Go to the documentation of this file.
57 #define NOISE_SPREAD_THRESHOLD 0.9f
61 #define NOISE_LAMBDA_REPLACE 1.948f
78 int win,
int group_len,
const float lambda)
85 const int run_esc = (1 <<
run_bits) - 1;
87 int stackrun[120], stackcb[120], stack_len;
91 s->abs_pow34(
s->scoefs, sce->
coeffs, 1024);
98 for (swb = 0; swb < max_sfb; swb++) {
107 float minrd = next_minrd;
108 int mincb = next_mincb;
112 float cost_stay_here, cost_get_here;
121 for (
w = 0;
w < group_len;
w++) {
122 FFPsyBand *band = &
s->psy.ch[
s->cur_channel].psy_bands[(
win+
w)*16+swb];
124 &
s->scoefs[start +
w*128],
size,
128 cost_stay_here = path[swb][
cb].
cost + rd;
129 cost_get_here = minrd + rd +
run_bits + 4;
133 if (cost_get_here < cost_stay_here) {
135 path[swb+1][
cb].
cost = cost_get_here;
136 path[swb+1][
cb].
run = 1;
139 path[swb+1][
cb].
cost = cost_stay_here;
142 if (path[swb+1][
cb].cost < next_minrd) {
143 next_minrd = path[swb+1][
cb].
cost;
155 if (path[max_sfb][
cb].cost < path[max_sfb][idx].cost)
161 stackrun[stack_len] = path[ppos][
cb].
run;
162 stackcb [stack_len] =
cb;
164 ppos -= path[ppos][
cb].
run;
169 for (
i = stack_len - 1;
i >= 0;
i--) {
175 for (j = 0; j < count; j++) {
179 while (count >= run_esc) {
193 #define TRELLIS_STAGES 121
194 #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
199 int prevscaler_n = -255, prevscaler_i = 0;
211 if (prevscaler_n == -255)
239 int q,
w, w2,
g, start = 0;
246 float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
247 int q0,
q1, qcnt = 0;
249 for (
i = 0;
i < 1024;
i++) {
279 }
else if (
q1 > q1high) {
292 paths[0][
i].
cost = 0.0f;
293 paths[0][
i].
prev = -1;
298 paths[j][
i].
prev = -2;
302 s->abs_pow34(
s->scoefs, sce->
coeffs, 1024);
306 const float *coefs = &sce->
coeffs[start];
310 bandaddr[idx] =
w * 16 +
g;
314 FFPsyBand *band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
322 float t =
fabsf(coefs[w2*128+
i]);
324 qmin =
FFMIN(qmin, t);
325 qmax =
FFMAX(qmax, t);
329 int minscale, maxscale;
338 if (minscale == maxscale) {
343 for (q = minscale; q < maxscale; q++) {
347 FFPsyBand *band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
351 minrd =
FFMIN(minrd, dist);
353 for (
i = 0;
i <
q1 -
q0;
i++) {
355 cost = paths[idx - 1][
i].
cost + dist
357 if (cost < paths[idx][q].cost) {
358 paths[idx][q].
cost = cost;
359 paths[idx][q].
prev =
i;
364 for (q = 0; q <
q1 -
q0; q++) {
365 paths[idx][q].
cost = paths[idx - 1][q].
cost + 1;
366 paths[idx][q].
prev = q;
375 mincost = paths[idx][0].
cost;
378 if (paths[idx][
i].cost < mincost) {
379 mincost = paths[idx][
i].
cost;
384 sce->
sf_idx[bandaddr[idx]] = minq +
q0;
385 minq =
FFMAX(paths[idx][minq].prev, 0);
399 int start = 0,
i,
w, w2,
g;
401 float dists[128] = { 0 }, uplims[128] = { 0 };
403 int fflag, minscaler;
410 destbits =
FFMIN(destbits, 5800);
417 float uplim = 0.0f, energy = 0.0f;
419 FFPsyBand *band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
428 uplims[
w*16+
g] = uplim *512;
432 minthr =
FFMIN(minthr, uplim);
449 s->abs_pow34(
s->scoefs, sce->
coeffs, 1024);
455 const float *scaled =
s->scoefs + start;
465 minscaler = sce->
sf_idx[0];
467 qstep = its ? 1 : 32;
474 const float *coefs = sce->
coeffs + start;
475 const float *scaled =
s->scoefs + start;
497 dists[
w*16+
g] = dist -
bits;
506 if (tbits > destbits) {
507 for (
i = 0;
i < 128;
i++)
508 if (sce->
sf_idx[
i] < 218 - qstep)
511 for (
i = 0;
i < 128;
i++)
512 if (sce->
sf_idx[
i] > 60 - qstep)
516 if (!qstep && tbits > destbits*1.02 && sce->
sf_idx[0] < 217)
526 if (dists[
w*16+
g] > uplims[
w*16+
g] && sce->
sf_idx[
w*16+
g] > 60) {
540 }
while (fflag && its < 10);
548 int bandwidth, cutoff;
549 float *PNS = &
s->scoefs[0*128], *PNS34 = &
s->scoefs[1*128];
550 float *NOR34 = &
s->scoefs[3*128];
552 const float lambda =
s->lambda;
553 const float freq_mult = avctx->
sample_rate*0.5f/wlen;
556 const float dist_bias =
av_clipf(4.
f * 120 / lambda, 0.25
f, 4.0
f);
557 const float pns_transient_energy_r =
FFMIN(0.7
f, lambda / 140.
f);
564 float rate_bandwidth_multiplier = 1.5f;
565 int prev = -1000, prev_sf = -1;
567 ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
570 frame_bit_rate *= 1.15f;
573 bandwidth = avctx->
cutoff;
578 cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
586 float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
587 float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
588 float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
589 float min_energy = -1.0f, max_energy = 0.0f;
591 const float freq = (start-wstart)*freq_mult;
599 band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
600 sfb_energy += band->
energy;
604 min_energy = max_energy = band->
energy;
622 ((sce->
zeroes[
w*16+
g] || !sce->
band_alt[
w*16+
g]) && sfb_energy < threshold*sqrtf(1.0
f/freq_boost)) || spread < spread_threshold ||
623 (!sce->
zeroes[
w*16+
g] && sce->
band_alt[
w*16+
g] && sfb_energy > threshold*thr_mult*freq_boost) ||
624 min_energy < pns_transient_energy_r * max_energy ) {
631 pns_tgt_energy = sfb_energy*
FFMIN(1.0
f, spread*spread);
643 float band_energy, scale, pns_senergy;
645 band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
648 PNS[
i] =
s->random_state;
650 band_energy =
s->fdsp->scalarproduct_float(PNS, PNS, sce->
ics.
swb_sizes[
g]);
651 scale = noise_amp/sqrtf(band_energy);
652 s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->
ics.
swb_sizes[
g]);
653 pns_senergy =
s->fdsp->scalarproduct_float(PNS, PNS, sce->
ics.
swb_sizes[
g]);
654 pns_energy += pns_senergy;
671 energy_ratio = pns_tgt_energy/pns_energy;
672 sce->
pns_ener[
w*16+
g] = energy_ratio*pns_tgt_energy;
673 if (sce->
zeroes[
w*16+
g] || !sce->
band_alt[
w*16+
g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
690 int bandwidth, cutoff;
691 const float lambda =
s->lambda;
692 const float freq_mult = avctx->
sample_rate*0.5f/wlen;
694 const float pns_transient_energy_r =
FFMIN(0.7
f, lambda / 140.
f);
701 float rate_bandwidth_multiplier = 1.5f;
703 ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
706 frame_bit_rate *= 1.15f;
709 bandwidth = avctx->
cutoff;
714 cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
719 float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
720 float min_energy = -1.0f, max_energy = 0.0f;
722 const float freq = start*freq_mult;
724 if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
729 band = &
s->psy.ch[
s->cur_channel].psy_bands[(
w+w2)*16+
g];
730 sfb_energy += band->
energy;
734 min_energy = max_energy = band->
energy;
747 if (sfb_energy < threshold*sqrtf(1.5
f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
758 int start = 0,
i,
w, w2,
g, sid_sf_boost, prev_mid, prev_side;
759 uint8_t nextband0[128], nextband1[128];
760 float *
M =
s->scoefs + 128*0, *
S =
s->scoefs + 128*1;
761 float *L34 =
s->scoefs + 128*2, *R34 =
s->scoefs + 128*3;
762 float *M34 =
s->scoefs + 128*4, *S34 =
s->scoefs + 128*5;
763 const float lambda =
s->lambda;
764 const float mslambda =
FFMIN(1.0
f, lambda / 120.
f);
774 prev_mid = sce0->
sf_idx[0];
775 prev_side = sce1->
sf_idx[0];
783 float Mmax = 0.0f, Smax = 0.0f;
789 + sce1->
coeffs[start+(
w+w2)*128+
i]) * 0.5;
796 Mmax =
FFMAX(Mmax, M34[
i]);
797 Smax =
FFMAX(Smax, S34[
i]);
801 for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
802 float dist1 = 0.0f, dist2 = 0.0f;
822 midcb =
FFMAX(1,midcb);
823 sidcb =
FFMAX(1,sidcb);
826 FFPsyBand *band0 = &
s->psy.ch[
s->cur_channel+0].psy_bands[(
w+w2)*16+
g];
827 FFPsyBand *band1 = &
s->psy.ch[
s->cur_channel+1].psy_bands[(
w+w2)*16+
g];
832 + sce1->
coeffs[start+(
w+w2)*128+
i]) * 0.5;
864 mslambda / (minthr * bmax + FLT_MIN),
INFINITY, &b4,
NULL, 0);
882 }
else if (
B1 >
B0) {
enum BandType band_alt[128]
alternative band type (used by encoder)
static const uint8_t q1[256]
static av_always_inline int lcg_random(unsigned previous_val)
linear congruential pseudorandom number generator
uint8_t can_pns[128]
band is allowed to PNS (informative)
int sample_rate
samples per second
static double cb(void *priv, double x, double y)
#define CB_TOT_ALL
Total number of codebooks, including special ones.
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
Process LTP parameters.
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
uint8_t zeroes[128]
band is not coded (used by encoder)
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
static av_always_inline float bval2bmax(float b)
approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
const AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB]
static int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int band)
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
static __device__ float ceilf(float a)
static av_always_inline av_const float roundf(float x)
static uint8_t coef2maxsf(float coef)
Return the maximum scalefactor where the quantized coef is not zero.
#define SCALE_MAX_POS
scalefactor index maximum value
static float win(SuperEqualizerContext *s, float n, int N)
int num_swb
number of scalefactor window bands
static double b1(void *priv, double x, double y)
#define SCALE_DIV_512
scalefactor difference that corresponds to scale difference in 512 times
static int ff_sfdelta_can_replace(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int new_sf, int band)
int flags
AV_CODEC_FLAG_*.
#define POW_SF2_ZERO
ff_aac_pow2sf_tab index corresponding to pow(2, 0);
static __device__ float fabsf(float a)
IndividualChannelStream ics
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
@ NOISE_BT
Spectral data are scaled white noise not coded in the bitstream.
static double b3(void *priv, double x, double y)
INTFLOAT coeffs[1024]
coefficients for IMDCT, maybe processed
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
const uint8_t * swb_sizes
table of scalefactor band sizes for a particular window
@ INTENSITY_BT2
Scalefactor data are intensity stereo positions (out of phase).
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce, int common_window)
Encode LTP data.
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
static const float bands[]
#define SCALE_DIFF_ZERO
codebook index corresponding to zero scalefactor indices difference
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
static const uint8_t q0[256]
static float quantize_band_cost_cached(struct AACEncContext *s, int w, int g, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
@ INTENSITY_BT
Scalefactor data are intensity stereo positions (in phase).
uint8_t is_mask[128]
Set if intensity stereo is used (used by encoder)
float is_ener[128]
Intensity stereo pos (used by encoder)
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda)
void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
int64_t bit_rate
the average bitrate
single band psychoacoustic information
void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
Encode TNS data.
static void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
static const uint8_t *const run_value_bits[2]
int sf_idx[128]
scalefactor indices (used by encoder)
void ff_aac_ltp_insert_new_frame(AACEncContext *s)
const uint8_t ff_aac_scalefactor_bits[121]
static uint8_t coef2minsf(float coef)
Return the minimum scalefactor where the quantized coef does not clip.
static const uint8_t aac_cb_out_map[CB_TOT_ALL]
Map to convert values from BandCodingPath index to a codebook index.
SingleChannelElement ch[2]
void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
#define NOISE_SPREAD_THRESHOLD
static const uint8_t run_bits[7][16]
static double b2(void *priv, double x, double y)
int common_window
Set if channels share a common 'IndividualChannelStream' in bitstream.
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
two-loop quantizers search taken from ISO 13818-7 Appendix C
uint8_t ms_mask[128]
Set if mid/side stereo is used for each scalefactor window band.
#define SCALE_MAX_DIFF
maximum scalefactor difference allowed by standard
float pns_ener[128]
Noise energy values (used by encoder)
int channels
number of audio channels
#define AAC_CUTOFF_FROM_BITRATE(bit_rate, channels, sample_rate)
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
Single Channel Element - used for both SCE and LFE elements.
#define SCALE_ONE_POS
scalefactor index that corresponds to scale=1.0
static int find_min_book(float maxval, int sf)
static const uint8_t aac_cb_in_map[CB_TOT_ALL+1]
Inverse map to convert from codebooks to BandCodingPath indices.
void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
channel element - generic struct for SCE/CPE/CCE/LFE
int cutoff
Audio cutoff bandwidth (0 means "automatic")
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
#define NOISE_LOW_LIMIT
This file contains a template for the twoloop coder function.
void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
structure used in optimal codebook search
@ RESERVED_BT
Band types following are encoded differently from others.
main external API structure.
float ff_aac_pow2sf_tab[428]
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, float *out, int size, int scale_idx, int cb, const float lambda, int rtz)
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
Encoder predictors data.
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda)
Encode band info for single window group bands.
static float find_max_val(int group_len, int swb_size, const float *scaled)
int prev_idx
pointer to the previous path point
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
uint8_t max_sfb
number of scalefactor bands per group
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce, int common_window)
Mark LTP sfb's.
static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
enum BandType band_type[128]
band types
void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
#define NOISE_LAMBDA_REPLACE