Go to the documentation of this file.
40 { 36, 68, 60, 92, 34, 66, 58, 90, },
41 { 100, 4, 124, 28, 98, 2, 122, 26, },
42 { 52, 84, 44, 76, 50, 82, 42, 74, },
43 { 116, 20, 108, 12, 114, 18, 106, 10, },
44 { 32, 64, 56, 88, 38, 70, 62, 94, },
45 { 96, 0, 120, 24, 102, 6, 126, 30, },
46 { 48, 80, 40, 72, 54, 86, 46, 78, },
47 { 112, 16, 104, 8, 118, 22, 110, 14, },
48 { 36, 68, 60, 92, 34, 66, 58, 90, },
52 64, 64, 64, 64, 64, 64, 64, 64
68 const int32_t *filterPos,
int filterSize)
73 const uint16_t *
src = (
const uint16_t *) _src;
83 for (
i = 0;
i < dstW;
i++) {
85 int srcPos = filterPos[
i];
88 for (j = 0; j < filterSize; j++) {
98 const int32_t *filterPos,
int filterSize)
102 const uint16_t *
src = (
const uint16_t *) _src;
103 int sh =
desc->comp[0].depth - 1;
111 for (
i = 0;
i < dstW;
i++) {
113 int srcPos = filterPos[
i];
116 for (j = 0; j < filterSize; j++) {
120 dst[
i] =
FFMIN(
val >> sh, (1 << 15) - 1);
127 const int32_t *filterPos,
int filterSize)
130 for (
i = 0;
i < dstW;
i++) {
132 int srcPos = filterPos[
i];
134 for (j = 0; j < filterSize; j++) {
143 const int32_t *filterPos,
int filterSize)
147 for (
i = 0;
i < dstW;
i++) {
149 int srcPos = filterPos[
i];
151 for (j = 0; j < filterSize; j++) {
164 dstU[
i] = (
FFMIN(dstU[
i], 30775) * 4663 - 9289992) >> 12;
165 dstV[
i] = (
FFMIN(dstV[
i], 30775) * 4663 - 9289992) >> 12;
173 dstU[
i] = (dstU[
i] * 1799 + 4081085) >> 11;
174 dstV[
i] = (dstV[
i] * 1799 + 4081085) >> 11;
182 dst[
i] = (
FFMIN(dst[
i], 30189) * 19077 - 39057361) >> 14;
189 dst[
i] = (dst[
i] * 14071 + 33561947) >> 14;
198 dstU[
i] = (
FFMIN(dstU[
i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12;
199 dstV[
i] = (
FFMIN(dstV[
i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12;
209 dstU[
i] = (dstU[
i] * 1799 + (4081085 << 4)) >> 11;
210 dstV[
i] = (dstV[
i] * 1799 + (4081085 << 4)) >> 11;
219 dst[
i] = ((
int)(
FFMIN(dst[
i], 30189 << 4) * 4769
U - (39057361 << 2))) >> 12;
228 dst[
i] = (dst[
i]*(14071/4) + (33561947<<4)/4)>>12;
232 #define DEBUG_SWSCALE_BUFFERS 0
233 #define DEBUG_BUFFERS(...) \
234 if (DEBUG_SWSCALE_BUFFERS) \
235 av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
238 int srcStride[],
int srcSliceY,
243 const int dstW =
c->dstW;
244 const int dstH =
c->dstH;
247 const int flags =
c->flags;
248 int32_t *vLumFilterPos =
c->vLumFilterPos;
249 int32_t *vChrFilterPos =
c->vChrFilterPos;
251 const int vLumFilterSize =
c->vLumFilterSize;
252 const int vChrFilterSize =
c->vChrFilterSize;
261 const int chrSrcSliceY = srcSliceY >>
c->chrSrcVSubSample;
263 int should_dither =
isNBPS(
c->srcFormat) ||
269 int lastInLumBuf =
c->lastInLumBuf;
270 int lastInChrBuf =
c->lastInChrBuf;
273 int lumEnd =
c->descIndex[0];
274 int chrStart = lumEnd;
275 int chrEnd =
c->descIndex[1];
277 int vEnd =
c->numDesc;
278 SwsSlice *src_slice = &
c->slice[lumStart];
279 SwsSlice *hout_slice = &
c->slice[
c->numSlice-2];
280 SwsSlice *vout_slice = &
c->slice[
c->numSlice-1];
283 int needAlpha =
c->needAlpha;
294 srcStride[3] = srcStride[0];
296 srcStride[1] *= 1 <<
c->vChrDrop;
297 srcStride[2] *= 1 <<
c->vChrDrop;
299 DEBUG_BUFFERS(
"swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
300 src[0], srcStride[0],
src[1], srcStride[1],
301 src[2], srcStride[2],
src[3], srcStride[3],
302 dst[0], dstStride[0], dst[1], dstStride[1],
303 dst[2], dstStride[2], dst[3], dstStride[3]);
304 DEBUG_BUFFERS(
"srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
307 vLumFilterSize, vChrFilterSize);
309 if (dstStride[0]&15 || dstStride[1]&15 ||
310 dstStride[2]&15 || dstStride[3]&15) {
311 static int warnedAlready = 0;
314 "Warning: dstStride is not aligned!\n"
315 " ->cannot do aligned memory accesses anymore\n");
320 if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
321 || (uintptr_t)
src[0]&15 || (uintptr_t)
src[1]&15 || (uintptr_t)
src[2]&15
322 || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
323 || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
325 static int warnedAlready=0;
336 if (srcSliceY == 0) {
342 if (!should_dither) {
348 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX,
c->use_mmx_vfilter);
351 srcSliceY,
srcSliceH, chrSrcSliceY, chrSrcSliceH, 1);
354 dstY, dstH, dstY >>
c->chrDstVSubSample,
356 if (srcSliceY == 0) {
366 hout_slice->
width = dstW;
369 for (; dstY < dstH; dstY++) {
370 const int chrDstY = dstY >>
c->chrDstVSubSample;
371 int use_mmx_vfilter=
c->use_mmx_vfilter;
374 const int firstLumSrcY =
FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
375 const int firstLumSrcY2 =
FFMAX(1 - vLumFilterSize, vLumFilterPos[
FFMIN(dstY | ((1 <<
c->chrDstVSubSample) - 1), dstH - 1)]);
377 const int firstChrSrcY =
FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
380 int lastLumSrcY =
FFMIN(
c->srcH, firstLumSrcY + vLumFilterSize) - 1;
381 int lastLumSrcY2 =
FFMIN(
c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
382 int lastChrSrcY =
FFMIN(
c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
386 int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
389 if (firstLumSrcY > lastInLumBuf) {
391 hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
399 lastInLumBuf = firstLumSrcY - 1;
401 if (firstChrSrcY > lastInChrBuf) {
403 hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
411 lastInChrBuf = firstChrSrcY - 1;
415 DEBUG_BUFFERS(
"\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
416 firstLumSrcY, lastLumSrcY, lastInLumBuf);
417 DEBUG_BUFFERS(
"\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
418 firstChrSrcY, lastChrSrcY, lastInChrBuf);
421 enough_lines = lastLumSrcY2 < srcSliceY +
srcSliceH &&
426 lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
427 DEBUG_BUFFERS(
"buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
428 lastLumSrcY, lastChrSrcY);
436 if (posY <= lastLumSrcY && !hasLumHoles) {
437 firstPosY =
FFMAX(firstLumSrcY, posY);
441 lastPosY = lastLumSrcY;
445 if (cPosY <= lastChrSrcY && !hasChrHoles) {
446 firstCPosY =
FFMAX(firstChrSrcY, cPosY);
450 lastCPosY = lastChrSrcY;
455 if (posY < lastLumSrcY + 1) {
456 for (
i = lumStart;
i < lumEnd; ++
i)
460 lastInLumBuf = lastLumSrcY;
462 if (cPosY < lastChrSrcY + 1) {
463 for (
i = chrStart;
i < chrEnd; ++
i)
467 lastInChrBuf = lastChrSrcY;
479 if (dstY >= dstH - 2) {
483 &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
486 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
490 for (
i = vStart;
i < vEnd; ++
i)
496 int height = dstY - lastDstY;
501 1,
desc->comp[3].depth,
503 }
else if (
is32BPS(dstFormat)) {
506 1,
desc->comp[3].depth,
512 #if HAVE_MMXEXT_INLINE
514 __asm__
volatile (
"sfence" :::
"memory");
520 c->lastInLumBuf = lastInLumBuf;
521 c->lastInChrBuf = lastInChrBuf;
523 return dstY - lastDstY;
528 c->lumConvertRange =
NULL;
529 c->chrConvertRange =
NULL;
530 if (
c->srcRange !=
c->dstRange && !
isAnyRGB(
c->dstFormat)) {
531 if (
c->dstBpc <= 14) {
556 &
c->yuv2nv12cX, &
c->yuv2packed1,
557 &
c->yuv2packed2, &
c->yuv2packedX, &
c->yuv2anyX);
561 if (
c->srcBpc == 8) {
562 if (
c->dstBpc <= 14) {
580 c->needs_hcscale = 1;
612 const int linesizes[4])
619 for (
i = 0;
i < 4;
i++) {
620 int plane =
desc->comp[
i].plane;
621 if (!
data[plane] || !linesizes[plane])
634 for (yp=0; yp<
h; yp++) {
635 for (xp=0; xp+2<
stride; xp+=3) {
636 int x, y, z,
r,
g,
b;
648 x =
c->xyzgamma[x>>4];
649 y =
c->xyzgamma[y>>4];
650 z =
c->xyzgamma[z>>4];
653 r =
c->xyz2rgb_matrix[0][0] * x +
654 c->xyz2rgb_matrix[0][1] * y +
655 c->xyz2rgb_matrix[0][2] * z >> 12;
656 g =
c->xyz2rgb_matrix[1][0] * x +
657 c->xyz2rgb_matrix[1][1] * y +
658 c->xyz2rgb_matrix[1][2] * z >> 12;
659 b =
c->xyz2rgb_matrix[2][0] * x +
660 c->xyz2rgb_matrix[2][1] * y +
661 c->xyz2rgb_matrix[2][2] * z >> 12;
664 r = av_clip_uintp2(
r, 12);
665 g = av_clip_uintp2(
g, 12);
666 b = av_clip_uintp2(
b, 12);
670 AV_WB16(dst + xp + 0,
c->rgbgamma[
r] << 4);
671 AV_WB16(dst + xp + 1,
c->rgbgamma[
g] << 4);
672 AV_WB16(dst + xp + 2,
c->rgbgamma[
b] << 4);
674 AV_WL16(dst + xp + 0,
c->rgbgamma[
r] << 4);
675 AV_WL16(dst + xp + 1,
c->rgbgamma[
g] << 4);
676 AV_WL16(dst + xp + 2,
c->rgbgamma[
b] << 4);
690 for (yp=0; yp<
h; yp++) {
691 for (xp=0; xp+2<
stride; xp+=3) {
692 int x, y, z,
r,
g,
b;
704 r =
c->rgbgammainv[
r>>4];
705 g =
c->rgbgammainv[
g>>4];
706 b =
c->rgbgammainv[
b>>4];
709 x =
c->rgb2xyz_matrix[0][0] *
r +
710 c->rgb2xyz_matrix[0][1] *
g +
711 c->rgb2xyz_matrix[0][2] *
b >> 12;
712 y =
c->rgb2xyz_matrix[1][0] *
r +
713 c->rgb2xyz_matrix[1][1] *
g +
714 c->rgb2xyz_matrix[1][2] *
b >> 12;
715 z =
c->rgb2xyz_matrix[2][0] *
r +
716 c->rgb2xyz_matrix[2][1] *
g +
717 c->rgb2xyz_matrix[2][2] *
b >> 12;
720 x = av_clip_uintp2(x, 12);
721 y = av_clip_uintp2(y, 12);
722 z = av_clip_uintp2(z, 12);
726 AV_WB16(dst + xp + 0,
c->xyzgammainv[x] << 4);
727 AV_WB16(dst + xp + 1,
c->xyzgammainv[y] << 4);
728 AV_WB16(dst + xp + 2,
c->xyzgammainv[z] << 4);
730 AV_WL16(dst + xp + 0,
c->xyzgammainv[x] << 4);
731 AV_WL16(dst + xp + 1,
c->xyzgammainv[y] << 4);
732 AV_WL16(dst + xp + 2,
c->xyzgammainv[z] << 4);
745 const uint8_t *
const srcSlice[],
746 const int srcStride[],
int srcSliceY,
748 const int dstStride[])
754 int macro_height =
isBayer(
c->srcFormat) ? 2 : (1 <<
c->chrSrcVSubSample);
758 int srcSliceY_internal = srcSliceY;
760 if (!srcStride || !dstStride || !dst || !srcSlice) {
761 av_log(
c,
AV_LOG_ERROR,
"One of the input parameters to sws_scale() is NULL, please check the calling code\n");
765 for (
i=0;
i<4;
i++) {
766 srcStride2[
i] = srcStride[
i];
767 dstStride2[
i] = dstStride[
i];
770 if ((srcSliceY & (macro_height-1)) ||
777 if (
c->gamma_flag &&
c->cascaded_context[0]) {
779 srcSlice, srcStride, srcSliceY,
srcSliceH,
780 c->cascaded_tmp,
c->cascaded_tmpStride);
785 if (
c->cascaded_context[2])
786 ret =
sws_scale(
c->cascaded_context[1], (
const uint8_t *
const *)
c->cascaded_tmp,
c->cascaded_tmpStride, srcSliceY,
srcSliceH,
c->cascaded1_tmp,
c->cascaded1_tmpStride);
793 if (
c->cascaded_context[2]) {
795 (
const uint8_t *
const *)
c->cascaded1_tmp,
c->cascaded1_tmpStride,
c->cascaded_context[1]->dstY -
ret,
c->cascaded_context[1]->dstY,
801 if (
c->cascaded_context[0] && srcSliceY == 0 &&
srcSliceH ==
c->cascaded_context[0]->srcH) {
803 srcSlice, srcStride, srcSliceY,
srcSliceH,
804 c->cascaded_tmp,
c->cascaded_tmpStride);
808 (
const uint8_t *
const * )
c->cascaded_tmp,
c->cascaded_tmpStride, 0,
c->cascaded_context[0]->dstH,
813 memcpy(src2, srcSlice,
sizeof(src2));
814 memcpy(dst2, dst,
sizeof(dst2));
829 if (
c->sliceDir == 0 && srcSliceY != 0 && srcSliceY +
srcSliceH !=
c->srcH) {
833 if (
c->sliceDir == 0) {
834 if (srcSliceY == 0)
c->sliceDir = 1;
else c->sliceDir = -1;
838 for (
i = 0;
i < 256;
i++) {
839 int r,
g,
b, y,
u, v,
a = 0xff;
841 uint32_t p = ((
const uint32_t *)(srcSlice[1]))[
i];
842 a = (p >> 24) & 0xFF;
843 r = (p >> 16) & 0xFF;
848 g = ((
i >> 2) & 7) * 36;
852 g = ((
i >> 3) & 7) * 36;
855 r = (
i >> 3 ) * 255;
856 g = ((
i >> 1) & 3) * 85;
862 b = (
i >> 3 ) * 255;
863 g = ((
i >> 1) & 3) * 85;
866 #define RGB2YUV_SHIFT 15
867 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
868 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
869 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
870 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
871 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
872 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
873 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
874 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
875 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
880 c->pal_yuv[
i]= y + (
u<<8) + (v<<16) + ((unsigned)
a<<24);
882 switch (
c->dstFormat) {
887 c->pal_rgb[
i]=
r + (
g<<8) + (
b<<16) + ((unsigned)
a<<24);
893 c->pal_rgb[
i]=
a + (
r<<8) + (
g<<16) + ((unsigned)
b<<24);
899 c->pal_rgb[
i]=
a + (
b<<8) + (
g<<16) + ((unsigned)
r<<24);
906 c->pal_rgb[
i]=
b + (
g<<8) + (
r<<16) + ((unsigned)
a<<24);
911 if (
c->src0Alpha && !
c->dst0Alpha &&
isALPHA(
c->dstFormat)) {
918 base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (
srcSliceH-1) : rgb0_tmp;
920 memcpy(
base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*
c->srcW);
921 for (x=
c->src0Alpha-1; x<4*c->srcW; x+=4) {
922 base[ srcStride[0]*y + x] = 0xFF;
928 if (
c->srcXYZ && !(
c->dstXYZ &&
c->srcW==
c->dstW &&
c->srcH==
c->dstH)) {
934 base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (
srcSliceH-1) : rgb0_tmp;
941 for (
i = 0;
i < 4;
i++)
942 memset(
c->dither_error[
i], 0,
sizeof(
c->dither_error[0][0]) * (
c->dstW+2));
944 if (
c->sliceDir != 1) {
946 for (
i=0;
i<4;
i++) {
951 src2[0] += (
srcSliceH - 1) * srcStride[0];
953 src2[1] += ((
srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[1];
954 src2[2] += ((
srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[2];
955 src2[3] += (
srcSliceH - 1) * srcStride[3];
956 dst2[0] += (
c->dstH - 1) * dstStride[0];
957 dst2[1] += ((
c->dstH >>
c->chrDstVSubSample) - 1) * dstStride[1];
958 dst2[2] += ((
c->dstH >>
c->chrDstVSubSample) - 1) * dstStride[2];
959 dst2[3] += (
c->dstH - 1) * dstStride[3];
961 srcSliceY_internal =
c->srcH-srcSliceY-
srcSliceH;
967 if (srcSliceY_internal +
srcSliceH ==
c->srcH)
969 ret =
c->swscale(
c, src2, srcStride2, srcSliceY_internal,
srcSliceH, dst2, dstStride2);
971 if (
c->dstXYZ && !(
c->srcXYZ &&
c->srcW==
c->dstW &&
c->srcH==
c->dstH)) {
972 int dstY =
c->dstY ?
c->dstY : srcSliceY +
srcSliceH;
973 uint16_t *dst16 = (uint16_t*)(dst2[0] + (dstY -
ret) * dstStride2[0]);
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
void(* yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2], const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc[2], uint8_t *dest, int dstW, int yalpha, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing bilinear scalin...
void(* yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output without any additional vertical scaling (...
#define AV_LOG_WARNING
Something somehow does not look correct.
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
void(* yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc, const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc, uint8_t *dest, int dstW, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output without any additional v...
AVPixelFormat
Pixel format.
int sliceH
number of lines
static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
#define u(width, name, range_min, range_max)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc)
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
SwsPlane plane[MAX_SLICE_PLANES]
color planes
static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
void ff_sws_init_input_funcs(SwsContext *c)
Struct which holds all necessary data for processing a slice.
static void FUNC() yuv2planeX(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
@ AV_PIX_FMT_MONOWHITE
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb.
#define AV_PIX_FMT_RGB32_1
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
int attribute_align_arg sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[])
swscale wrapper, so we don't need to export the SwsContext.
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
#define DEBUG_BUFFERS(...)
static atomic_int cpu_flags
static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h)
#define SWS_FAST_BILINEAR
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_init_swscale_aarch64(SwsContext *c)
int(* SwsFunc)(struct SwsContext *context, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
void(* yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t **dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to YUV/RGB output by doing multi-point vertical scaling...
static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static double val(void *priv, double ch)
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_BGR8
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static av_cold void sws_init_swscale(SwsContext *c)
#define AV_CEIL_RSHIFT(a, b)
av_cold void ff_sws_init_swscale_arm(SwsContext *c)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
int width
Slice line width.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
static void lumRangeFromJpeg_c(int16_t *dst, int width)
static enum AVPixelFormat pix_fmt
void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx)
setup vertical scaler functions
#define AV_PIX_FMT_BGR32_1
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
av_cold void ff_sws_init_range_convert(SwsContext *c)
@ AV_PIX_FMT_GRAY8A
alias for AV_PIX_FMT_YA8
static av_always_inline void fillPlane(uint8_t *plane, int stride, int width, int height, int y, uint8_t val)
int available_lines
max number of lines that can be hold by this plane
av_cold void ff_sws_init_swscale_x86(SwsContext *c)
@ AV_PIX_FMT_MONOBLACK
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb.
@ AV_PIX_FMT_RGB8
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
@ AV_PIX_FMT_BGR4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
#define AV_CPU_FLAG_SSE2
PIV SSE2 functions.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
static void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian)
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
static int swscale(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc)
static void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian, int is_float)
#define DECLARE_ALIGNED(n, t, v)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
#define i(width, name, range_min, range_max)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static int check_image_pointers(const uint8_t *const data[4], enum AVPixelFormat pix_fmt, const int linesizes[4])
#define AV_PIX_FMT_FLAG_BE
Pixel format is big-endian.
@ AV_PIX_FMT_RGB4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
int ff_init_slice_from_src(SwsSlice *s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
av_cold void ff_sws_init_output_funcs(SwsContext *c, yuv2planar1_fn *yuv2plane1, yuv2planarX_fn *yuv2planeX, yuv2interleavedX_fn *yuv2nv12cX, yuv2packed1_fn *yuv2packed1, yuv2packed2_fn *yuv2packed2, yuv2packedX_fn *yuv2packedX, yuv2anyX_fn *yuv2anyX)
static const uint8_t sws_pb_64[8]
av_cold void ff_sws_init_swscale_ppc(SwsContext *c)
void(* yuv2planarX_fn)(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output with multi-point vertical scaling between...
void(* yuv2interleavedX_fn)(struct SwsContext *c, const int16_t *chrFilter, int chrFilterSize, const int16_t **chrUSrc, const int16_t **chrVSrc, uint8_t *dest, int dstW)
Write one line of horizontally scaled chroma to interleaved output with multi-point vertical scaling ...
static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
void(* yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing multi-point ver...
const uint8_t ff_dither_8x8_128[9][8]
#define AV_CPU_FLAG_MMXEXT
SSE integer functions or AMD MMX ext.
static void lumRangeToJpeg_c(int16_t *dst, int width)
static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
static void lumRangeToJpeg16_c(int16_t *_dst, int width)
int sliceY
index of first line
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
#define flags(name, subs,...)
void ff_updateMMXDitherTables(SwsContext *c, int dstY)
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16