Go to the documentation of this file.
153 #define FULLPEL_MODE 1
154 #define HALFPEL_MODE 2
155 #define THIRDPEL_MODE 3
156 #define PREDICT_MODE 4
168 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
169 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
170 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
171 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
175 0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
176 3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
177 1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
178 3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
184 { 0, 2 }, { 1, 1 }, { 2, 0 },
185 { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
186 { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
187 { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
188 { 2, 4 }, { 3, 3 }, { 4, 2 },
194 { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
195 { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
196 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
197 { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
198 { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
199 { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
200 { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
201 { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
202 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
203 { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
204 { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
205 { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
208 static const struct {
212 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
213 { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
214 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
215 { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
219 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
220 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
221 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
222 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
235 for (
i = 0;
i < 4;
i++) {
236 const int z0 = 13 * (
input[4 *
i + 0] +
input[4 *
i + 2]);
237 const int z1 = 13 * (
input[4 *
i + 0] -
input[4 *
i + 2]);
238 const int z2 = 7 *
input[4 *
i + 1] - 17 *
input[4 *
i + 3];
239 const int z3 = 17 *
input[4 *
i + 1] + 7 *
input[4 *
i + 3];
241 temp[4 *
i + 0] = z0 + z3;
242 temp[4 *
i + 1] = z1 + z2;
243 temp[4 *
i + 2] = z1 - z2;
244 temp[4 *
i + 3] = z0 - z3;
247 for (
i = 0;
i < 4;
i++) {
248 const int offset = x_offset[
i];
249 const int z0 = 13 * (
temp[4 * 0 +
i] +
temp[4 * 2 +
i]);
250 const int z1 = 13 * (
temp[4 * 0 +
i] -
temp[4 * 2 +
i]);
251 const int z2 = 7 *
temp[4 * 1 +
i] - 17 *
temp[4 * 3 +
i];
252 const int z3 = 17 *
temp[4 * 1 +
i] + 7 *
temp[4 * 3 +
i];
270 : qmul * (
block[0] >> 3) / 2);
274 for (
i = 0;
i < 4;
i++) {
275 const int z0 = 13 * (
block[0 + 4 *
i] +
block[2 + 4 *
i]);
276 const int z1 = 13 * (
block[0 + 4 *
i] -
block[2 + 4 *
i]);
277 const int z2 = 7 *
block[1 + 4 *
i] - 17 *
block[3 + 4 *
i];
278 const int z3 = 17 *
block[1 + 4 *
i] + 7 *
block[3 + 4 *
i];
280 block[0 + 4 *
i] = z0 + z3;
281 block[1 + 4 *
i] = z1 + z2;
282 block[2 + 4 *
i] = z1 - z2;
283 block[3 + 4 *
i] = z0 - z3;
286 for (
i = 0;
i < 4;
i++) {
287 const unsigned z0 = 13 * (
block[
i + 4 * 0] +
block[
i + 4 * 2]);
288 const unsigned z1 = 13 * (
block[
i + 4 * 0] -
block[
i + 4 * 2]);
289 const unsigned z2 = 7 *
block[
i + 4 * 1] - 17 *
block[
i + 4 * 3];
290 const unsigned z3 = 17 *
block[
i + 4 * 1] + 7 *
block[
i + 4 * 3];
291 const int rr = (
dc + 0x80000
u);
293 dst[
i +
stride * 0] = av_clip_uint8(dst[
i +
stride * 0] + ((
int)((z0 + z3) * qmul + rr) >> 20));
294 dst[
i +
stride * 1] = av_clip_uint8(dst[
i +
stride * 1] + ((
int)((z1 + z2) * qmul + rr) >> 20));
295 dst[
i +
stride * 2] = av_clip_uint8(dst[
i +
stride * 2] + ((
int)((z1 - z2) * qmul + rr) >> 20));
296 dst[
i +
stride * 3] = av_clip_uint8(dst[
i +
stride * 3] + ((
int)((z0 - z3) * qmul + rr) >> 20));
299 memset(
block, 0, 16 *
sizeof(int16_t));
305 static const uint8_t *
const scan_patterns[4] = {
311 const int intra = 3 *
type >> 2;
314 for (limit = (16 >> intra);
index < 16;
index = limit, limit += 8) {
319 sign = (vlc & 1) ? 0 : -1;
326 }
else if (vlc < 4) {
339 level = (vlc >> 3) + ((
run == 0) ? 8 : ((
run < 2) ? 2 : ((
run < 5) ? 0 : -1)));
342 level = (vlc >> 4) + ((
run == 0) ? 4 : ((
run < 3) ? 2 : ((
run < 10) ? 1 : 0)));
363 int i,
int list,
int part_width)
365 const int topright_ref =
s->ref_cache[
list][
i - 8 + part_width];
368 *
C =
s->mv_cache[
list][
i - 8 + part_width];
371 *
C =
s->mv_cache[
list][
i - 8 - 1];
372 return s->ref_cache[
list][
i - 8 - 1];
384 int part_width,
int list,
385 int ref,
int *
const mx,
int *
const my)
387 const int index8 =
scan8[n];
388 const int top_ref =
s->ref_cache[
list][index8 - 8];
389 const int left_ref =
s->ref_cache[
list][index8 - 1];
390 const int16_t *
const A =
s->mv_cache[
list][index8 - 1];
391 const int16_t *
const B =
s->mv_cache[
list][index8 - 8];
393 int diagonal_ref, match_count;
404 match_count = (diagonal_ref ==
ref) + (top_ref ==
ref) + (left_ref ==
ref);
405 if (match_count > 1) {
408 }
else if (match_count == 1) {
409 if (left_ref ==
ref) {
412 }
else if (top_ref ==
ref) {
434 int mx,
int my,
int dxy,
435 int thirdpel,
int dir,
int avg)
437 const SVQ3Frame *pic = (dir == 0) ?
s->last_pic :
s->next_pic;
440 int blocksize = 2 - (
width >> 3);
441 int linesize =
s->cur_pic->f->linesize[0];
442 int uvlinesize =
s->cur_pic->f->linesize[1];
447 if (mx < 0 || mx >=
s->h_edge_pos -
width - 1 ||
448 my < 0 || my >=
s->v_edge_pos -
height - 1) {
450 mx = av_clip(mx, -16,
s->h_edge_pos -
width + 15);
451 my = av_clip(my, -16,
s->v_edge_pos -
height + 15);
455 dest =
s->cur_pic->f->data[0] + x + y * linesize;
456 src = pic->
f->
data[0] + mx + my * linesize;
459 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
462 mx, my,
s->h_edge_pos,
s->v_edge_pos);
463 src =
s->edge_emu_buffer;
466 (
avg ?
s->tdsp.avg_tpel_pixels_tab
467 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src, linesize,
470 (
avg ?
s->hdsp.avg_pixels_tab
471 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src, linesize,
475 mx = mx + (mx < (
int) x) >> 1;
476 my = my + (my < (
int) y) >> 1;
481 for (
i = 1;
i < 3;
i++) {
482 dest =
s->cur_pic->f->data[
i] + (x >> 1) + (y >> 1) * uvlinesize;
483 src = pic->
f->
data[
i] + mx + my * uvlinesize;
486 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
487 uvlinesize, uvlinesize,
489 mx, my, (
s->h_edge_pos >> 1),
491 src =
s->edge_emu_buffer;
494 (
avg ?
s->tdsp.avg_tpel_pixels_tab
495 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src,
499 (
avg ?
s->hdsp.avg_pixels_tab
500 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src,
510 int i, j, k, mx, my, dx, dy, x, y;
511 const int part_width = ((
size & 5) == 4) ? 4 : 16 >> (
size & 1);
512 const int part_height = 16 >> ((unsigned)(
size + 1) / 3);
514 const int h_edge_pos = 6 * (
s->h_edge_pos - part_width) - extra_width;
515 const int v_edge_pos = 6 * (
s->v_edge_pos - part_height) - extra_width;
517 for (
i = 0;
i < 16;
i += part_height)
518 for (j = 0; j < 16; j += part_width) {
519 const int b_xy = (4 *
s->mb_x + (j >> 2)) +
520 (4 *
s->mb_y + (
i >> 2)) *
s->b_stride;
522 x = 16 *
s->mb_x + j;
523 y = 16 *
s->mb_y +
i;
524 k = (j >> 2 & 1) + (
i >> 1 & 2) +
525 (j >> 1 & 4) + (
i & 8);
530 mx =
s->next_pic->motion_val[0][b_xy][0] * 2;
531 my =
s->next_pic->motion_val[0][b_xy][1] * 2;
534 mx = mx *
s->frame_num_offset /
535 s->prev_frame_num_offset + 1 >> 1;
536 my = my *
s->frame_num_offset /
537 s->prev_frame_num_offset + 1 >> 1;
539 mx = mx * (
s->frame_num_offset -
s->prev_frame_num_offset) /
540 s->prev_frame_num_offset + 1 >> 1;
541 my = my * (
s->frame_num_offset -
s->prev_frame_num_offset) /
542 s->prev_frame_num_offset + 1 >> 1;
547 mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
548 my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
557 if (dx != (int16_t)dx || dy != (int16_t)dy) {
566 mx = (mx + 1 >> 1) + dx;
567 my = (my + 1 >> 1) + dy;
568 fx = (unsigned)(mx + 0x30000) / 3 - 0x10000;
569 fy = (unsigned)(my + 0x30000) / 3 - 0x10000;
570 dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
573 fx, fy, dxy, 1, dir,
avg);
577 mx = (unsigned)(mx + 1 + 0x30000) / 3 + dx - 0x10000;
578 my = (unsigned)(my + 1 + 0x30000) / 3 + dy - 0x10000;
579 dxy = (mx & 1) + 2 * (my & 1);
582 mx >> 1, my >> 1, dxy, 0, dir,
avg);
586 mx = (unsigned)(mx + 3 + 0x60000) / 6 + dx - 0x10000;
587 my = (unsigned)(my + 3 + 0x60000) / 6 + dy - 0x10000;
590 mx, my, 0, 0, dir,
avg);
599 if (part_height == 8 &&
i < 8) {
602 if (part_width == 8 && j < 8)
605 if (part_width == 8 && j < 8)
607 if (part_width == 4 || part_height == 4)
613 part_width >> 2, part_height >> 2,
s->b_stride,
621 int mb_type,
const int *block_offset,
626 for (
i = 0;
i < 16;
i++)
627 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
628 uint8_t *
const ptr = dest_y + block_offset[
i];
637 const int *block_offset,
642 int qscale =
s->qscale;
645 for (
i = 0;
i < 16;
i++) {
646 uint8_t *
const ptr = dest_y + block_offset[
i];
647 const int dir =
s->intra4x4_pred_mode_cache[
scan8[
i]];
652 const int topright_avail = (
s->topright_samples_available <<
i) & 0x8000;
654 if (!topright_avail) {
655 tr = ptr[3 - linesize] * 0x01010101
u;
658 topright = ptr + 4 - linesize;
662 s->hpc.pred4x4[dir](ptr, topright, linesize);
663 nnz =
s->non_zero_count_cache[
scan8[
i]];
669 s->hpc.pred16x16[
s->intra16x16_pred_mode](dest_y, linesize);
676 const int mb_x =
s->mb_x;
677 const int mb_y =
s->mb_y;
678 const int mb_xy =
s->mb_xy;
679 const int mb_type =
s->cur_pic->mb_type[mb_xy];
680 uint8_t *dest_y, *dest_cb, *dest_cr;
681 int linesize, uvlinesize;
683 const int *block_offset = &
s->block_offset[0];
684 const int block_h = 16 >> 1;
686 linesize =
s->cur_pic->f->linesize[0];
687 uvlinesize =
s->cur_pic->f->linesize[1];
689 dest_y =
s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16;
690 dest_cb =
s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h;
691 dest_cr =
s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h;
693 s->vdsp.prefetch(dest_y + (
s->mb_x & 3) * 4 * linesize + 64, linesize, 4);
694 s->vdsp.prefetch(dest_cb + (
s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2);
697 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cb, uvlinesize);
698 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cr, uvlinesize);
706 uint8_t *dest[2] = { dest_cb, dest_cr };
707 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 1,
708 s->dequant4_coeff[4][0]);
709 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 2,
710 s->dequant4_coeff[4][0]);
711 for (j = 1; j < 3; j++) {
712 for (
i = j * 16;
i < j * 16 + 4;
i++)
713 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
714 uint8_t *
const ptr = dest[j - 1] + block_offset[
i];
724 int i, j, k, m, dir,
mode;
728 const int mb_xy =
s->mb_xy;
729 const int b_xy = 4 *
s->mb_x + 4 *
s->mb_y *
s->b_stride;
731 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
732 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
733 s->topright_samples_available = 0xFFFF;
737 s->next_pic->mb_type[mb_xy] == -1) {
747 mb_type =
FFMIN(
s->next_pic->mb_type[mb_xy], 6);
755 }
else if (mb_type < 8) {
756 if (
s->thirdpel_flag &&
s->halfpel_flag == !
get_bits1(&
s->gb_slice))
758 else if (
s->halfpel_flag &&
773 for (m = 0; m < 2; m++) {
774 if (
s->mb_x > 0 &&
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6] != -1) {
775 for (
i = 0;
i < 4;
i++)
777 s->cur_pic->motion_val[m][b_xy - 1 +
i *
s->b_stride]);
779 for (
i = 0;
i < 4;
i++)
783 memcpy(
s->mv_cache[m][
scan8[0] - 1 * 8],
784 s->cur_pic->motion_val[m][b_xy -
s->b_stride],
785 4 * 2 *
sizeof(int16_t));
786 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8],
789 if (
s->mb_x <
s->mb_width - 1) {
791 s->cur_pic->motion_val[m][b_xy -
s->b_stride + 4]);
792 s->ref_cache[m][
scan8[0] + 4 - 1 * 8] =
793 (
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride + 1] + 6] == -1 ||
799 s->cur_pic->motion_val[m][b_xy -
s->b_stride - 1]);
800 s->ref_cache[m][
scan8[0] - 1 - 1 * 8] =
805 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8 - 1],
821 for (
i = 0;
i < 4;
i++)
822 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
823 0, 4 * 2 *
sizeof(int16_t));
829 for (
i = 0;
i < 4;
i++)
830 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
831 0, 4 * 2 *
sizeof(int16_t));
836 }
else if (mb_type == 8 || mb_type == 33) {
837 int8_t *i4x4 =
s->intra4x4_pred_mode +
s->mb2br_xy[
s->mb_xy];
838 int8_t *i4x4_cache =
s->intra4x4_pred_mode_cache;
840 memset(
s->intra4x4_pred_mode_cache, -1, 8 * 5 *
sizeof(int8_t));
844 for (
i = 0;
i < 4;
i++)
845 s->intra4x4_pred_mode_cache[
scan8[0] - 1 +
i * 8] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6 -
i];
846 if (
s->intra4x4_pred_mode_cache[
scan8[0] - 1] == -1)
847 s->left_samples_available = 0x5F5F;
850 s->intra4x4_pred_mode_cache[4 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 0];
851 s->intra4x4_pred_mode_cache[5 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 1];
852 s->intra4x4_pred_mode_cache[6 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 2];
853 s->intra4x4_pred_mode_cache[7 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 3];
855 if (
s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
856 s->top_samples_available = 0x33FF;
860 for (
i = 0;
i < 16;
i += 2) {
865 "luma prediction:%"PRIu32
"\n", vlc);
870 top = &
s->intra4x4_pred_mode_cache[
scan8[
i] - 8];
875 if (
left[1] == -1 ||
left[2] == -1) {
881 for (
i = 0;
i < 4;
i++)
882 memset(&
s->intra4x4_pred_mode_cache[
scan8[0] + 8 *
i],
DC_PRED, 4);
886 i4x4[4] = i4x4_cache[7 + 8 * 3];
887 i4x4[5] = i4x4_cache[7 + 8 * 2];
888 i4x4[6] = i4x4_cache[7 + 8 * 1];
892 s->avctx,
s->top_samples_available,
893 s->left_samples_available);
895 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
896 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
898 for (
i = 0;
i < 4;
i++)
901 s->top_samples_available = 0x33FF;
902 s->left_samples_available = 0x5F5F;
908 dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
911 s->left_samples_available, dir, 0)) < 0) {
913 return s->intra16x16_pred_mode;
921 for (
i = 0;
i < 4;
i++)
922 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
923 0, 4 * 2 *
sizeof(int16_t));
925 for (
i = 0;
i < 4;
i++)
926 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
927 0, 4 * 2 *
sizeof(int16_t));
931 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy],
DC_PRED, 8);
934 memset(
s->non_zero_count_cache + 8, 0, 14 * 8 *
sizeof(
uint8_t));
951 if (
s->qscale > 31
u) {
961 "error while decoding intra luma dc\n");
970 for (
i = 0;
i < 4;
i++)
971 if ((cbp & (1 <<
i))) {
972 for (j = 0; j < 4; j++) {
973 k =
index ? (1 * (j & 1) + 2 * (
i & 1) +
974 2 * (j & 2) + 4 * (
i & 2))
976 s->non_zero_count_cache[
scan8[k]] = 1;
980 "error while decoding block\n");
987 for (
i = 1;
i < 3; ++
i)
990 "error while decoding chroma dc block\n");
995 for (
i = 1;
i < 3;
i++) {
996 for (j = 0; j < 4; j++) {
998 s->non_zero_count_cache[
scan8[k]] = 1;
1002 "error while decoding chroma ac block\n");
1012 s->cur_pic->mb_type[mb_xy] = mb_type;
1024 const int mb_xy =
s->mb_xy;
1035 int slice_bits, slice_bytes, slice_length;
1036 int length =
header >> 5 & 3;
1038 slice_length =
show_bits(&
s->gb, 8 * length);
1039 slice_bits = slice_length * 8;
1040 slice_bytes = slice_length + length - 1;
1052 memcpy(
s->slice_buf,
s->gb.buffer +
s->gb.index / 8, slice_bytes);
1054 if (
s->watermark_key) {
1061 memmove(
s->slice_buf, &
s->slice_buf[slice_length], length - 1);
1073 if ((
header & 0x9F) == 2) {
1074 i = (
s->mb_num < 64) ? 6 : (1 +
av_log2(
s->mb_num - 1));
1088 if (
s->has_watermark)
1099 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy - 1] + 3,
1100 -1, 4 *
sizeof(int8_t));
1101 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_x],
1102 -1, 8 *
sizeof(int8_t) *
s->mb_x);
1105 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_stride],
1106 -1, 8 *
sizeof(int8_t) * (
s->mb_width -
s->mb_x));
1109 s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride - 1] + 3] = -1;
1118 const int max_qp = 51;
1120 for (q = 0; q < max_qp + 1; q++) {
1123 for (x = 0; x < 16; x++)
1124 s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
1133 unsigned char *extradata;
1134 unsigned char *extradata_end;
1136 int marker_found = 0;
1139 s->cur_pic = &
s->frames[0];
1140 s->last_pic = &
s->frames[1];
1141 s->next_pic = &
s->frames[2];
1146 if (!
s->cur_pic->f || !
s->last_pic->f || !
s->next_pic->f)
1163 s->halfpel_flag = 1;
1164 s->thirdpel_flag = 1;
1165 s->has_watermark = 0;
1168 extradata = (
unsigned char *)avctx->
extradata;
1172 if (!memcmp(extradata,
"SEQH", 4)) {
1183 int frame_size_code;
1184 int unk0, unk1, unk2, unk3, unk4;
1188 if (
size > extradata_end - extradata - 8) {
1195 frame_size_code =
get_bits(&gb, 3);
1196 switch (frame_size_code) {
1249 unk0, unk1, unk2, unk3, unk4);
1258 if (
s->has_watermark) {
1266 unsigned long buf_len = watermark_width *
1267 watermark_height * 4;
1271 if (watermark_height <= 0 ||
1272 (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height) {
1283 watermark_width, watermark_height);
1285 "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
1287 if (uncompress(buf, &buf_len, extradata + 8 +
offset,
1290 "could not uncompress watermark logo\n");
1297 s->watermark_key =
s->watermark_key << 16 |
s->watermark_key;
1299 "watermark key %#"PRIx32
"\n",
s->watermark_key);
1303 "this svq3 file contains watermark which need zlib support compiled in\n");
1310 s->mb_width = (avctx->
width + 15) / 16;
1311 s->mb_height = (avctx->
height + 15) / 16;
1312 s->mb_stride =
s->mb_width + 1;
1313 s->mb_num =
s->mb_width *
s->mb_height;
1314 s->b_stride = 4 *
s->mb_width;
1315 s->h_edge_pos =
s->mb_width * 16;
1316 s->v_edge_pos =
s->mb_height * 16;
1318 s->intra4x4_pred_mode =
av_mallocz(
s->mb_stride * 2 * 8);
1319 if (!
s->intra4x4_pred_mode)
1322 s->mb2br_xy =
av_mallocz(
s->mb_stride * (
s->mb_height + 1) *
1323 sizeof(*
s->mb2br_xy));
1327 for (y = 0; y <
s->mb_height; y++)
1328 for (x = 0; x <
s->mb_width; x++) {
1329 const int mb_xy = x + y *
s->mb_stride;
1331 s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 *
s->mb_stride));
1345 for (
i = 0;
i < 2;
i++) {
1357 const int big_mb_num =
s->mb_stride * (
s->mb_height + 1) + 1;
1358 const int mb_array_size =
s->mb_stride *
s->mb_height;
1359 const int b4_stride =
s->mb_width * 4 + 1;
1360 const int b4_array_size = b4_stride *
s->mb_height * 4;
1371 for (
i = 0;
i < 2;
i++) {
1390 if (!
s->edge_emu_buffer) {
1392 if (!
s->edge_emu_buffer)
1406 int buf_size = avpkt->
size;
1412 if (buf_size == 0) {
1413 if (
s->next_pic->f->data[0] && !
s->low_delay && !
s->last_frame_output) {
1417 s->last_frame_output = 1;
1423 s->mb_x =
s->mb_y =
s->mb_xy = 0;
1425 if (
s->watermark_key) {
1429 memcpy(
s->buf, avpkt->
data, buf_size);
1442 s->pict_type =
s->slice_type;
1450 s->cur_pic->f->pict_type =
s->pict_type;
1457 for (
i = 0;
i < 16;
i++) {
1459 s->block_offset[48 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[0] * ((
scan8[
i] -
scan8[0]) >> 3);
1461 for (
i = 0;
i < 16;
i++) {
1462 s->block_offset[16 +
i] =
1463 s->block_offset[32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 4 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1464 s->block_offset[48 + 16 +
i] =
1465 s->block_offset[48 + 32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1469 if (!
s->last_pic->f->data[0]) {
1475 memset(
s->last_pic->f->data[0], 0, avctx->
height *
s->last_pic->f->linesize[0]);
1476 memset(
s->last_pic->f->data[1], 0x80, (avctx->
height / 2) *
1477 s->last_pic->f->linesize[1]);
1478 memset(
s->last_pic->f->data[2], 0x80, (avctx->
height / 2) *
1479 s->last_pic->f->linesize[2]);
1488 memset(
s->next_pic->f->data[0], 0, avctx->
height *
s->next_pic->f->linesize[0]);
1489 memset(
s->next_pic->f->data[1], 0x80, (avctx->
height / 2) *
1490 s->next_pic->f->linesize[1]);
1491 memset(
s->next_pic->f->data[2], 0x80, (avctx->
height / 2) *
1492 s->next_pic->f->linesize[2]);
1498 "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
1500 s->halfpel_flag,
s->thirdpel_flag,
1501 s->adaptive_quant,
s->qscale,
s->slice_num);
1508 if (
s->next_p_frame_damaged) {
1512 s->next_p_frame_damaged = 0;
1516 s->frame_num_offset =
s->slice_num -
s->prev_frame_num;
1518 if (
s->frame_num_offset < 0)
1519 s->frame_num_offset += 256;
1520 if (
s->frame_num_offset == 0 ||
1521 s->frame_num_offset >=
s->prev_frame_num_offset) {
1526 s->prev_frame_num =
s->frame_num;
1527 s->frame_num =
s->slice_num;
1528 s->prev_frame_num_offset =
s->frame_num -
s->prev_frame_num;
1530 if (
s->prev_frame_num_offset < 0)
1531 s->prev_frame_num_offset += 256;
1534 for (m = 0; m < 2; m++) {
1536 for (
i = 0;
i < 4;
i++) {
1538 for (j = -1; j < 4; j++)
1539 s->ref_cache[m][
scan8[0] + 8 *
i + j] = 1;
1545 for (
s->mb_y = 0;
s->mb_y <
s->mb_height;
s->mb_y++) {
1546 for (
s->mb_x = 0;
s->mb_x <
s->mb_width;
s->mb_x++) {
1548 s->mb_xy =
s->mb_x +
s->mb_y *
s->mb_stride;
1557 if (
s->slice_type !=
s->pict_type) {
1571 "error while decoding MB %d %d\n",
s->mb_x,
s->mb_y);
1575 if (mb_type != 0 ||
s->cbp)
1579 s->cur_pic->mb_type[
s->mb_x +
s->mb_y *
s->mb_stride] =
1584 s->last_pic->f->data[0] ?
s->last_pic->f :
NULL,
1591 if (
s->mb_y !=
s->mb_height ||
s->mb_x !=
s->mb_width) {
1603 else if (
s->last_pic->f->data[0])
1609 if (
s->last_pic->f->data[0] ||
s->low_delay)
uint8_t * edge_emu_buffer
static const uint32_t svq3_dequant_coeff[32]
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
enum AVPictureType slice_type
AVPixelFormat
Pixel format.
static av_cold int init(AVCodecContext *avctx)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int svq3_decode_slice_header(AVCodecContext *avctx)
#define FFSWAP(type, a, b)
#define u(width, name, range_min, range_max)
uint8_t * data
The data buffer.
const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM+1]
static const int8_t mv[256][2]
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
unsigned int left_samples_available
static int get_bits_count(const GetBitContext *s)
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
const uint8_t ff_h264_golomb_to_inter_cbp[48]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
the normal 2^n-1 "JPEG" YUV ranges
void * av_mallocz_array(size_t nmemb, size_t size)
static void free_picture(AVCodecContext *avctx, SVQ3Frame *pic)
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
const uint8_t ff_h264_golomb_to_intra4x4_cbp[48]
#define MB_TYPE_INTRA16x16
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic)
static void skip_bits(GetBitContext *s, int n)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
unsigned int topright_samples_available
enum AVDiscard skip_frame
Skip decoding for selected frames.
int flags
AV_CODEC_FLAG_*.
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
const uint8_t ff_h264_golomb_to_pict_type[5]
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int8_t intra4x4_pred_mode_cache[5 *8]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
int has_b_frames
Size of the frame reordering buffer in the decoder.
enum AVPictureType pict_type
static int svq3_mc_dir(SVQ3Context *s, int size, int mode, int dir, int avg)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
av_cold void ff_tpeldsp_init(TpelDSPContext *c)
static enum AVPixelFormat pix_fmts[]
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n, int part_width, int list, int ref, int *const mx, int *const my)
Get the predicted MV.
unsigned int top_samples_available
AVBufferRef * motion_val_buf[2]
int prev_frame_num_offset
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int16_t(*[2] motion_val)[2]
@ AVDISCARD_ALL
discard all
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
AVBufferRef * ref_index_buf[2]
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
const uint8_t ff_h264_chroma_dc_scan[4]
static const struct @135 svq3_dct_tables[2][16]
AVBufferRef * mb_type_buf
int16_t mb_luma_dc[3][16 *2]
static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
Context for storing H.264 DSP functions.
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
static void init_dequant4_coeff_table(SVQ3Context *s)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static av_always_inline int svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C, int i, int list, int part_width)
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
void ff_draw_horiz_band(AVCodecContext *avctx, AVFrame *cur, AVFrame *last, int y, int h, int picture_structure, int first_field, int low_delay)
Draw a horizontal band if supported.
static void hl_decode_mb(SVQ3Context *s)
static int get_interleaved_se_golomb(GetBitContext *gb)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static const uint8_t header[24]
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
const uint8_t ff_h264_quant_rem6[QP_MAX_NUM+1]
static void skip_bits1(GetBitContext *s)
static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
#define AV_LOG_INFO
Standard information.
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
static void svq3_add_idct_c(uint8_t *dst, int16_t *block, int stride, int qp, int dc)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
#define DECLARE_ALIGNED(n, t, v)
static int svq3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
#define i(width, name, range_min, range_max)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
int16_t mv_cache[2][5 *8][2]
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
uint8_t non_zero_count_cache[15 *8]
#define PART_NOT_AVAILABLE
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
static const uint8_t svq3_scan[16]
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
static const int8_t svq3_pred_1[6][6][5]
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static int svq3_decode_block(GetBitContext *gb, int16_t *block, int index, const int type)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static int skip_1stop_8data_bits(GetBitContext *gb)
main external API structure.
const uint8_t ff_h264_dequant4_coeff_init[6][3]
int block_offset[2 *(16 *3)]
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
int ff_h264_check_intra4x4_pred_mode(int8_t *pred_mode_cache, void *logctx, int top_samples_available, int left_samples_available)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...
const IMbInfo ff_h264_i_mb_type_info[26]
static void fill_rectangle(int x, int y, int w, int h)
static const uint8_t scan8[16 *3+3]
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static const uint8_t luma_dc_zigzag_scan[16]
const uint8_t ff_h264_quant_div6[QP_MAX_NUM+1]
Context for storing H.264 prediction functions.
static int shift(int a, int b)
static void svq3_mc_dir_part(SVQ3Context *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel, int dir, int avg)
@ AV_PICTURE_TYPE_P
Predicted.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
A reference to a data buffer.
static int svq3_decode_end(AVCodecContext *avctx)
int frame_number
Frame counter, set by libavcodec.
#define avpriv_request_sample(...)
uint32_t dequant4_coeff[QP_MAX_NUM+1][16]
int8_t ref_cache[2][5 *8]
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int svq3_decode_init(AVCodecContext *avctx)
@ AVDISCARD_NONREF
discard all non reference
int8_t * intra4x4_pred_mode
static const uint8_t svq3_pred_0[25][2]
int ff_h264_check_intra_pred_mode(void *logctx, int top_samples_available, int left_samples_available, int mode, int is_chroma)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...