20 import tensorflow
as tf
23 import convert_header
as header
25 __all__ = [
'convert_from_tensorflow']
30 IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
41 Operand.index = Operand.index + 1
42 self.
iotype2str = {Operand.IOTYPE_INPUT:
'in', Operand.IOTYPE_OUTPUT:
'out', Operand.IOTYPE_INTERMEDIATE:
'inout'}
43 self.
dtype2str = {Operand.DTYPE_FLOAT:
'DT_FLOAT', Operand.DTYPE_UINT8:
'DT_UINT8'}
47 if iotype == Operand.IOTYPE_INPUT:
51 return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".
format(self.
index,
56 return self.
index < other.index
59 def __init__(self, graph_def, nodes, outfile, dump4tb):
76 self.
op2code = {
'Conv2D':1,
'DepthToSpace':2,
'MirrorPad':3,
'Maximum':4,
77 'MathBinary':5,
'MathUnary':6,
'AvgPool':7,
'MatMul':8}
78 self.
mathbin2code = {
'Sub':0,
'Add':1,
'Mul':2,
'RealDiv':3,
'Minimum':4,
'FloorMod':5}
79 self.
mathun2code = {
'Abs':0,
'Sin':1,
'Cos':2,
'Tan':3,
'Asin':4,
80 'Acos':5,
'Atan':6,
'Sinh':7,
'Cosh':8,
'Tanh':9,
'Asinh':10,
81 'Acosh':11,
'Atanh':12,
'Ceil':13,
'Floor':14,
'Round':15}
89 dtype = node.attr[
'dtype'].type
91 dtype = node.attr[
'T'].type
93 if 'shape' in node.attr:
94 dims[0] = node.attr[
'shape'].shape.dim[0].size
95 dims[1] = node.attr[
'shape'].shape.dim[1].size
96 dims[2] = node.attr[
'shape'].shape.dim[2].size
97 dims[3] = node.attr[
'shape'].shape.dim[3].size
98 operand =
Operand(name, dtype, dims)
105 graph = tf.get_default_graph()
106 tf.import_graph_def(self.
graph_def, name=
"")
107 tf.summary.FileWriter(
'/tmp/graph', graph)
108 print(
'graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
122 if conv2d_scope_name +
'/BiasAdd' in self.
edges:
123 anode = self.
edges[conv2d_scope_name +
'/BiasAdd'][0]
128 return knode, bnode, dnode, anode
138 if dense_scope_name +
'/BiasAdd' in self.
edges:
139 anode = self.
edges[dense_scope_name +
'/BiasAdd'][0]
144 return knode, bnode, anode
148 assert(node.op ==
'Conv2D')
152 scope_name = TFConverter.get_scope_name(node.name)
156 if dnode
is not None:
157 dilation = struct.unpack(
'i', dnode.attr[
'value'].tensor.tensor_content[0:4])[0]
161 if anode
is not None:
162 activation = anode.op
166 padding = node.attr[
'padding'].s.decode(
"utf-8")
173 ktensor = knode.attr[
'value'].tensor
174 filter_height = ktensor.tensor_shape.dim[0].size
175 filter_width = ktensor.tensor_shape.dim[1].size
176 in_channels = ktensor.tensor_shape.dim[2].size
177 out_channels = ktensor.tensor_shape.dim[3].size
178 kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
179 kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
180 kernel = np.transpose(kernel, [3, 0, 1, 2])
183 np.array([self.
op2code[node.op], dilation, padding, self.
conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
186 btensor = bnode.attr[
'value'].tensor
187 if btensor.tensor_shape.dim[0].size == 1:
188 bias = struct.pack(
"f", btensor.float_val[0])
190 bias = btensor.tensor_content
194 input_operand_index = self.
add_operand(input_name, Operand.IOTYPE_INPUT)
196 if anode
is not None:
197 output_operand_index = self.
add_operand(anode.name, Operand.IOTYPE_OUTPUT)
199 output_operand_index = self.
add_operand(self.
edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
200 np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
203 assert(node.op ==
'MatMul')
207 scope_name = TFConverter.get_scope_name(node.name)
211 if bnode
is not None:
213 btensor = bnode.attr[
'value'].tensor
214 if btensor.tensor_shape.dim[0].size == 1:
215 bias = struct.pack(
"f", btensor.float_val[0])
217 bias = btensor.tensor_content
221 if anode
is not None:
222 activation = anode.op
226 ktensor = knode.attr[
'value'].tensor
227 in_channels = ktensor.tensor_shape.dim[0].size
228 out_channels = ktensor.tensor_shape.dim[1].size
229 if in_channels * out_channels == 1:
230 kernel = np.float32(ktensor.float_val[0])
232 kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
233 kernel = kernel.reshape(in_channels, out_channels)
234 kernel = np.transpose(kernel, [1, 0])
236 np.array([self.
op2code[node.op], self.
conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f)
242 input_operand_index = self.
add_operand(input_name, Operand.IOTYPE_INPUT)
244 if anode
is not None:
245 output_operand_index = self.
add_operand(anode.name, Operand.IOTYPE_OUTPUT)
247 if bnode
is not None:
248 output_operand_index = self.
add_operand(self.
edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
250 output_operand_index = self.
add_operand(self.
edges[scope_name+
'/concat_1'][0].name, Operand.IOTYPE_OUTPUT)
251 np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
255 assert(node.op ==
'Conv2D')
261 if node0.op ==
'Const':
263 input_name = node.input[1]
266 input_name = node.input[0]
268 ktensor = knode.attr[
'value'].tensor
269 filter_height = ktensor.tensor_shape.dim[0].size
270 filter_width = ktensor.tensor_shape.dim[1].size
271 in_channels = ktensor.tensor_shape.dim[2].size
272 out_channels = ktensor.tensor_shape.dim[3].size
273 if filter_height * filter_width * in_channels * out_channels == 1:
274 kernel = np.float32(ktensor.float_val[0])
276 kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
277 kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
278 kernel = np.transpose(kernel, [3, 0, 1, 2])
282 padding = node.attr[
'padding'].s.decode(
"utf-8")
284 in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
287 input_operand_index = self.
add_operand(input_name, Operand.IOTYPE_INPUT)
288 output_operand_index = self.
add_operand(node.name, Operand.IOTYPE_OUTPUT)
289 np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
293 assert(node.op ==
'DepthToSpace')
295 block_size = node.attr[
'block_size'].i
296 np.array([self.
op2code[node.op], block_size], dtype=np.uint32).tofile(f)
298 input_operand_index = self.
add_operand(node.input[0], Operand.IOTYPE_INPUT)
299 output_operand_index = self.
add_operand(node.name, Operand.IOTYPE_OUTPUT)
300 np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
304 assert(node.op ==
'MirrorPad')
306 mode = node.attr[
'mode'].s
308 np.array([self.
op2code[node.op], mode], dtype=np.uint32).tofile(f)
311 paddings = pnode.attr[
'value'].tensor.tensor_content
314 input_operand_index = self.
add_operand(node.input[0], Operand.IOTYPE_INPUT)
315 output_operand_index = self.
add_operand(node.name, Operand.IOTYPE_OUTPUT)
316 np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
320 assert(node.op ==
'Maximum')
323 y = ynode.attr[
'value'].tensor.float_val[0]
324 np.array([self.
op2code[node.op]], dtype=np.uint32).tofile(f)
325 np.array([y], dtype=np.float32).tofile(f)
327 input_operand_index = self.
add_operand(node.input[0], Operand.IOTYPE_INPUT)
328 output_operand_index = self.
add_operand(node.name, Operand.IOTYPE_OUTPUT)
329 np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
337 np.array([self.
op2code[
'MathBinary'], self.
mathbin2code[node.op]], dtype=np.uint32).tofile(f)
338 if i0_node.op ==
'Const':
339 scalar = i0_node.attr[
'value'].tensor.float_val[0]
340 np.array([1], dtype=np.uint32).tofile(f)
341 np.array([scalar], dtype=np.float32).tofile(f)
342 np.array([0], dtype=np.uint32).tofile(f)
343 input_operand_index = self.
add_operand(i1_node.name, Operand.IOTYPE_INPUT)
344 np.array([input_operand_index], dtype=np.uint32).tofile(f)
345 elif i1_node.op ==
'Const':
346 scalar = i1_node.attr[
'value'].tensor.float_val[0]
347 np.array([0], dtype=np.uint32).tofile(f)
348 input_operand_index = self.
add_operand(i0_node.name, Operand.IOTYPE_INPUT)
349 np.array([input_operand_index], dtype=np.uint32).tofile(f)
350 np.array([1], dtype=np.uint32).tofile(f)
351 np.array([scalar], dtype=np.float32).tofile(f)
353 np.array([0], dtype=np.uint32).tofile(f)
354 input_operand_index = self.
add_operand(i0_node.name, Operand.IOTYPE_INPUT)
355 np.array([input_operand_index], dtype=np.uint32).tofile(f)
356 np.array([0], dtype=np.uint32).tofile(f)
357 input_operand_index = self.
add_operand(i1_node.name, Operand.IOTYPE_INPUT)
358 np.array([input_operand_index], dtype=np.uint32).tofile(f)
359 output_operand_index = self.
add_operand(node.name, Operand.IOTYPE_OUTPUT)
360 np.array([output_operand_index], dtype=np.uint32).tofile(f)
367 np.array([self.
op2code[
'MathUnary'], self.
mathun2code[node.op]], dtype=np.uint32).tofile(f)
368 input_operand_index = self.
add_operand(i0_node.name, Operand.IOTYPE_INPUT)
369 np.array([input_operand_index], dtype=np.uint32).tofile(f)
370 output_operand_index = self.
add_operand(node.name, Operand.IOTYPE_OUTPUT)
371 np.array([output_operand_index],dtype=np.uint32).tofile(f)
375 assert(node.op ==
'AvgPool')
379 strides = node.attr[
'strides']
383 assert(strides.list.i[1]==strides.list.i[2])
384 assert(strides.list.i[0]==1)
385 assert(strides.list.i[3]==1)
386 strides = strides.list.i[1]
387 filter_node = node.attr[
'ksize']
388 input_name = node.input[0]
391 assert(filter_node.list.i[0]==1)
392 assert(filter_node.list.i[3]==1)
393 filter_height = filter_node.list.i[1]
394 filter_width = filter_node.list.i[2]
396 padding = node.attr[
'padding'].s.decode(
"utf-8")
398 dtype=np.uint32).tofile(f)
400 input_operand_index = self.
add_operand(input_name, Operand.IOTYPE_INPUT)
401 output_operand_index = self.
add_operand(node.name, Operand.IOTYPE_OUTPUT)
402 np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f)
406 for node
in self.
nodes:
412 if node.op ==
'Conv2D':
416 if node.op ==
'MatMul':
421 if node.op ==
'Conv2D':
426 if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name):
428 if node.op ==
'AvgPool':
430 elif node.op ==
'DepthToSpace':
432 elif node.op ==
'MirrorPad':
434 elif node.op ==
'Maximum':
444 for operand
in operands:
446 np.array([operand.index,
len(operand.name)], dtype=np.uint32).tofile(f)
447 f.write(operand.name.encode(
'utf-8'))
448 np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
449 np.array(operand.dims, dtype=np.uint32).tofile(f)
453 with open(self.
outfile,
'wb')
as f:
454 f.write(header.str.encode(
'utf-8'))
455 np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
462 for node
in self.
nodes:
468 for node
in self.
nodes:
469 for input
in node.input:
470 used_names.append(input)
472 for node
in self.
nodes:
473 if node.name
not in used_names:
481 for node
in self.
nodes:
482 if node.op ==
'Identity':
484 input = node.input[0]
485 id_nodes.append(node)
493 id_dict[name] = input
495 for idnode
in id_nodes:
496 self.
nodes.remove(idnode)
498 for node
in self.
nodes:
499 for i
in range(
len(node.input)):
500 input = node.input[i]
502 node.input[i] = id_dict[input]
506 for node
in self.
nodes:
507 for input
in node.input:
508 if input
in self.
edges:
511 self.
edges[input] = [node]
516 index = name.rfind(
'/')
523 inner_scope = TFConverter.get_scope_name(name)
524 if inner_scope ==
"":
527 index = inner_scope.find(scope)
534 inner_scope = TFConverter.get_scope_name(name)
535 if inner_scope ==
"":
538 index = inner_scope.find(scope)
545 for node
in self.
nodes:
546 if node.op ==
'Conv2D':
547 scope = TFConverter.get_scope_name(node.name)
555 elif node.op ==
'MatMul':
556 scope = TFConverter.get_scope_name(node.name)
566 for node
in self.
nodes:
567 scope = TFConverter.get_scope_name(node.name)
569 if node.op ==
'Conv2D' or node.op ==
'Shape':
570 for inp
in node.input:
571 if TFConverter.get_scope_name(inp) != scope:
574 if node.op ==
'MatMul' or node.op ==
'Shape':
575 for inp
in node.input:
576 if TFConverter.get_scope_name(inp) != scope:
579 if node.op ==
'Transpose':
580 for inp
in node.input:
581 if TFConverter.get_scope_name(inp).find(scope)<0
and TFConverter.get_scope_name(inp).find(scope.split(
'/')[0])<0:
599 with open(infile,
'rb')
as f:
601 graph_def = tf.GraphDef()
602 graph_def.ParseFromString(f.read())
603 nodes = graph_def.node
605 converter =
TFConverter(graph_def, nodes, outfile, dump4tb)