Go to the documentation of this file.
84 double sigmae,
double *detection,
86 const double *
src,
double *dst);
89 #define OFFSET(x) offsetof(AudioDeclickContext, x)
90 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
142 s->window_size =
inlink->sample_rate *
s->w / 1000.;
143 if (
s->window_size < 100)
145 s->ar_order =
FFMAX(
s->window_size *
s->ar / 100., 1);
146 s->nb_burst_samples =
s->window_size *
s->burst / 1000.;
147 s->hop_size =
s->window_size * (1. - (
s->overlap / 100.));
151 s->window_func_lut =
av_calloc(
s->window_size,
sizeof(*
s->window_func_lut));
152 if (!
s->window_func_lut)
154 for (
i = 0;
i <
s->window_size;
i++)
155 s->window_func_lut[
i] = sin(
M_PI *
i /
s->window_size) *
156 (1. - (
s->overlap / 100.)) *
M_PI_2;
166 if (!
s->in || !
s->out || !
s->buffer || !
s->is)
172 s->overlap_skip =
s->method ? (
s->window_size -
s->hop_size) / 2 : 0;
173 if (
s->overlap_skip > 0) {
178 s->nb_channels =
inlink->channels;
186 c->detection =
av_calloc(
s->window_size,
sizeof(*
c->detection));
187 c->auxiliary =
av_calloc(
s->ar_order + 1,
sizeof(*
c->auxiliary));
188 c->acoefficients =
av_calloc(
s->ar_order + 1,
sizeof(*
c->acoefficients));
189 c->acorrelation =
av_calloc(
s->ar_order + 1,
sizeof(*
c->acorrelation));
191 c->click =
av_calloc(
s->window_size,
sizeof(*
c->click));
192 c->index =
av_calloc(
s->window_size,
sizeof(*
c->index));
193 c->interpolated =
av_calloc(
s->window_size,
sizeof(*
c->interpolated));
194 if (!
c->auxiliary || !
c->acoefficients || !
c->detection || !
c->click ||
195 !
c->index || !
c->interpolated || !
c->acorrelation || !
c->tmp)
203 double *
output,
double scale)
207 for (
i = 0;
i <= order;
i++) {
210 for (j =
i; j <
size; j++)
228 k[0] =
a[0] = -
r[1] /
r[0];
229 alpha =
r[0] * (1. - k[0] * k[0]);
233 for (j = 0; j <
i; j++)
234 epsilon +=
a[j] *
r[
i - j];
239 for (j =
i - 1; j >= 0; j--)
240 k[j] =
a[j] + k[
i] *
a[
i - j - 1];
241 for (j = 0; j <=
i; j++)
290 for (
i = 0;
i <
n;
i++) {
291 const int in =
i *
n;
295 for (j = 0; j <
i; j++)
296 value -= matrix[j *
n + j] * matrix[
in + j] * matrix[
in + j];
303 for (j =
i + 1; j <
n; j++) {
304 const int jn = j *
n;
308 for (k = 0; k <
i; k++)
309 x -= matrix[k *
n + k] * matrix[
in + k] * matrix[jn + k];
310 matrix[jn +
i] = x / matrix[
in +
i];
318 double *vector,
int n,
double *
out)
332 for (
i = 0;
i <
n;
i++) {
333 const int in =
i *
n;
337 for (j = 0; j <
i; j++)
338 value -= matrix[
in + j] * y[j];
342 for (
i =
n - 1;
i >= 0;
i--) {
344 for (j =
i + 1; j <
n; j++)
352 double *acoefficients,
int *
index,
int nb_errors,
353 double *auxiliary,
double *interpolated)
355 double *vector, *matrix;
358 av_fast_malloc(&
c->matrix, &
c->matrix_size, nb_errors * nb_errors *
sizeof(*
c->matrix));
370 for (
i = 0;
i < nb_errors;
i++) {
371 const int im =
i * nb_errors;
373 for (j =
i; j < nb_errors; j++) {
375 matrix[j * nb_errors +
i] = matrix[
im + j] = auxiliary[
abs(
index[j] -
index[
i])];
377 matrix[j * nb_errors +
i] = matrix[
im + j] = 0;
382 for (
i = 0;
i < nb_errors;
i++) {
397 double *unused1,
double *unused2,
399 const double *
src,
double *dst)
402 double max_amplitude = 0;
406 av_fast_malloc(&
c->histogram, &
c->histogram_size,
s->nb_hbins *
sizeof(*
c->histogram));
409 histogram =
c->histogram;
410 memset(histogram, 0,
sizeof(*histogram) *
s->nb_hbins);
412 for (
i = 0;
i <
s->window_size;
i++) {
420 for (
i =
s->nb_hbins - 1;
i > 1;
i--) {
423 max_amplitude =
i / (double)
s->nb_hbins;
429 if (max_amplitude > 0.) {
430 for (
i = 0;
i <
s->window_size;
i++) {
435 memset(
clip, 0,
s->ar_order *
sizeof(*
clip));
436 memset(
clip + (
s->window_size -
s->ar_order), 0,
s->ar_order *
sizeof(*
clip));
447 double *detection,
double *acoefficients,
449 const double *
src,
double *dst)
452 int i, j, nb_clicks = 0, prev = -1;
454 memset(detection, 0,
s->window_size *
sizeof(*detection));
457 for (j = 0; j <=
s->ar_order; j++) {
458 detection[
i] += acoefficients[j] *
src[
i - j];
462 for (
i = 0;
i <
s->window_size;
i++) {
463 click[
i] = fabs(detection[
i]) > sigmae *
threshold;
467 for (
i = 0;
i <
s->window_size;
i++) {
472 for (j = prev + 1; j <
i; j++)
477 memset(click, 0,
s->ar_order *
sizeof(*click));
478 memset(click + (
s->window_size -
s->ar_order), 0,
s->ar_order *
sizeof(*click));
496 const double *
src = (
const double *)
s->in->extended_data[
ch];
497 double *
is = (
double *)
s->is->extended_data[
ch];
498 double *dst = (
double *)
s->out->extended_data[
ch];
499 double *ptr = (
double *)
out->extended_data[
ch];
500 double *
buf = (
double *)
s->buffer->extended_data[
ch];
501 const double *
w =
s->window_func_lut;
509 double *interpolated =
c->interpolated;
513 nb_errors =
s->detector(
s,
c, sigmae,
c->detection,
c->acoefficients,
517 nb_errors,
c->auxiliary, interpolated);
521 for (j = 0; j < nb_errors; j++) {
522 dst[
index[j]] = interpolated[j];
527 memcpy(dst,
src,
s->window_size *
sizeof(*dst));
530 if (
s->method == 0) {
531 for (j = 0; j <
s->window_size; j++)
532 buf[j] += dst[j] *
w[j];
534 const int skip =
s->overlap_skip;
536 for (j = 0; j <
s->hop_size; j++)
537 buf[j] = dst[skip + j];
539 for (j = 0; j <
s->hop_size; j++)
542 memmove(
buf,
buf +
s->hop_size, (
s->window_size * 2 -
s->hop_size) *
sizeof(*
buf));
543 memmove(
is,
is +
s->hop_size, (
s->window_size -
s->hop_size) *
sizeof(*
is));
544 memset(
buf +
s->window_size * 2 -
s->hop_size, 0,
s->hop_size *
sizeof(*
buf));
545 memset(
is +
s->window_size -
s->hop_size, 0,
s->hop_size *
sizeof(*
is));
556 int ret = 0, j,
ch, detected_errors = 0;
573 for (
ch = 0;
ch <
s->in->channels;
ch++) {
574 double *
is = (
double *)
s->is->extended_data[
ch];
576 for (j = 0; j <
s->hop_size; j++) {
584 if (
s->samples_left > 0)
585 out->nb_samples =
FFMIN(
s->hop_size,
s->samples_left);
588 s->pts +=
s->hop_size;
590 s->detected_errors += detected_errors;
591 s->nb_samples +=
out->nb_samples *
inlink->channels;
597 if (
s->samples_left > 0) {
598 s->samples_left -=
s->hop_size;
599 if (
s->samples_left <= 0)
652 if (
s->eof &&
s->samples_left <= 0) {
667 s->is_declip = !strcmp(
ctx->filter->name,
"adeclip");
683 s->is_declip ?
"clips" :
"clicks",
s->detected_errors,
684 s->nb_samples, 100. *
s->detected_errors /
s->nb_samples);
694 for (
i = 0;
i <
s->nb_channels;
i++) {
708 c->histogram_size = 0;
741 .priv_class = &adeclick_class,
769 .priv_class = &adeclip_class,
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
A list of supported channel layouts.
static int query_formats(AVFilterContext *ctx)
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
static const AVFilterPad outputs[]
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
The official guide to swscale for confused that is
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
enum MovChannelLayoutTag * layouts
#define AVERROR_EOF
End of file.
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_cold int end(AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
static av_cold int init(AVFilterContext *ctx)
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
static int activate(AVFilterContext *ctx)
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
Context for an Audio FIFO Buffer.
int av_audio_fifo_drain(AVAudioFifo *af, int nb_samples)
Drain data from an AVAudioFifo.
A filter pad used for either input or output.
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
int av_audio_fifo_write(AVAudioFifo *af, void **data, int nb_samples)
Write data to an AVAudioFifo.
static int detect_clicks(AudioDeclickContext *s, DeclickChannel *c, double sigmae, double *detection, double *acoefficients, uint8_t *click, int *index, const double *src, double *dst)
static av_cold void uninit(AVFilterContext *ctx)
static int config_input(AVFilterLink *inlink)
static void autocorrelation(const double *input, int order, int size, double *output, double scale)
Describe the class of an AVClass context structure.
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
int(* detector)(struct AudioDeclickContext *s, DeclickChannel *c, double sigmae, double *detection, double *acoefficients, uint8_t *click, int *index, const double *src, double *dst)
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int filter_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
static const AVOption adeclick_options[]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
double fmin(double, double)
#define AV_NOPTS_VALUE
Undefined timestamp value.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
FF_FILTER_FORWARD_WANTED(outlink, inlink)
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
static double autoregression(const double *samples, int ar_order, int nb_samples, double *k, double *r, double *a)
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
#define AV_LOG_INFO
Standard information.
static int detect_clips(AudioDeclickContext *s, DeclickChannel *c, double unused0, double *unused1, double *unused2, uint8_t *clip, int *index, const double *src, double *dst)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static int filter_frame(AVFilterLink *inlink)
#define i(width, name, range_min, range_max)
static int find_index(int *index, int value, int size)
static const AVOption adeclip_options[]
AVSampleFormat
Audio sample formats.
Used for passing data between threads.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const char * name
Pad name.
static int factorization(double *matrix, int n)
AVFILTER_DEFINE_CLASS(adeclick)
static const AVFilterPad inputs[]
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
@ AV_SAMPLE_FMT_DBLP
double, planar
Filter the word “frame” indicates either a video frame or a group of audio samples
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
static const int16_t alpha[]
static int do_interpolation(DeclickChannel *c, double *matrix, double *vector, int n, double *out)
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
#define flags(name, subs,...)
static int isfinite_array(double *samples, int nb_samples)
int av_audio_fifo_peek(AVAudioFifo *af, void **data, int nb_samples)
Peek data from an AVAudioFifo.
static double clip(void *opaque, double val)
Clip value val in the minval - maxval range.
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.