Go to the documentation of this file.
57 #define OFFSET(x) offsetof(DatascopeContext, x)
58 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
59 #define FLAGSR AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
87 int x0,
int y0,
const uint8_t *text,
int vertical)
91 for (; *text; text++) {
113 color->rgba[3] = 255;
116 for (
i = 0;
i < 4;
i++) {
121 value[p] =
in->data[p][(y >> draw->
vsub[p]) *
in->linesize[p] + (x >> draw->
hsub[p])];
131 color->rgba[3] = 255;
134 for (
i = 0;
i < 4;
i++) {
151 reverse->comp[p].u8[0] =
color->comp[p].u8[0] > 127 ? 0 : 255;
152 reverse->comp[p].u8[1] =
color->comp[p].u8[1] > 127 ? 0 : 255;
153 reverse->comp[p].u8[2] =
color->comp[p].u8[2] > 127 ? 0 : 255;
164 const unsigned mid = (
max + 1) / 2;
185 const int PP =
td->PP;
186 const int xoff =
td->xoff;
187 const int yoff =
td->yoff;
188 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
189 const int C =
s->chars;
190 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
191 const int W = (outlink->
w - xoff) / (
C * 10);
192 const int H = (outlink->
h - yoff) / (PP * 12);
193 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
194 const int slice_start = (
W * jobnr) / nb_jobs;
195 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
198 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
202 int value[4] = { 0 }, pp = 0;
207 xoff + x *
C * 10, yoff + y * PP * 12,
C * 10, PP * 12);
209 for (p = 0; p <
P; p++) {
212 if (!(
s->components & (1 << p)))
215 draw_text(&
s->draw,
out, &
reverse, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
232 const int PP =
td->PP;
233 const int xoff =
td->xoff;
234 const int yoff =
td->yoff;
235 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
236 const int C =
s->chars;
237 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
238 const int W = (outlink->
w - xoff) / (
C * 10);
239 const int H = (outlink->
h - yoff) / (PP * 12);
240 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
241 const int slice_start = (
W * jobnr) / nb_jobs;
242 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
245 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
248 int value[4] = { 0 }, pp = 0;
252 for (p = 0; p <
P; p++) {
255 if (!(
s->components & (1 << p)))
258 draw_text(&
s->draw,
out, &
color, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
275 const int PP =
td->PP;
276 const int xoff =
td->xoff;
277 const int yoff =
td->yoff;
278 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
279 const int C =
s->chars;
280 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
281 const int W = (outlink->
w - xoff) / (
C * 10);
282 const int H = (outlink->
h - yoff) / (PP * 12);
283 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
284 const int slice_start = (
W * jobnr) / nb_jobs;
285 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
288 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
291 int value[4] = { 0 }, pp = 0;
294 for (p = 0; p <
P; p++) {
297 if (!(
s->components & (1 << p)))
300 draw_text(&
s->draw,
out, &
s->white, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
314 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
329 0, 0, outlink->
w, outlink->
h);
331 for (
int p = 0; p <
P; p++) {
332 if (
s->components & (1 << p))
338 const int C =
s->chars;
339 int Y = outlink->
h / (PP * 12);
340 int X = outlink->
w / (
C * 10);
341 char text[256] = { 0 };
345 ymaxlen = strlen(text);
348 xmaxlen = strlen(text);
351 Y = (outlink->
h - xmaxlen) / (PP * 12);
352 X = (outlink->
w - ymaxlen) / (
C * 10);
354 for (y = 0; y <
Y; y++) {
355 snprintf(text,
sizeof(text),
"%d",
s->y + y);
358 0, xmaxlen + y * PP * 12 + (PP + 1) * PP - 2, ymaxlen, 10);
360 draw_text(&
s->draw,
out, &
s->yellow, 2, xmaxlen + y * PP * 12 + (PP + 1) * PP, text, 0);
363 for (x = 0; x <
X; x++) {
364 snprintf(text,
sizeof(text),
"%d",
s->x + x);
367 ymaxlen + x *
C * 10 + 2 *
C - 2, 0, 10, xmaxlen);
369 draw_text(&
s->draw,
out, &
s->yellow, ymaxlen + x *
C * 10 + 2 *
C, 2, text, 1);
373 td.in =
in;
td.out =
out,
td.yoff = xmaxlen,
td.xoff = ymaxlen,
td.PP = PP;
391 s->chars = (
s->draw.desc->comp[0].depth + 7) / 8 * 2 +
s->dformat;
392 s->nb_comps =
s->draw.desc->nb_components;
400 if (
s->draw.desc->comp[0].depth <= 8) {
423 char *res,
int res_len,
int flags)
457 .priv_class = &datascope_class,
494 #define POFFSET(x) offsetof(PixscopeContext, x)
521 s->nb_comps =
s->draw.desc->nb_components;
525 s->colors[0] = &
s->red;
526 s->colors[1] = &
s->green;
527 s->colors[2] = &
s->blue;
528 s->colors[3] = &
s->white;
531 s->colors[0] = &
s->white;
532 s->colors[1] = &
s->blue;
533 s->colors[2] = &
s->red;
534 s->colors[3] = &
s->white;
541 if (
s->draw.desc->comp[0].depth <= 8) {
565 #define SQR(x) ((x)*(x))
573 int max[4] = { 0 },
min[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
574 float average[4] = { 0 };
575 double std[4] = { 0 }, rms[4] = { 0 };
576 const char rgba[4] = {
'R',
'G',
'B',
'A' };
577 const char yuva[4] = {
'Y',
'U',
'V',
'A' };
578 int x, y,
X,
Y,
i,
w,
h;
592 X = (
in->width -
s->ww) *
s->wx;
594 X = (
in->width -
s->ww) * -
s->wx;
597 Y = (
in->height -
s->wh) *
s->wy;
599 Y = (
in->height -
s->wh) * -
s->wy;
603 if (
s->x +
s->w >=
X && (
s->x +
s->w <=
X +
s->ww) &&
604 s->y +
s->h >=
Y && (
s->y +
s->h <=
Y +
s->wh)) {
605 X = (
in->width -
s->ww) * (1 +
s->wx);
610 if (
s->x +
s->w >=
X && (
s->x +
s->w <=
X +
s->ww) &&
611 s->y +
s->h >=
Y && (
s->y +
s->h <=
Y +
s->wh)) {
612 Y = (
in->height -
s->wh) * (1 +
s->wy);
623 for (y = 0; y <
s->h; y++) {
624 for (x = 0; x <
s->w; x++) {
626 int value[4] = { 0 };
630 x *
w + (
s->ww - 4 - (
s->w *
w)) / 2 +
X, y *
h + 2 +
Y,
w,
h);
631 for (
i = 0;
i < 4;
i++) {
643 s->x - 2,
s->y - 2,
s->w + 4, 1);
647 s->x - 1,
s->y - 1,
s->w + 2, 1);
651 s->x - 1,
s->y - 1, 1,
s->h + 2);
655 s->x - 2,
s->y - 2, 1,
s->h + 4);
659 s->x - 1,
s->y + 1 +
s->h,
s->w + 3, 1);
663 s->x - 2,
s->y + 2 +
s->h,
s->w + 4, 1);
667 s->x + 1 +
s->w,
s->y - 1, 1,
s->h + 2);
671 s->x + 2 +
s->w,
s->y - 2, 1,
s->h + 5);
673 for (
i = 0;
i < 4;
i++) {
674 rms[
i] /=
s->w *
s->h;
675 rms[
i] = sqrt(rms[
i]);
676 average[
i] /=
s->w *
s->h;
679 for (y = 0; y <
s->h; y++) {
680 for (x = 0; x <
s->w; x++) {
681 for (
i = 0;
i < 4;
i++)
682 std[
i] +=
SQR(
s->values[
i][x][y] - average[
i]);
686 for (
i = 0;
i < 4;
i++) {
687 std[
i] /=
s->w *
s->h;
688 std[
i] = sqrt(std[
i]);
691 snprintf(text,
sizeof(text),
"CH AVG MIN MAX RMS\n");
693 for (
i = 0;
i <
s->nb_comps;
i++) {
694 int c =
s->rgba_map[
i];
696 snprintf(text,
sizeof(text),
"%c %07.1f %05d %05d %07.1f\n",
s->is_rgb ? rgba[
i] : yuva[
i], average[
c],
min[
c],
max[
c], rms[
c]);
699 snprintf(text,
sizeof(text),
"CH STD\n");
701 for (
i = 0;
i <
s->nb_comps;
i++) {
702 int c =
s->rgba_map[
i];
704 snprintf(text,
sizeof(text),
"%c %07.2f\n",
s->is_rgb ? rgba[
i] : yuva[
i], std[
c]);
713 char *res,
int res_len,
int flags)
746 .priv_class = &pixscope_class,
800 #define OOFFSET(x) offsetof(OscilloscopeContext, x)
831 int dx =
FFABS(
x1 - x0), sx = x0 <
x1 ? 1 : -1;
832 int dy =
FFABS(
y1 - y0), sy = y0 <
y1 ? 1 : -1;
833 int err = (dx > dy ? dx : -dy) / 2, e2;
837 if (x0 >= 0 && y0 >= 0 && x0 < out->
width && y0 < out->
height) {
859 if (x0 ==
x1 && y0 ==
y1)
880 for (
i = 1;
i <
s->nb_values;
i++) {
881 for (
c = 0;
c <
s->nb_comps;
c++) {
882 if ((1 <<
c) &
s->components) {
883 int x =
i *
s->width /
s->nb_values;
884 int px = (
i - 1) *
s->width /
s->nb_values;
885 int py =
s->height -
s->values[
i-1].p[
s->rgba_map[
c]] *
s->height / 256;
886 int y =
s->height -
s->values[
i].p[
s->rgba_map[
c]] *
s->height / 256;
899 for (
i = 1;
i <
s->nb_values;
i++) {
900 for (
c = 0;
c <
s->nb_comps;
c++) {
901 if ((1 <<
c) &
s->components) {
902 int x =
i *
s->width /
s->nb_values;
903 int px = (
i - 1) *
s->width /
s->nb_values;
904 int py =
s->height -
s->values[
i-1].p[
s->rgba_map[
c]] *
s->height /
s->max;
905 int y =
s->height -
s->values[
i].p[
s->rgba_map[
c]] *
s->height /
s->max;
926 cx =
s->xpos * (
inlink->w - 1);
927 cy =
s->ypos * (
inlink->h - 1);
951 s->nb_comps =
s->draw.desc->nb_components;
955 s->colors[0] = &
s->red;
956 s->colors[1] = &
s->green;
957 s->colors[2] = &
s->blue;
958 s->colors[3] = &
s->white;
961 s->colors[0] = &
s->white;
962 s->colors[1] = &
s->cyan;
963 s->colors[2] = &
s->magenta;
964 s->colors[3] = &
s->white;
971 if (
s->draw.desc->comp[0].depth <= 8) {
979 s->max = (1 <<
s->draw.desc->comp[0].depth);
994 int dx =
FFABS(
x1 - x0), sx = x0 <
x1 ? 1 : -1;
995 int dy =
FFABS(
y1 - y0), sy = y0 <
y1 ? 1 : -1;
996 int err = (dx > dy ? dx : -dy) / 2, e2;
999 if (x0 >= 0 && y0 >= 0 && x0 < out->
width && y0 < out->
height) {
1001 int value[4] = { 0 };
1004 s->values[
s->nb_values].p[0] =
value[0];
1005 s->values[
s->nb_values].p[1] =
value[1];
1006 s->values[
s->nb_values].p[2] =
value[2];
1007 s->values[
s->nb_values].p[3] =
value[3];
1011 if (
s->draw.desc->comp[0].depth == 8) {
1012 if (
s->draw.nb_planes == 1) {
1015 for (
i = 0;
i <
s->nb_comps;
i++)
1016 out->data[0][
out->linesize[0] * y0 + x0 *
s->draw.pixelstep[0] +
i] = 255 * ((
s->nb_values +
state) & 1);
1018 out->data[0][
out->linesize[0] * y0 + x0] = 255 * ((
s->nb_values +
state) & 1);
1021 if (
s->draw.nb_planes == 1) {
1024 for (
i = 0;
i <
s->nb_comps;
i++)
1025 AV_WN16(
out->data[0] +
out->linesize[0] * y0 + x0 *
s->draw.pixelstep[0] +
i, (
s->max - 1) * ((
s->nb_values +
state) & 1));
1027 AV_WN16(
out->data[0] +
out->linesize[0] * y0 + 2 * x0, (
s->max - 1) * ((
s->nb_values +
state) & 1));
1033 if (x0 ==
x1 && y0 ==
y1)
1055 float average[4] = { 0 };
1057 int min[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
1064 s->ox,
s->oy,
s->width,
s->height + 20 *
s->statistics);
1066 if (
s->grid && outlink->
h >= 10) {
1068 s->ox,
s->oy,
s->width - 1, 1);
1070 for (
i = 1;
i < 5;
i++) {
1072 s->ox,
s->oy +
i * (
s->height - 1) / 4,
s->width, 1);
1075 for (
i = 0;
i < 10;
i++) {
1077 s->ox +
i * (
s->width - 1) / 10,
s->oy, 1,
s->height);
1081 s->ox +
s->width - 1,
s->oy, 1,
s->height);
1086 for (
i = 0;
i <
s->nb_values;
i++) {
1087 for (
c = 0;
c <
s->nb_comps;
c++) {
1088 if ((1 <<
c) &
s->components) {
1091 average[
c] +=
s->values[
i].p[
s->rgba_map[
c]];
1095 for (
c = 0;
c <
s->nb_comps;
c++) {
1096 average[
c] /=
s->nb_values;
1099 if (
s->statistics &&
s->height > 10 &&
s->width > 280 *
av_popcount(
s->components)) {
1100 for (
c = 0,
i = 0;
c <
s->nb_comps;
c++) {
1101 if ((1 <<
c) &
s->components) {
1102 const char rgba[4] = {
'R',
'G',
'B',
'A' };
1103 const char yuva[4] = {
'Y',
'U',
'V',
'A' };
1106 snprintf(text,
sizeof(text),
"%c avg:%.1f min:%d max:%d\n",
s->is_rgb ? rgba[
c] : yuva[
c], average[
c],
min[
c],
max[
c]);
1116 char *res,
int res_len,
int flags)
1135 .needs_writable = 1,
1149 .
name =
"oscilloscope",
1152 .priv_class = &oscilloscope_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_LOG_WARNING
Something somehow does not look correct.
static void reverse_color8(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
static const AVFilterPad pixscope_inputs[]
static int filter_mono(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static const AVFilterPad pixscope_outputs[]
static int pixscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static int filter_color2(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
const struct AVPixFmtDescriptor * desc
int depth
Number of bits in the component.
const char * name
Filter name.
static void pick_color8(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
int pixelstep[MAX_PLANES]
void(* draw_trace)(struct OscilloscopeContext *s, AVFrame *frame)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
void * priv
private data for use by the filter
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
void ff_blend_mask(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_w, int dst_h, const uint8_t *mask, int mask_linesize, int mask_w, int mask_h, int l2depth, unsigned endianness, int x0, int y0)
Blend an alpha mask with an uniform color.
void(* reverse_color)(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
A filter pad used for either input or output.
static uint32_t reverse(uint32_t num, int bits)
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void update_oscilloscope(AVFilterContext *ctx)
uint16_t values[4][80][80]
static int filter_color(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int(* filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static void oscilloscope_uninit(AVFilterContext *ctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
static int config_input(AVFilterLink *inlink)
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
static const AVFilterPad inputs[]
static const AVFilterPad oscilloscope_outputs[]
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
int ff_draw_init(FFDrawContext *draw, enum AVPixelFormat format, unsigned flags)
Init a draw context.
static void pick_color16(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
static void reverse_color16(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
static int query_formats(AVFilterContext *ctx)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
uint8_t nb_components
The number of components each pixel has, (1-4)
Rational number (pair of numerator and denominator).
@ AV_OPT_TYPE_IMAGE_SIZE
offset must point to two consecutive integers
static const AVOption datascope_options[]
static const AVOption oscilloscope_options[]
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
static void draw_trace8(OscilloscopeContext *s, AVFrame *frame)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
AVFILTER_DEFINE_CLASS(datascope)
static void draw_trace16(OscilloscopeContext *s, AVFrame *frame)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
void ff_blend_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_w, int dst_h, int x0, int y0, int w, int h)
Blend a rectangle with an uniform color.
int av_frame_copy(AVFrame *dst, const AVFrame *src)
Copy the frame data from src to dst.
static int oscilloscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static av_const double hypot(double x, double y)
static const AVFilterPad outputs[]
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
static void draw_text(FFDrawContext *draw, AVFrame *frame, FFDrawColor *color, int x0, int y0, const uint8_t *text, int vertical)
static const AVFilterPad oscilloscope_inputs[]
void ff_fill_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_x, int dst_y, int w, int h)
Fill a rectangle with an uniform color.
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
static int pixscope_filter_frame(AVFilterLink *inlink, AVFrame *in)
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
AVFilter ff_vf_oscilloscope
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
int w
agreed upon image width
AVFilterFormats * ff_draw_supported_pixel_formats(unsigned flags)
Return the list of pixel formats supported by the draw functions.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const char * name
Pad name.
void ff_draw_color(FFDrawContext *draw, FFDrawColor *color, const uint8_t rgba[4])
Prepare a color.
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
int h
agreed upon image height
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
static void draw_scope(OscilloscopeContext *s, int x0, int y0, int x1, int y1, AVFrame *out, PixelValues *p, int state)
const uint8_t avpriv_cga_font[2048]
static const int16_t alpha[]
static int config_output(AVFilterLink *outlink)
static void draw_line(FFDrawContext *draw, int x0, int y0, int x1, int y1, AVFrame *out, FFDrawColor *color)
static const AVOption pixscope_options[]
static int pixscope_config_input(AVFilterLink *inlink)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
#define flags(name, subs,...)
static av_cold int uninit(AVCodecContext *avctx)
static int oscilloscope_filter_frame(AVFilterLink *inlink, AVFrame *frame)
static int oscilloscope_config_input(AVFilterLink *inlink)