4,6,8,10,12,14 set 2*/ \
476  r4 = vec_mergeh(r10, r14); /*1,3,5,7,9,11,13,15 set 0*/ \
477  r5 = vec_mergel(r10, r14); /*1,3,5,7,9,11,13,15 set 1*/ \
478  r6 = vec_mergeh(r11, r15); /*1,3,5,7,9,11,13,15 set 2*/ \
479  /* Don't need to compute 3 and 7*/ \
480  \
481  /*Final merge*/ \
482  r8 = vec_mergeh(r0, r4); /*all set 0*/ \
483  r9 = vec_mergel(r0, r4); /*all set 1*/ \
484  r10 = vec_mergeh(r1, r5); /*all set 2*/ \
485  r11 = vec_mergel(r1, r5); /*all set 3*/ \
486  r12 = vec_mergeh(r2, r6); /*all set 4*/ \
487  r13 = vec_mergel(r2, r6); /*all set 5*/ \
488  /* Don't need to compute 14 and 15*/ \
489  \
490 }
491 
492 // out: o = |x-y| < a
493 static inline vec_u8 diff_lt_altivec ( register vec_u8 x,
494  register vec_u8 y,
495  register vec_u8 a) {
496 
497  register vec_u8 diff = vec_subs(x, y);
498  register vec_u8 diffneg = vec_subs(y, x);
499  register vec_u8 o = vec_or(diff, diffneg); /* |x-y| */
500  o = (vec_u8)vec_cmplt(o, a);
501  return o;
502 }
503 
504 static inline vec_u8 h264_deblock_mask ( register vec_u8 p0,
505  register vec_u8 p1,
506  register vec_u8 q0,
507  register vec_u8 q1,
508  register vec_u8 alpha,
509  register vec_u8 beta) {
510 
511  register vec_u8 mask;
512  register vec_u8 tempmask;
513 
514  mask = diff_lt_altivec(p0, q0, alpha);
515  tempmask = diff_lt_altivec(p1, p0, beta);
516  mask = vec_and(mask, tempmask);
517  tempmask = diff_lt_altivec(q1, q0, beta);
518  mask = vec_and(mask, tempmask);
519 
520  return mask;
521 }
522 
523 // out: newp1 = clip((p2 + ((p0 + q0 + 1) >> 1)) >> 1, p1-tc0, p1+tc0)
524 static inline vec_u8 h264_deblock_q1(register vec_u8 p0,
525  register vec_u8 p1,
526  register vec_u8 p2,
527  register vec_u8 q0,
528  register vec_u8 tc0) {
529 
530  register vec_u8 average = vec_avg(p0, q0);
531  register vec_u8 temp;
532  register vec_u8 unclipped;
533  register vec_u8 ones;
534  register vec_u8 max;
535  register vec_u8 min;
536  register vec_u8 newp1;
537 
538  temp = vec_xor(average, p2);
539  average = vec_avg(average, p2); /*avg(p2, avg(p0, q0)) */
540  ones = vec_splat_u8(1);
541  temp = vec_and(temp, ones); /*(p2^avg(p0, q0)) & 1 */
542  unclipped = vec_subs(average, temp); /*(p2+((p0+q0+1)>>1))>>1 */
543  max = vec_adds(p1, tc0);
544  min = vec_subs(p1, tc0);
545  newp1 = vec_max(min, unclipped);
546  newp1 = vec_min(max, newp1);
547  return newp1;
548 }
549 
550 #define h264_deblock_p0_q0(p0, p1, q0, q1, tc0masked) { \
551  \
552  const vec_u8 A0v = vec_sl(vec_splat_u8(10), vec_splat_u8(4)); \
553  \
554  register vec_u8 pq0bit = vec_xor(p0,q0); \
555  register vec_u8 q1minus; \
556  register vec_u8 p0minus; \
557  register vec_u8 stage1; \
558  register vec_u8 stage2; \
559  register vec_u8 vec160; \
560  register vec_u8 delta; \
561  register vec_u8 deltaneg; \
562  \
563  q1minus = vec_nor(q1, q1); /* 255 - q1 */ \
564  stage1 = vec_avg(p1, q1minus); /* (p1 - q1 + 256)>>1 */ \
565  stage2 = vec_sr(stage1, vec_splat_u8(1)); /* (p1 - q1 + 256)>>2 = 64 + (p1 - q1) >> 2 */ \
566  p0minus = vec_nor(p0, p0); /* 255 - p0 */ \
567  stage1 = vec_avg(q0, p0minus); /* (q0 - p0 + 256)>>1 */ \
568  pq0bit = vec_and(pq0bit, vec_splat_u8(1)); \
569  stage2 = vec_avg(stage2, pq0bit); /* 32 + ((q0 - p0)&1 + (p1 - q1) >> 2 + 1) >> 1 */ \
570  stage2 = vec_adds(stage2, stage1); /* 160 + ((p0 - q0) + (p1 - q1) >> 2 + 1) >> 1 */ \
571  vec160 = vec_ld(0, &A0v); \
572  deltaneg = vec_subs(vec160, stage2); /* -d */ \
573  delta = vec_subs(stage2, vec160); /* d */ \
574  deltaneg = vec_min(tc0masked, deltaneg); \
575  delta = vec_min(tc0masked, delta); \
576  p0 = vec_subs(p0, deltaneg); \
577  q0 = vec_subs(q0, delta); \
578  p0 = vec_adds(p0, delta); \
579  q0 = vec_adds(q0, deltaneg); \
580 }
581 
582 #define h264_loop_filter_luma_altivec(p2, p1, p0, q0, q1, q2, alpha, beta, tc0) { \
583  DECLARE_ALIGNED(16, unsigned char, temp)[16]; \
584  register vec_u8 alphavec; \
585  register vec_u8 betavec; \
586  register vec_u8 mask; \
587  register vec_u8 p1mask; \
588  register vec_u8 q1mask; \
589  register vector signed char tc0vec; \
590  register vec_u8 finaltc0; \
591  register vec_u8 tc0masked; \
592  register vec_u8 newp1; \
593  register vec_u8 newq1; \
594  \
595  temp[0] = alpha; \
596  temp[1] = beta; \
597  alphavec = vec_ld(0, temp); \
598  betavec = vec_splat(alphavec, 0x1); \
599  alphavec = vec_splat(alphavec, 0x0); \
600  mask = h264_deblock_mask(p0, p1, q0, q1, alphavec, betavec); /*if in block */ \
601  \
602  AV_COPY32(temp, tc0); \
603  tc0vec = vec_ld(0, (signed char*)temp); \
604  tc0vec = vec_mergeh(tc0vec, tc0vec); \
605  tc0vec = vec_mergeh(tc0vec, tc0vec); \
606  mask = vec_and(mask, vec_cmpgt(tc0vec, vec_splat_s8(-1))); /* if tc0[i] >= 0 */ \
607  finaltc0 = vec_and((vec_u8)tc0vec, mask); /* tc = tc0 */ \
608  \
609  p1mask = diff_lt_altivec(p2, p0, betavec); \
610  p1mask = vec_and(p1mask, mask); /* if ( |p2 - p0| < beta) */ \
611  tc0masked = vec_and(p1mask, (vec_u8)tc0vec); \
612  finaltc0 = vec_sub(finaltc0, p1mask); /* tc++ */ \
613  newp1 = h264_deblock_q1(p0, p1, p2, q0, tc0masked); \
614  /*end if*/ \
615  \
616  q1mask = diff_lt_altivec(q2, q0, betavec); \
617  q1mask = vec_and(q1mask, mask); /* if ( |q2 - q0| < beta ) */\
618  tc0masked = vec_and(q1mask, (vec_u8)tc0vec); \
619  finaltc0 = vec_sub(finaltc0, q1mask); /* tc++ */ \
620  newq1 = h264_deblock_q1(p0, q1, q2, q0, tc0masked); \
621  /*end if*/ \
622  \
623  h264_deblock_p0_q0(p0, p1, q0, q1, finaltc0); \
624  p1 = newp1; \
625  q1 = newq1; \
626 }
627 
628 static void h264_v_loop_filter_luma_altivec(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0) {
629 
630  if ((tc0[0] & tc0[1] & tc0[2] & tc0[3]) >= 0) {
631  register vec_u8 p2 = vec_ld(-3*stride, pix);
632  register vec_u8 p1 = vec_ld(-2*stride, pix);
633  register vec_u8 p0 = vec_ld(-1*stride, pix);
634  register vec_u8 q0 = vec_ld(0, pix);
635  register vec_u8 q1 = vec_ld(stride, pix);
636  register vec_u8 q2 = vec_ld(2*stride, pix);
637  h264_loop_filter_luma_altivec(p2, p1, p0, q0, q1, q2, alpha, beta, tc0);
638  vec_st(p1, -2*stride, pix);
639  vec_st(p0, -1*stride, pix);
640  vec_st(q0, 0, pix);
641  vec_st(q1, stride, pix);
642  }
643 }
644 
645 static void h264_h_loop_filter_luma_altivec(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0) {
646 
647  register vec_u8 line0, line1, line2, line3, line4, line5;
648  if ((tc0[0] & tc0[1] & tc0[2] & tc0[3]) < 0)
649  return;
650  readAndTranspose16x6(pix-3, stride, line0, line1, line2, line3, line4, line5);
651  h264_loop_filter_luma_altivec(line0, line1, line2, line3, line4, line5, alpha, beta, tc0);
652  transpose4x16(line1, line2, line3, line4);
653  write16x4(pix-2, stride, line1, line2, line3, line4);
654 }
655 
656 static av_always_inline
657 void weight_h264_W_altivec(uint8_t *block, int stride, int height,
658  int log2_denom, int weight, int offset, int w)
659 {
660  int y, aligned;
661  vec_u8 vblock;
662  vec_s16 vtemp, vweight, voffset, v0, v1;
663  vec_u16 vlog2_denom;
664  DECLARE_ALIGNED(16, int32_t, temp)[4];
665  LOAD_ZERO;
666 
667  offset <<= log2_denom;
668  if(log2_denom) offset += 1<<(log2_denom-1);
669  temp[0] = log2_denom;
670  temp[1] = weight;
671  temp[2] = offset;
672 
673  vtemp = (vec_s16)vec_ld(0, temp);
674 #if !HAVE_BIGENDIAN
675  vtemp =(vec_s16)vec_perm(vtemp, vtemp, vcswapi2s(0,1,2,3));
676 #endif
677  vlog2_denom = (vec_u16)vec_splat(vtemp, 1);
678  vweight = vec_splat(vtemp, 3);
679  voffset = vec_splat(vtemp, 5);
680  aligned = !((unsigned long)block & 0xf);
681 
682  for (y = 0; y < height; y++) {
683  vblock = vec_ld(0, block);
684 
685  v0 = (vec_s16)VEC_MERGEH(zero_u8v, vblock);
686  v1 = (vec_s16)VEC_MERGEL(zero_u8v, vblock);
687 
688  if (w == 16 || aligned) {
689  v0 = vec_mladd(v0, vweight, zero_s16v);
690  v0 = vec_adds(v0, voffset);
691  v0 = vec_sra(v0, vlog2_denom);
692  }
693  if (w == 16 || !aligned) {
694  v1 = vec_mladd(v1, vweight, zero_s16v);
695  v1 = vec_adds(v1, voffset);
696  v1 = vec_sra(v1, vlog2_denom);
697  }
698  vblock = vec_packsu(v0, v1);
699  vec_st(vblock, 0, block);
700 
701  block += stride;
702  }
703 }
704 
705 static av_always_inline
706 void biweight_h264_W_altivec(uint8_t *dst, uint8_t *src, int stride, int height,
707  int log2_denom, int weightd, int weights, int offset, int w)
708 {
709  int y, dst_aligned, src_aligned;
710  vec_u8 vsrc, vdst;
711  vec_s16 vtemp, vweights, vweightd, voffset, v0, v1, v2, v3;
712  vec_u16 vlog2_denom;
713  DECLARE_ALIGNED(16, int32_t, temp)[4];
714  LOAD_ZERO;
715 
716  offset = ((offset + 1) | 1) << log2_denom;
717  temp[0] = log2_denom+1;
718  temp[1] = weights;
719  temp[2] = weightd;
720  temp[3] = offset;
721 
722  vtemp = (vec_s16)vec_ld(0, temp);
723 #if !HAVE_BIGENDIAN
724  vtemp =(vec_s16)vec_perm(vtemp, vtemp, vcswapi2s(0,1,2,3));
725 #endif
726  vlog2_denom = (vec_u16)vec_splat(vtemp, 1);
727  vweights = vec_splat(vtemp, 3);
728  vweightd = vec_splat(vtemp, 5);
729  voffset = vec_splat(vtemp, 7);
730  dst_aligned = !((unsigned long)dst & 0xf);
731  src_aligned = !((unsigned long)src & 0xf);
732 
733  for (y = 0; y < height; y++) {
734  vdst = vec_ld(0, dst);
735  vsrc = vec_ld(0, src);
736 
737  v0 = (vec_s16)VEC_MERGEH(zero_u8v, vdst);
738  v1 = (vec_s16)VEC_MERGEL(zero_u8v, vdst);
739  v2 = (vec_s16)VEC_MERGEH(zero_u8v, vsrc);
740  v3 = (vec_s16)VEC_MERGEL(zero_u8v, vsrc);
741 
742  if (w == 8) {
743  if (src_aligned)
744  v3 = v2;
745  else
746  v2 = v3;
747  }
748 
749  if (w == 16 || dst_aligned) {
750  v0 = vec_mladd(v0, vweightd, zero_s16v);
751  v2 = vec_mladd(v2, vweights, zero_s16v);
752 
753  v0 = vec_adds(v0, voffset);
754  v0 = vec_adds(v0, v2);
755  v0 = vec_sra(v0, vlog2_denom);
756  }
757  if (w == 16 || !dst_aligned) {
758  v1 = vec_mladd(v1, vweightd, zero_s16v);
759  v3 = vec_mladd(v3, vweights, zero_s16v);
760 
761  v1 = vec_adds(v1, voffset);
762  v1 = vec_adds(v1, v3);
763  v1 = vec_sra(v1, vlog2_denom);
764  }
765  vdst = vec_packsu(v0, v1);
766  vec_st(vdst, 0, dst);
767 
768  dst += stride;
769  src += stride;
770  }
771 }
772 
773 #define H264_WEIGHT(W) \
774 static void weight_h264_pixels ## W ## _altivec(uint8_t *block, ptrdiff_t stride, int height, \
775  int log2_denom, int weight, int offset) \
776 { \
777  weight_h264_W_altivec(block, stride, height, log2_denom, weight, offset, W); \
778 }\
779 static void biweight_h264_pixels ## W ## _altivec(uint8_t *dst, uint8_t *src, ptrdiff_t stride, int height, \
780  int log2_denom, int weightd, int weights, int offset) \
781 { \
782  biweight_h264_W_altivec(dst, src, stride, height, log2_denom, weightd, weights, offset, W); \
783 }
784 
785 H264_WEIGHT(16)
786 H264_WEIGHT( 8)
787 #endif /* HAVE_ALTIVEC */
788 
790  const int chroma_format_idc)
791 {
792 #if HAVE_ALTIVEC
794  return;
795 
796  if (bit_depth == 8) {
797  c->h264_idct_add = h264_idct_add_altivec;
798  if (chroma_format_idc <= 1)
799  c->h264_idct_add8 = h264_idct_add8_altivec;
800  c->h264_idct_add16 = h264_idct_add16_altivec;
801  c->h264_idct_add16intra = h264_idct_add16intra_altivec;
802  c->h264_idct_dc_add= h264_idct_dc_add_altivec;
803  c->h264_idct8_dc_add = h264_idct8_dc_add_altivec;
804  c->h264_idct8_add = h264_idct8_add_altivec;
805  c->h264_idct8_add4 = h264_idct8_add4_altivec;
806  c->h264_v_loop_filter_luma= h264_v_loop_filter_luma_altivec;
807  c->h264_h_loop_filter_luma= h264_h_loop_filter_luma_altivec;
808 
809  c->weight_h264_pixels_tab[0] = weight_h264_pixels16_altivec;
810  c->weight_h264_pixels_tab[1] = weight_h264_pixels8_altivec;
811  c->biweight_h264_pixels_tab[0] = biweight_h264_pixels16_altivec;
812  c->biweight_h264_pixels_tab[1] = biweight_h264_pixels8_altivec;
813  }
814 #endif /* HAVE_ALTIVEC */
815 }
void(* h264_idct_add)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:81
Memory handling functions.
else temp
Definition: vf_mcdeint.c:256
#define vec_s32
Definition: util_altivec.h:39
#define LOAD_ZERO
Definition: util_altivec.h:45
GLfloat v0
Definition: opengl_enc.c:107
static const uint8_t q1[256]
Definition: twofish.c:96
#define src
Definition: vp8dsp.c:254
H.264 DSP functions.
Macro definitions for various function/variable attributes.
static int16_t block[64]
Definition: dct.c:115
void(* h264_idct_add16)(uint8_t *dst, const int *blockoffset, int16_t *block, int stride, const uint8_t nnzc[15 *8])
Definition: h264dsp.h:90
uint8_t
#define av_cold
Definition: attributes.h:82
void(* h264_idct_add8)(uint8_t **dst, const int *blockoffset, int16_t *block, int stride, const uint8_t nnzc[15 *8])
Definition: h264dsp.h:96
h264_weight_func weight_h264_pixels_tab[4]
Definition: h264dsp.h:44
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
#define height
ptrdiff_t size
Definition: opengl_enc.c:101
#define vec_s16
Definition: util_altivec.h:37
static int aligned(int val)
Definition: dashdec.c:176
#define s2
Definition: regdef.h:39
static const uint16_t mask[17]
Definition: lzw.c:38
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
void(* h264_idct8_add)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:83
#define s0
Definition: regdef.h:37
#define H264_WEIGHT(W)
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
static const uint8_t q0[256]
Definition: twofish.c:77
#define s5
Definition: regdef.h:42
static void idct6(int pre_mant[6])
Calculate 6-point IDCT of the pre-mantissas.
Definition: eac3dec.c:172
h264_biweight_func biweight_h264_pixels_tab[4]
Definition: h264dsp.h:45
Context for storing H.264 DSP functions.
Definition: h264dsp.h:42
uint8_t w
Definition: llviddspenc.c:38
static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
Definition: af_astats.c:155
void(* h264_idct_dc_add)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:85
int32_t
H.264 / AVC / MPEG-4 part10 codec.
av_cold void ff_h264dsp_init_ppc(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:789
#define vec_u8
Definition: util_altivec.h:34
#define s4
Definition: regdef.h:41
#define s3
Definition: regdef.h:40
#define vec_u32
Definition: util_altivec.h:38
static const int16_t alpha[]
Definition: ilbcdata.h:55
void(* h264_v_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
Definition: h264dsp.h:48
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:644
void(* h264_idct8_add4)(uint8_t *dst, const int *blockoffset, int16_t *block, int stride, const uint8_t nnzc[15 *8])
Definition: h264dsp.h:93
#define zero_u8v
Definition: util_altivec.h:47
#define s1
Definition: regdef.h:38
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:93
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1547
void(* h264_idct8_dc_add)(uint8_t *dst, int16_t *block, int stride)
Definition: h264dsp.h:87
Contains misc utility macros and inline functions.
#define zero_s16v
Definition: util_altivec.h:50
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
static double c[64]
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define xf(width, name, var, range_min, range_max, subs,...)
Definition: cbs_av1.c:698
void(* h264_idct_add16intra)(uint8_t *dst, const int *blockoffset, int16_t *block, int stride, const uint8_t nnzc[15 *8])
Definition: h264dsp.h:99
void(* h264_h_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
Definition: h264dsp.h:50
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
#define vec_u16
Definition: util_altivec.h:36
#define s6
Definition: regdef.h:43
#define av_always_inline
Definition: attributes.h:39
#define stride
float min