Go to the documentation of this file.
43 #if CONFIG_VP7_DECODER && CONFIG_VP8_DECODER
44 #define VPX(vp7, f) (vp7 ? vp7_ ## f : vp8_ ## f)
45 #elif CONFIG_VP7_DECODER
46 #define VPX(vp7, f) vp7_ ## f
47 #else // CONFIG_VP8_DECODER
48 #define VPX(vp7, f) vp8_ ## f
68 s->macroblocks =
NULL;
79 if (
s->avctx->hwaccel) {
83 if (!
f->hwaccel_priv_buf)
85 f->hwaccel_picture_private =
f->hwaccel_priv_buf->data;
100 f->hwaccel_picture_private =
NULL;
104 #if CONFIG_VP8_DECODER
118 if (
src->hwaccel_picture_private) {
136 memset(
s->framep, 0,
sizeof(
s->framep));
153 for (
i = 0;
i < 5;
i++)
165 if (
frame->tf.f->buf[0])
174 #if CONFIG_VP8_VAAPI_HWACCEL
177 #if CONFIG_VP8_NVDEC_HWACCEL
191 int i,
ret, dim_reset = 0;
193 if (
width !=
s->avctx->width || ((
width+15)/16 !=
s->mb_width || (
height+15)/16 !=
s->mb_height) &&
s->macroblocks_base ||
201 dim_reset = (
s->macroblocks_base !=
NULL);
205 !
s->actually_webp && !is_vp7) {
212 s->mb_width = (
s->avctx->coded_width + 15) / 16;
213 s->mb_height = (
s->avctx->coded_height + 15) / 16;
218 s->macroblocks_base =
av_mallocz((
s->mb_width +
s->mb_height * 2 + 1) *
219 sizeof(*
s->macroblocks));
220 s->intra4x4_pred_mode_top =
av_mallocz(
s->mb_width * 4);
222 s->macroblocks_base =
av_mallocz((
s->mb_width + 2) * (
s->mb_height + 2) *
223 sizeof(*
s->macroblocks));
225 s->top_border =
av_mallocz((
s->mb_width + 1) *
sizeof(*
s->top_border));
228 if (!
s->macroblocks_base || !
s->top_nnz || !
s->top_border ||
229 !
s->thread_data || (!
s->intra4x4_pred_mode_top && !
s->mb_layout)) {
235 s->thread_data[
i].filter_strength =
236 av_mallocz(
s->mb_width *
sizeof(*
s->thread_data[0].filter_strength));
237 if (!
s->thread_data[
i].filter_strength) {
247 s->macroblocks =
s->macroblocks_base + 1;
271 if (
s->segmentation.update_feature_data) {
274 for (
i = 0;
i < 4;
i++)
277 for (
i = 0;
i < 4;
i++)
280 if (
s->segmentation.update_map)
281 for (
i = 0;
i < 3;
i++)
290 for (
i = 0;
i < 4;
i++) {
295 s->lf_delta.ref[
i] = -
s->lf_delta.ref[
i];
304 s->lf_delta.mode[
i] = -
s->lf_delta.mode[
i];
311 const uint8_t *
sizes = buf;
317 buf += 3 * (
s->num_coeff_partitions - 1);
318 buf_size -= 3 * (
s->num_coeff_partitions - 1);
322 for (
i = 0;
i <
s->num_coeff_partitions - 1;
i++) {
324 if (buf_size -
size < 0)
326 s->coeff_partition_size[
i] =
size;
335 s->coeff_partition_size[
i] = buf_size;
372 for (
i = 0;
i < 4;
i++) {
373 if (
s->segmentation.enabled) {
374 base_qi =
s->segmentation.base_quant[
i];
375 if (!
s->segmentation.absolute_vals)
376 base_qi +=
s->quant.yac_qi;
378 base_qi =
s->quant.yac_qi;
388 s->qmat[
i].luma_dc_qmul[1] =
FFMAX(
s->qmat[
i].luma_dc_qmul[1], 8);
389 s->qmat[
i].chroma_qmul[0] =
FFMIN(
s->qmat[
i].chroma_qmul[0], 132);
425 for (
i = 0;
i < 4;
i++)
426 for (j = 0; j < 16; j++)
428 sizeof(
s->prob->token[
i][j]));
436 for (
i = 0;
i < 4;
i++)
437 for (j = 0; j < 8; j++)
438 for (k = 0; k < 3; k++)
447 #define VP7_MVC_SIZE 17
448 #define VP8_MVC_SIZE 19
457 for (
i = 0;
i < 4;
i++)
460 for (
i = 0;
i < 3;
i++)
464 for (
i = 0;
i < 2;
i++)
465 for (j = 0; j < mvc_size; j++)
485 for (j = 1; j < 3; j++) {
492 static void fade(uint8_t *dst, ptrdiff_t dst_linesize,
493 const uint8_t *
src, ptrdiff_t src_linesize,
498 for (j = 0; j <
height; j++) {
499 const uint8_t *src2 =
src + j * src_linesize;
500 uint8_t *dst2 = dst + j * dst_linesize;
512 if (!
s->keyframe && (
alpha || beta)) {
513 int width =
s->mb_width * 16;
514 int height =
s->mb_height * 16;
538 src->data[0],
src->linesize[0],
548 int part1_size, hscale, vscale,
i, j,
ret;
549 int width =
s->avctx->width;
558 s->profile = (buf[0] >> 1) & 7;
559 if (
s->profile > 1) {
564 s->keyframe = !(buf[0] & 1);
566 part1_size =
AV_RL24(buf) >> 4;
568 if (buf_size < 4 - s->
profile + part1_size) {
569 av_log(
s->avctx,
AV_LOG_ERROR,
"Buffer size %d is too small, needed : %d\n", buf_size, 4 -
s->profile + part1_size);
573 buf += 4 -
s->profile;
574 buf_size -= 4 -
s->profile;
576 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_epel_pixels_tab,
sizeof(
s->put_pixels_tab));
582 buf_size -= part1_size;
590 if (hscale || vscale)
596 sizeof(
s->prob->pred16x16));
598 sizeof(
s->prob->pred8x8c));
599 for (
i = 0;
i < 2;
i++)
602 memset(&
s->segmentation, 0,
sizeof(
s->segmentation));
603 memset(&
s->lf_delta, 0,
sizeof(
s->lf_delta));
607 if (
s->keyframe ||
s->profile > 0)
608 memset(
s->inter_dc_pred, 0 ,
sizeof(
s->inter_dc_pred));
611 for (
i = 0;
i < 4;
i++) {
613 if (
s->feature_enabled[
i]) {
616 for (j = 0; j < 3; j++)
617 s->feature_index_prob[
i][j] =
621 for (j = 0; j < 4; j++)
622 s->feature_value[
i][j] =
627 s->segmentation.enabled = 0;
628 s->segmentation.update_map = 0;
629 s->lf_delta.enabled = 0;
631 s->num_coeff_partitions = 1;
636 if (!
s->macroblocks_base ||
638 (
width + 15) / 16 !=
s->mb_width || (
height + 15) / 16 !=
s->mb_height) {
653 s->update_probabilities = 1;
656 if (
s->profile > 0) {
658 if (!
s->update_probabilities)
659 s->prob[1] =
s->prob[0];
679 for (
i = 1;
i < 16;
i++)
691 s->mbskip_enabled = 0;
712 int header_size, hscale, vscale,
ret;
713 int width =
s->avctx->width;
721 s->keyframe = !(buf[0] & 1);
722 s->profile = (buf[0]>>1) & 7;
723 s->invisible = !(buf[0] & 0x10);
724 header_size =
AV_RL24(buf) >> 5;
728 s->header_partition_size = header_size;
734 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_epel_pixels_tab,
735 sizeof(
s->put_pixels_tab));
737 memcpy(
s->put_pixels_tab,
s->vp8dsp.put_vp8_bilinear_pixels_tab,
738 sizeof(
s->put_pixels_tab));
740 if (header_size > buf_size - 7 *
s->keyframe) {
746 if (
AV_RL24(buf) != 0x2a019d) {
748 "Invalid start code 0x%x\n",
AV_RL24(buf));
753 hscale = buf[4] >> 6;
754 vscale = buf[6] >> 6;
758 if (hscale || vscale)
764 sizeof(
s->prob->pred16x16));
766 sizeof(
s->prob->pred8x8c));
768 sizeof(
s->prob->mvc));
769 memset(&
s->segmentation, 0,
sizeof(
s->segmentation));
770 memset(&
s->lf_delta, 0,
sizeof(
s->lf_delta));
777 buf_size -= header_size;
789 s->segmentation.update_map = 0;
797 if (
s->lf_delta.update)
806 if (!
s->macroblocks_base ||
808 (
width+15)/16 !=
s->mb_width || (
height+15)/16 !=
s->mb_height)
823 s->prob[1] =
s->prob[0];
841 s->coder_state_at_header_end.input =
s->c.buffer - (-
s->c.bits / 8);
842 s->coder_state_at_header_end.range =
s->c.high;
843 s->coder_state_at_header_end.value =
s->c.code_word >> 16;
844 s->coder_state_at_header_end.bit_count = -
s->c.bits % 8;
853 av_clip(
s->mv_max.x, INT16_MIN, INT16_MAX));
855 av_clip(
s->mv_max.y, INT16_MIN, INT16_MAX));
868 for (
i = 0;
i < 3;
i++)
870 for (
i = (vp7 ? 7 : 9);
i > 3;
i--)
876 const uint8_t *ps = p + 2;
925 const uint8_t *mbsplits_top, *mbsplits_cur, *firstidx;
933 top_mb = &
mb[-
s->mb_width - 1];
935 top_mv = top_mb->
bmv;
949 mb->partitioning = part_idx;
951 for (n = 0; n < num; n++) {
953 uint32_t
left, above;
954 const uint8_t *submv_prob;
961 above =
AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
963 above =
AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
970 mb->bmv[n].y =
mb->mv.y +
972 mb->bmv[n].x =
mb->mv.x +
1000 int xoffset,
int yoffset,
int boundary,
1001 int *edge_x,
int *edge_y)
1003 int vwidth = mb_width + 1;
1004 int new = (mb_y + yoffset) * vwidth + mb_x + xoffset;
1005 if (
new < boundary ||
new % vwidth == vwidth - 1)
1007 *edge_y =
new / vwidth;
1008 *edge_x =
new % vwidth;
1019 int mb_x,
int mb_y,
int layout)
1022 enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR };
1023 enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
1026 uint8_t cnt[3] = { 0 };
1039 pred->yoffset, !
s->profile, &edge_x, &edge_y)) {
1041 ?
s->macroblocks_base + 1 + edge_x +
1042 (
s->mb_width + 1) * (edge_y + 1)
1043 :
s->macroblocks + edge_x +
1044 (
s->mb_height - edge_y - 1) * 2;
1047 if (
AV_RN32A(&near_mv[CNT_NEAREST])) {
1050 }
else if (
AV_RN32A(&near_mv[CNT_NEAR])) {
1080 if (cnt[CNT_NEAREST] > cnt[CNT_NEAR])
1081 AV_WN32A(&
mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAREST] ? 0 :
AV_RN32A(&near_mv[CNT_NEAREST]));
1091 mb->bmv[0] =
mb->mv;
1094 mb->mv = near_mv[CNT_NEAR];
1095 mb->bmv[0] =
mb->mv;
1098 mb->mv = near_mv[CNT_NEAREST];
1099 mb->bmv[0] =
mb->mv;
1104 mb->bmv[0] =
mb->mv;
1110 int mb_x,
int mb_y,
int layout)
1115 enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
1116 enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT };
1118 int cur_sign_bias =
s->sign_bias[
mb->ref_frame];
1119 int8_t *sign_bias =
s->sign_bias;
1121 uint8_t cnt[4] = { 0 };
1125 mb_edge[0] =
mb + 2;
1126 mb_edge[2] =
mb + 1;
1128 mb_edge[0] =
mb -
s->mb_width - 1;
1129 mb_edge[2] =
mb -
s->mb_width - 2;
1137 #define MV_EDGE_CHECK(n) \
1139 VP8Macroblock *edge = mb_edge[n]; \
1140 int edge_ref = edge->ref_frame; \
1141 if (edge_ref != VP56_FRAME_CURRENT) { \
1142 uint32_t mv = AV_RN32A(&edge->mv); \
1144 if (cur_sign_bias != sign_bias[edge_ref]) { \
1147 mv = ((mv & 0x7fff7fff) + \
1148 0x00010001) ^ (mv & 0x80008000); \
1150 if (!n || mv != AV_RN32A(&near_mv[idx])) \
1151 AV_WN32A(&near_mv[++idx], mv); \
1152 cnt[idx] += 1 + (n != 2); \
1154 cnt[CNT_ZERO] += 1 + (n != 2); \
1167 if (cnt[CNT_SPLITMV] &&
1168 AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) ==
AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT]))
1169 cnt[CNT_NEAREST] += 1;
1172 if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
1173 FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
1174 FFSWAP(
VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
1180 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]);
1191 mb->bmv[0] =
mb->mv;
1194 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_NEAR]);
1195 mb->bmv[0] =
mb->mv;
1198 clamp_mv(mv_bounds, &
mb->mv, &near_mv[CNT_NEAREST]);
1199 mb->bmv[0] =
mb->mv;
1204 mb->bmv[0] =
mb->mv;
1210 int mb_x,
int keyframe,
int layout)
1212 uint8_t *intra4x4 =
mb->intra4x4_pred_mode_mb;
1221 uint8_t *
const left =
s->intra4x4_pred_mode_left;
1223 top =
mb->intra4x4_pred_mode_top;
1225 top =
s->intra4x4_pred_mode_top + 4 * mb_x;
1226 for (y = 0; y < 4; y++) {
1227 for (x = 0; x < 4; x++) {
1231 left[y] = top[x] = *intra4x4;
1237 for (
i = 0;
i < 16;
i++)
1249 static const char *
const vp7_feature_name[] = {
"q-index",
1251 "partial-golden-update",
1256 for (
i = 0;
i < 4;
i++) {
1257 if (
s->feature_enabled[
i]) {
1260 s->feature_index_prob[
i]);
1262 "Feature %s present in macroblock (value 0x%x)\n",
1263 vp7_feature_name[
i],
s->feature_value[
i][
index]);
1267 }
else if (
s->segmentation.update_map) {
1270 }
else if (
s->segmentation.enabled)
1303 s->ref_count[
mb->ref_frame - 1]++;
1338 int i, uint8_t *token_prob, int16_t qmul[2],
1339 const uint8_t scan[16],
int vp7)
1353 token_prob = probs[
i][0];
1361 token_prob = probs[
i + 1][1];
1381 int cat = (
a << 1) +
b;
1386 token_prob = probs[
i + 1][2];
1421 int i, uint8_t *token_prob,
1423 const uint8_t scan[16])
1426 token_prob, qmul, scan,
IS_VP7);
1429 #ifndef vp8_decode_block_coeffs_internal
1433 int i, uint8_t *token_prob,
1457 int i,
int zero_nhood, int16_t qmul[2],
1458 const uint8_t scan[16],
int vp7)
1460 uint8_t *token_prob = probs[
i][zero_nhood];
1464 token_prob, qmul, scan)
1474 int i, x, y, luma_start = 0, luma_ctx = 3;
1475 int nnz_pred, nnz, nnz_total = 0;
1480 nnz_pred = t_nnz[8] + l_nnz[8];
1484 nnz_pred,
s->qmat[
segment].luma_dc_qmul,
1486 l_nnz[8] = t_nnz[8] = !!nnz;
1490 s->inter_dc_pred[
mb->ref_frame - 1]);
1497 s->vp8dsp.vp8_luma_dc_wht_dc(
td->block,
td->block_dc);
1499 s->vp8dsp.vp8_luma_dc_wht(
td->block,
td->block_dc);
1506 for (y = 0; y < 4; y++)
1507 for (x = 0; x < 4; x++) {
1508 nnz_pred = l_nnz[y] + t_nnz[x];
1510 s->prob->token[luma_ctx],
1511 luma_start, nnz_pred,
1513 s->prob[0].scan, is_vp7);
1516 td->non_zero_count_cache[y][x] = nnz + block_dc;
1517 t_nnz[x] = l_nnz[y] = !!nnz;
1524 for (
i = 4;
i < 6;
i++)
1525 for (y = 0; y < 2; y++)
1526 for (x = 0; x < 2; x++) {
1527 nnz_pred = l_nnz[
i + 2 * y] + t_nnz[
i + 2 * x];
1529 s->prob->token[2], 0, nnz_pred,
1531 s->prob[0].scan, is_vp7);
1532 td->non_zero_count_cache[
i][(y << 1) + x] = nnz;
1533 t_nnz[
i + 2 * x] = l_nnz[
i + 2 * y] = !!nnz;
1546 uint8_t *src_cb, uint8_t *src_cr,
1547 ptrdiff_t linesize, ptrdiff_t uvlinesize,
int simple)
1549 AV_COPY128(top_border, src_y + 15 * linesize);
1551 AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
1552 AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
1558 uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize,
int mb_x,
1559 int mb_y,
int mb_width,
int simple,
int xchg)
1561 uint8_t *top_border_m1 = top_border - 32;
1563 src_cb -= uvlinesize;
1564 src_cr -= uvlinesize;
1566 #define XCHG(a, b, xchg) \
1574 XCHG(top_border_m1 + 8, src_y - 8, xchg);
1575 XCHG(top_border, src_y, xchg);
1576 XCHG(top_border + 8, src_y + 8, 1);
1577 if (mb_x < mb_width - 1)
1578 XCHG(top_border + 32, src_y + 16, 1);
1582 if (!simple || !mb_y) {
1583 XCHG(top_border_m1 + 16, src_cb - 8, xchg);
1584 XCHG(top_border_m1 + 24, src_cr - 8, xchg);
1585 XCHG(top_border + 16, src_cb, 1);
1586 XCHG(top_border + 24, src_cr, 1);
1636 int *copy_buf,
int vp7)
1640 if (!mb_x && mb_y) {
1674 int x, y,
mode, nnz;
1679 if (mb_y && (
s->deblock_filter || !mb_y) &&
td->thread_nr == 0)
1681 s->linesize,
s->uvlinesize, mb_x, mb_y,
s->mb_width,
1682 s->filter.simple, 1);
1686 s->hpc.pred16x16[
mode](dst[0],
s->linesize);
1688 uint8_t *ptr = dst[0];
1689 uint8_t *intra4x4 =
mb->intra4x4_pred_mode_mb;
1690 const uint8_t lo = is_vp7 ? 128 : 127;
1691 const uint8_t hi = is_vp7 ? 128 : 129;
1692 uint8_t tr_top[4] = { lo, lo, lo, lo };
1696 uint8_t *tr_right = ptr -
s->linesize + 16;
1700 if (mb_y && mb_x ==
s->mb_width - 1) {
1701 tr = tr_right[-1] * 0x01010101
u;
1702 tr_right = (uint8_t *) &tr;
1708 for (y = 0; y < 4; y++) {
1709 uint8_t *topright = ptr + 4 -
s->linesize;
1710 for (x = 0; x < 4; x++) {
1712 ptrdiff_t linesize =
s->linesize;
1713 uint8_t *dst = ptr + 4 * x;
1716 if ((y == 0 || x == 3) && mb_y == 0) {
1719 topright = tr_right;
1722 mb_y + y, &
copy, is_vp7);
1724 dst = copy_dst + 12;
1728 AV_WN32A(copy_dst + 4, lo * 0x01010101U);
1730 AV_COPY32(copy_dst + 4, ptr + 4 * x -
s->linesize);
1734 copy_dst[3] = ptr[4 * x -
s->linesize - 1];
1743 copy_dst[11] = ptr[4 * x - 1];
1744 copy_dst[19] = ptr[4 * x +
s->linesize - 1];
1745 copy_dst[27] = ptr[4 * x +
s->linesize * 2 - 1];
1746 copy_dst[35] = ptr[4 * x +
s->linesize * 3 - 1];
1749 s->hpc.pred4x4[
mode](dst, topright, linesize);
1752 AV_COPY32(ptr + 4 * x +
s->linesize, copy_dst + 20);
1753 AV_COPY32(ptr + 4 * x +
s->linesize * 2, copy_dst + 28);
1754 AV_COPY32(ptr + 4 * x +
s->linesize * 3, copy_dst + 36);
1757 nnz =
td->non_zero_count_cache[y][x];
1760 s->vp8dsp.vp8_idct_dc_add(ptr + 4 * x,
1761 td->block[y][x],
s->linesize);
1763 s->vp8dsp.vp8_idct_add(ptr + 4 * x,
1764 td->block[y][x],
s->linesize);
1769 ptr += 4 *
s->linesize;
1775 mb_x, mb_y, is_vp7);
1776 s->hpc.pred8x8[
mode](dst[1],
s->uvlinesize);
1777 s->hpc.pred8x8[
mode](dst[2],
s->uvlinesize);
1779 if (mb_y && (
s->deblock_filter || !mb_y) &&
td->thread_nr == 0)
1781 s->linesize,
s->uvlinesize, mb_x, mb_y,
s->mb_width,
1782 s->filter.simple, 0);
1786 { 0, 1, 2, 1, 2, 1, 2, 1 },
1788 { 0, 3, 5, 3, 5, 3, 5, 3 },
1789 { 0, 2, 3, 2, 3, 2, 3, 2 },
1811 int x_off,
int y_off,
int block_w,
int block_h,
1815 uint8_t *
src =
ref->f->data[0];
1818 ptrdiff_t src_linesize = linesize;
1823 x_off +=
mv->x >> 2;
1824 y_off +=
mv->y >> 2;
1828 src += y_off * linesize + x_off;
1831 s->vdsp.emulated_edge_mc(
td->edge_emu_buffer,
1832 src - my_idx * linesize - mx_idx,
1836 x_off - mx_idx, y_off - my_idx,
1841 mc_func[my_idx][mx_idx](dst, linesize,
src, src_linesize, block_h, mx, my);
1844 mc_func[0][0](dst, linesize,
src + y_off * linesize + x_off,
1845 linesize, block_h, 0, 0);
1869 int x_off,
int y_off,
int block_w,
int block_h,
1873 uint8_t *
src1 =
ref->f->data[1], *src2 =
ref->f->data[2];
1879 x_off +=
mv->x >> 3;
1880 y_off +=
mv->y >> 3;
1883 src1 += y_off * linesize + x_off;
1884 src2 += y_off * linesize + x_off;
1888 s->vdsp.emulated_edge_mc(
td->edge_emu_buffer,
1889 src1 - my_idx * linesize - mx_idx,
1897 s->vdsp.emulated_edge_mc(
td->edge_emu_buffer,
1898 src2 - my_idx * linesize - mx_idx,
1904 mc_func[my_idx][mx_idx](dst2, linesize, src2,
EDGE_EMU_LINESIZE, block_h, mx, my);
1906 mc_func[my_idx][mx_idx](dst1, linesize,
src1, linesize, block_h, mx, my);
1907 mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my);
1911 mc_func[0][0](dst1, linesize,
src1 + y_off * linesize + x_off, linesize, block_h, 0, 0);
1912 mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0);
1919 int bx_off,
int by_off,
int block_w,
int block_h,
1926 ref_frame,
mv, x_off + bx_off, y_off + by_off,
1928 s->put_pixels_tab[block_w == 8]);
1931 if (
s->profile == 3) {
1946 dst[2] + by_off *
s->uvlinesize + bx_off, ref_frame,
1947 &uvmv, x_off + bx_off, y_off + by_off,
1949 s->put_pixels_tab[1 + (block_w == 4)]);
1959 if (
s->ref_count[
ref - 1] > (mb_xy >> 5)) {
1960 int x_off = mb_x << 4, y_off = mb_y << 4;
1961 int mx = (
mb->mv.x >> 2) + x_off + 8;
1962 int my = (
mb->mv.y >> 2) + y_off;
1963 uint8_t **
src =
s->framep[
ref]->tf.f->data;
1964 int off = mx + (my + (mb_x & 3) * 4) *
s->linesize + 64;
1968 s->vdsp.prefetch(
src[0] + off,
s->linesize, 4);
1969 off = (mx >> 1) + ((my >> 1) + (mb_x & 7)) *
s->uvlinesize + 64;
1970 s->vdsp.prefetch(
src[1] + off,
src[2] -
src[1], 2);
1981 int x_off = mb_x << 4, y_off = mb_y << 4;
1986 switch (
mb->partitioning) {
1996 for (y = 0; y < 4; y++) {
1997 for (x = 0; x < 4; x++) {
1999 ref, &bmv[4 * y + x],
2000 4 * x + x_off, 4 * y + y_off, 4, 4,
2002 s->put_pixels_tab[2]);
2011 for (y = 0; y < 2; y++) {
2012 for (x = 0; x < 2; x++) {
2013 uvmv.
x =
mb->bmv[2 * y * 4 + 2 * x ].x +
2014 mb->bmv[2 * y * 4 + 2 * x + 1].x +
2015 mb->bmv[(2 * y + 1) * 4 + 2 * x ].x +
2016 mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].x;
2017 uvmv.
y =
mb->bmv[2 * y * 4 + 2 * x ].y +
2018 mb->bmv[2 * y * 4 + 2 * x + 1].y +
2019 mb->bmv[(2 * y + 1) * 4 + 2 * x ].y +
2020 mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].y;
2023 if (
s->profile == 3) {
2028 dst[2] + 4 * y *
s->uvlinesize + x * 4,
ref,
2029 &uvmv, 4 * x + x_off, 4 * y + y_off, 4, 4,
2031 s->put_pixels_tab[2]);
2067 uint8_t *y_dst = dst[0];
2068 for (y = 0; y < 4; y++) {
2069 uint32_t nnz4 =
AV_RL32(
td->non_zero_count_cache[y]);
2071 if (nnz4 & ~0x01010101) {
2072 for (x = 0; x < 4; x++) {
2073 if ((uint8_t) nnz4 == 1)
2074 s->vp8dsp.vp8_idct_dc_add(y_dst + 4 * x,
2077 else if ((uint8_t) nnz4 > 1)
2078 s->vp8dsp.vp8_idct_add(y_dst + 4 * x,
2086 s->vp8dsp.vp8_idct_dc_add4y(y_dst,
td->block[y],
s->linesize);
2089 y_dst += 4 *
s->linesize;
2093 for (ch = 0; ch < 2; ch++) {
2094 uint32_t nnz4 =
AV_RL32(
td->non_zero_count_cache[4 + ch]);
2096 uint8_t *ch_dst = dst[1 + ch];
2097 if (nnz4 & ~0x01010101) {
2098 for (y = 0; y < 2; y++) {
2099 for (x = 0; x < 2; x++) {
2100 if ((uint8_t) nnz4 == 1)
2101 s->vp8dsp.vp8_idct_dc_add(ch_dst + 4 * x,
2102 td->block[4 + ch][(y << 1) + x],
2104 else if ((uint8_t) nnz4 > 1)
2105 s->vp8dsp.vp8_idct_add(ch_dst + 4 * x,
2106 td->block[4 + ch][(y << 1) + x],
2110 goto chroma_idct_end;
2112 ch_dst += 4 *
s->uvlinesize;
2115 s->vp8dsp.vp8_idct_dc_add4uv(ch_dst,
td->block[4 + ch],
s->uvlinesize);
2127 int interior_limit, filter_level;
2129 if (
s->segmentation.enabled) {
2130 filter_level =
s->segmentation.filter_level[
mb->segment];
2131 if (!
s->segmentation.absolute_vals)
2132 filter_level +=
s->filter.level;
2134 filter_level =
s->filter.level;
2136 if (
s->lf_delta.enabled) {
2137 filter_level +=
s->lf_delta.ref[
mb->ref_frame];
2138 filter_level +=
s->lf_delta.mode[
mb->mode];
2143 interior_limit = filter_level;
2144 if (
s->filter.sharpness) {
2145 interior_limit >>= (
s->filter.sharpness + 3) >> 2;
2146 interior_limit =
FFMIN(interior_limit, 9 -
s->filter.sharpness);
2148 interior_limit =
FFMAX(interior_limit, 1);
2150 f->filter_level = filter_level;
2151 f->inner_limit = interior_limit;
2152 f->inner_filter = is_vp7 || !
mb->skip ||
mb->mode ==
MODE_I4x4 ||
2158 int mb_x,
int mb_y,
int is_vp7)
2160 int mbedge_lim, bedge_lim_y, bedge_lim_uv, hev_thresh;
2161 int filter_level =
f->filter_level;
2162 int inner_limit =
f->inner_limit;
2163 int inner_filter =
f->inner_filter;
2164 ptrdiff_t linesize =
s->linesize;
2165 ptrdiff_t uvlinesize =
s->uvlinesize;
2166 static const uint8_t hev_thresh_lut[2][64] = {
2167 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2168 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2169 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2171 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
2172 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2173 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2181 bedge_lim_y = filter_level;
2182 bedge_lim_uv = filter_level * 2;
2183 mbedge_lim = filter_level + 2;
2186 bedge_lim_uv = filter_level * 2 + inner_limit;
2187 mbedge_lim = bedge_lim_y + 4;
2190 hev_thresh = hev_thresh_lut[
s->keyframe][filter_level];
2193 s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
2194 mbedge_lim, inner_limit, hev_thresh);
2195 s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
2196 mbedge_lim, inner_limit, hev_thresh);
2199 #define H_LOOP_FILTER_16Y_INNER(cond) \
2200 if (cond && inner_filter) { \
2201 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 4, linesize, \
2202 bedge_lim_y, inner_limit, \
2204 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 8, linesize, \
2205 bedge_lim_y, inner_limit, \
2207 s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 12, linesize, \
2208 bedge_lim_y, inner_limit, \
2210 s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, \
2211 uvlinesize, bedge_lim_uv, \
2212 inner_limit, hev_thresh); \
2218 s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
2219 mbedge_lim, inner_limit, hev_thresh);
2220 s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
2221 mbedge_lim, inner_limit, hev_thresh);
2225 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 4 * linesize,
2226 linesize, bedge_lim_y,
2227 inner_limit, hev_thresh);
2228 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 8 * linesize,
2229 linesize, bedge_lim_y,
2230 inner_limit, hev_thresh);
2231 s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 12 * linesize,
2232 linesize, bedge_lim_y,
2233 inner_limit, hev_thresh);
2234 s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
2235 dst[2] + 4 * uvlinesize,
2236 uvlinesize, bedge_lim_uv,
2237 inner_limit, hev_thresh);
2247 int mbedge_lim, bedge_lim;
2248 int filter_level =
f->filter_level;
2249 int inner_limit =
f->inner_limit;
2250 int inner_filter =
f->inner_filter;
2251 ptrdiff_t linesize =
s->linesize;
2256 bedge_lim = 2 * filter_level + inner_limit;
2257 mbedge_lim = bedge_lim + 4;
2260 s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
2262 s->vp8dsp.vp8_h_loop_filter_simple(dst + 4, linesize, bedge_lim);
2263 s->vp8dsp.vp8_h_loop_filter_simple(dst + 8, linesize, bedge_lim);
2264 s->vp8dsp.vp8_h_loop_filter_simple(dst + 12, linesize, bedge_lim);
2268 s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
2270 s->vp8dsp.vp8_v_loop_filter_simple(dst + 4 * linesize, linesize, bedge_lim);
2271 s->vp8dsp.vp8_v_loop_filter_simple(dst + 8 * linesize, linesize, bedge_lim);
2272 s->vp8dsp.vp8_v_loop_filter_simple(dst + 12 * linesize, linesize, bedge_lim);
2276 #define MARGIN (16 << 2)
2284 s->mv_bounds.mv_min.y = -
MARGIN;
2285 s->mv_bounds.mv_max.y = ((
s->mb_height - 1) << 6) +
MARGIN;
2286 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
2288 ((
s->mb_width + 1) * (mb_y + 1) + 1);
2289 int mb_xy = mb_y *
s->mb_width;
2293 s->mv_bounds.mv_min.x = -
MARGIN;
2294 s->mv_bounds.mv_max.x = ((
s->mb_width - 1) << 6) +
MARGIN;
2296 for (mb_x = 0; mb_x <
s->mb_width; mb_x++, mb_xy++,
mb++) {
2301 AV_WN32A((
mb -
s->mb_width - 1)->intra4x4_pred_mode_top,
2304 prev_frame && prev_frame->
seg_map ?
2306 s->mv_bounds.mv_min.x -= 64;
2307 s->mv_bounds.mv_max.x -= 64;
2309 s->mv_bounds.mv_min.y -= 64;
2310 s->mv_bounds.mv_max.y -= 64;
2328 #define check_thread_pos(td, otd, mb_x_check, mb_y_check) \
2330 int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF); \
2331 if (atomic_load(&otd->thread_mb_pos) < tmp) { \
2332 pthread_mutex_lock(&otd->lock); \
2333 atomic_store(&td->wait_mb_pos, tmp); \
2335 if (atomic_load(&otd->thread_mb_pos) >= tmp) \
2337 pthread_cond_wait(&otd->cond, &otd->lock); \
2339 atomic_store(&td->wait_mb_pos, INT_MAX); \
2340 pthread_mutex_unlock(&otd->lock); \
2344 #define update_pos(td, mb_y, mb_x) \
2346 int pos = (mb_y << 16) | (mb_x & 0xFFFF); \
2347 int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && \
2349 int is_null = !next_td || !prev_td; \
2350 int pos_check = (is_null) ? 1 : \
2351 (next_td != td && pos >= atomic_load(&next_td->wait_mb_pos)) || \
2352 (prev_td != td && pos >= atomic_load(&prev_td->wait_mb_pos)); \
2353 atomic_store(&td->thread_mb_pos, pos); \
2354 if (sliced_threading && pos_check) { \
2355 pthread_mutex_lock(&td->lock); \
2356 pthread_cond_broadcast(&td->cond); \
2357 pthread_mutex_unlock(&td->lock); \
2361 #define check_thread_pos(td, otd, mb_x_check, mb_y_check) while(0)
2362 #define update_pos(td, mb_y, mb_x) while(0)
2366 int jobnr,
int threadnr,
int is_vp7)
2371 int mb_x, mb_xy = mb_y *
s->mb_width;
2372 int num_jobs =
s->num_jobs;
2373 VP8Frame *curframe =
s->curframe, *prev_frame =
s->prev_frame;
2377 curframe->
tf.
f->
data[0] + 16 * mb_y *
s->linesize,
2378 curframe->
tf.
f->
data[1] + 8 * mb_y *
s->uvlinesize,
2379 curframe->
tf.
f->
data[2] + 8 * mb_y *
s->uvlinesize
2388 prev_td = &
s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
2389 if (mb_y ==
s->mb_height - 1)
2392 next_td = &
s->thread_data[(jobnr + 1) % num_jobs];
2393 if (
s->mb_layout == 1)
2394 mb =
s->macroblocks_base + ((
s->mb_width + 1) * (mb_y + 1) + 1);
2398 if (prev_frame &&
s->segmentation.enabled &&
2399 !
s->segmentation.update_map)
2401 mb =
s->macroblocks + (
s->mb_height - mb_y - 1) * 2;
2402 memset(
mb - 1, 0,
sizeof(*
mb));
2406 if (!is_vp7 || mb_y == 0)
2407 memset(
td->left_nnz, 0,
sizeof(
td->left_nnz));
2410 td->mv_bounds.mv_max.x = ((
s->mb_width - 1) << 6) +
MARGIN;
2412 for (mb_x = 0; mb_x <
s->mb_width; mb_x++, mb_xy++,
mb++) {
2416 if (prev_td !=
td) {
2417 if (threadnr != 0) {
2419 mb_x + (is_vp7 ? 2 : 1),
2420 mb_y - (is_vp7 ? 2 : 1));
2423 mb_x + (is_vp7 ? 2 : 1) +
s->mb_width + 3,
2424 mb_y - (is_vp7 ? 2 : 1));
2428 s->vdsp.prefetch(dst[0] + (mb_x & 3) * 4 *
s->linesize + 64,
2430 s->vdsp.prefetch(dst[1] + (mb_x & 7) *
s->uvlinesize + 64,
2431 dst[2] - dst[1], 2);
2435 prev_frame && prev_frame->seg_map ?
2436 prev_frame->seg_map->data + mb_xy :
NULL, 0, is_vp7);
2459 td->left_nnz[8] = 0;
2460 s->top_nnz[mb_x][8] = 0;
2464 if (
s->deblock_filter)
2467 if (
s->deblock_filter && num_jobs != 1 && threadnr == num_jobs - 1) {
2468 if (
s->filter.simple)
2473 dst[1], dst[2],
s->linesize,
s->uvlinesize, 0);
2481 td->mv_bounds.mv_min.x -= 64;
2482 td->mv_bounds.mv_max.x -= 64;
2484 if (mb_x ==
s->mb_width + 1) {
2494 int jobnr,
int threadnr)
2500 int jobnr,
int threadnr)
2506 int jobnr,
int threadnr,
int is_vp7)
2510 int mb_x, mb_y =
atomic_load(&
td->thread_mb_pos) >> 16, num_jobs =
s->num_jobs;
2511 AVFrame *curframe =
s->curframe->tf.f;
2515 curframe->
data[0] + 16 * mb_y *
s->linesize,
2516 curframe->
data[1] + 8 * mb_y *
s->uvlinesize,
2517 curframe->
data[2] + 8 * mb_y *
s->uvlinesize
2520 if (
s->mb_layout == 1)
2521 mb =
s->macroblocks_base + ((
s->mb_width + 1) * (mb_y + 1) + 1);
2523 mb =
s->macroblocks + (
s->mb_height - mb_y - 1) * 2;
2528 prev_td = &
s->thread_data[(jobnr + num_jobs - 1) % num_jobs];
2529 if (mb_y ==
s->mb_height - 1)
2532 next_td = &
s->thread_data[(jobnr + 1) % num_jobs];
2534 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
mb++) {
2538 (mb_x + 1) + (
s->mb_width + 3), mb_y - 1);
2540 if (next_td != &
s->thread_data[0])
2543 if (num_jobs == 1) {
2544 if (
s->filter.simple)
2549 dst[1], dst[2],
s->linesize,
s->uvlinesize, 0);
2552 if (
s->filter.simple)
2565 int jobnr,
int threadnr)
2571 int jobnr,
int threadnr)
2578 int threadnr,
int is_vp7)
2584 int mb_y, num_jobs =
s->num_jobs;
2587 td->thread_nr = threadnr;
2588 td->mv_bounds.mv_min.y = -
MARGIN - 64 * threadnr;
2589 td->mv_bounds.mv_max.y = ((
s->mb_height - 1) << 6) +
MARGIN - 64 * threadnr;
2590 for (mb_y = jobnr; mb_y <
s->mb_height; mb_y += num_jobs) {
2592 ret =
s->decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr);
2597 if (
s->deblock_filter)
2598 s->filter_mb_row(avctx, tdata, jobnr, threadnr);
2601 td->mv_bounds.mv_min.y -= 64 * num_jobs;
2602 td->mv_bounds.mv_max.y -= 64 * num_jobs;
2612 int jobnr,
int threadnr)
2618 int jobnr,
int threadnr)
2628 int ret,
i, referenced, num_jobs;
2640 if (
s->actually_webp) {
2644 if (
s->pix_fmt < 0) {
2662 memcpy(&
s->next_framep[0], &
s->framep[0],
sizeof(
s->framep[0]) * 4);
2668 for (
i = 0;
i < 5;
i++)
2669 if (
s->frames[
i].tf.f->buf[0] &&
2670 &
s->frames[
i] != prev_frame &&
2693 "Discarding interframe without a prior keyframe!\n");
2698 curframe->tf.f->key_frame =
s->keyframe;
2739 s->linesize = curframe->tf.f->linesize[0];
2740 s->uvlinesize = curframe->tf.f->linesize[1];
2742 memset(
s->top_nnz, 0,
s->mb_width *
sizeof(*
s->top_nnz));
2746 memset(
s->macroblocks +
s->mb_height * 2 - 1, 0,
2747 (
s->mb_width + 1) *
sizeof(*
s->macroblocks));
2748 if (!
s->mb_layout &&
s->keyframe)
2749 memset(
s->intra4x4_pred_mode_top,
DC_PRED,
s->mb_width * 4);
2751 memset(
s->ref_count, 0,
sizeof(
s->ref_count));
2753 if (
s->mb_layout == 1) {
2756 if (prev_frame &&
s->segmentation.enabled &&
2757 !
s->segmentation.update_map)
2771 s->num_jobs = num_jobs;
2772 s->curframe = curframe;
2773 s->prev_frame = prev_frame;
2774 s->mv_bounds.mv_min.y = -
MARGIN;
2775 s->mv_bounds.mv_max.y = ((
s->mb_height - 1) << 6) +
MARGIN;
2790 memcpy(&
s->framep[0], &
s->next_framep[0],
sizeof(
s->framep[0]) * 4);
2795 if (!
s->update_probabilities)
2796 s->prob[0] =
s->prob[1];
2798 if (!
s->invisible) {
2806 memcpy(&
s->next_framep[0], &
s->framep[0],
sizeof(
s->framep[0]) * 4);
2816 #if CONFIG_VP7_DECODER
2844 if (!
s->frames[
i].tf.f)
2864 if (CONFIG_VP7_DECODER && is_vp7) {
2869 }
else if (CONFIG_VP8_DECODER && !is_vp7) {
2887 #if CONFIG_VP7_DECODER
2899 #if CONFIG_VP8_DECODER
2901 #define REBASE(pic) ((pic) ? (pic) - &s_src->frames[0] + &s->frames[0] : NULL)
2909 if (
s->macroblocks_base &&
2910 (s_src->mb_width !=
s->mb_width || s_src->mb_height !=
s->mb_height)) {
2912 s->mb_width = s_src->mb_width;
2913 s->mb_height = s_src->mb_height;
2916 s->pix_fmt = s_src->pix_fmt;
2917 s->prob[0] = s_src->prob[!s_src->update_probabilities];
2918 s->segmentation = s_src->segmentation;
2919 s->lf_delta = s_src->lf_delta;
2920 memcpy(
s->sign_bias, s_src->sign_bias,
sizeof(
s->sign_bias));
2923 if (s_src->frames[
i].tf.f->buf[0]) {
2924 int ret = vp8_ref_frame(
s, &
s->frames[
i], &s_src->frames[
i]);
2930 s->framep[0] = REBASE(s_src->next_framep[0]);
2931 s->framep[1] = REBASE(s_src->next_framep[1]);
2932 s->framep[2] = REBASE(s_src->next_framep[2]);
2933 s->framep[3] = REBASE(s_src->next_framep[3]);
2940 #if CONFIG_VP7_DECODER
2947 .
init = vp7_decode_init,
2949 .
decode = vp7_decode_frame,
2956 #if CONFIG_VP8_DECODER
2973 #if CONFIG_VP8_VAAPI_HWACCEL
2976 #if CONFIG_VP8_NVDEC_HWACCEL
static const int vp8_mode_contexts[6][4]
static const uint8_t vp8_dct_cat1_prob[]
#define VP7_MV_PRED_COUNT
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
av_cold int ff_vp8_decode_free(AVCodecContext *avctx)
static const uint8_t vp7_pred4x4_mode[]
static const VP7MVPred vp7_mv_pred[VP7_MV_PRED_COUNT]
#define AV_LOG_WARNING
Something somehow does not look correct.
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
AVPixelFormat
Pixel format.
static av_always_inline int vp8_rac_get_coeff(VP56RangeCoder *c, const uint8_t *prob)
static int vp7_calculate_mb_offset(int mb_x, int mb_y, int mb_width, int xoffset, int yoffset, int boundary, int *edge_x, int *edge_y)
The vp7 reference decoder uses a padding macroblock column (added to right edge of the frame) to guar...
#define atomic_store(object, desired)
static void vp7_filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int vp7_read_mv_component(VP56RangeCoder *c, const uint8_t *p)
enum AVColorSpace colorspace
YUV colorspace type.
static av_always_inline int vp78_decode_init(AVCodecContext *avctx, int is_vp7)
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
static av_always_inline int vpX_rac_is_end(VP56RangeCoder *c)
vp5689 returns 1 if the end of the stream has been reached, 0 otherwise.
static av_always_inline int read_mv_component(VP56RangeCoder *c, const uint8_t *p, int vp7)
Motion vector coding, 17.1.
const AVCodec ff_vp7_decoder
#define u(width, name, range_min, range_max)
static av_always_inline int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y, int vp7)
int(* update_thread_context)(struct AVCodecContext *dst, const struct AVCodecContext *src)
Copy necessary context variables from a previous thread context to the current one.
static const uint8_t vp8_submv_prob[5][3]
uint8_t * data
The data buffer.
static av_always_inline int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
static const uint16_t vp7_ydc_qlookup[]
static av_always_inline void clamp_mv(VP8mvbounds *s, VP56mv *dst, const VP56mv *src)
#define HOR_VP8_PRED
unaveraged version of HOR_PRED, see
static const int8_t mv[256][2]
static av_always_inline void vp7_decode_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int layout)
static const uint8_t vp7_mv_default_prob[2][17]
static av_always_inline int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, int *copy_buf, int vp7)
const uint8_t *const ff_vp8_dct_cat_prob[]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_always_inline int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y, int vp7)
static const uint16_t vp7_y2dc_qlookup[]
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
Full range content.
static av_always_inline int inter_predict_dc(int16_t block[16], int16_t pred[2])
static const VP56mv * get_bmv_ptr(const VP8Macroblock *mb, int subblock)
static void vp8_get_quants(VP8Context *s)
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
Determine which buffers golden and altref should be updated with after this frame.
static int vp8_decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, uint8_t *token_prob, int16_t qmul[2])
static av_always_inline void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int simple)
AVBufferRef * av_buffer_ref(const AVBufferRef *buf)
Create a new reference to an AVBuffer.
@ VP8_SPLITMVMODE_4x4
4x4 blocks of 4x4px each
#define VERT_VP8_PRED
for VP8, VERT_PRED is the average of
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static av_unused int vp8_rac_get_nn(VP56RangeCoder *c)
static int vp8_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static const int8_t vp8_pred8x8c_tree[3][2]
#define bit(string, value)
#define update_pos(td, mb_y, mb_x)
static av_always_inline int update_dimensions(VP8Context *s, int width, int height, int is_vp7)
static av_always_inline int vp56_rac_get_prob_branchy(VP56RangeCoder *c, int prob)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
@ VP8_SPLITMVMODE_8x8
2x2 blocks of 8x8px each
static av_always_inline int vp8_rac_get(VP56RangeCoder *c)
const struct AVCodec * codec
static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f, int is_vp7)
static const uint8_t vp8_mv_update_prob[2][19]
enum AVDiscard skip_frame
Skip decoding for selected frames.
static av_always_inline void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y, int is_vp7)
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames. The frames must then be freed with ff_thread_release_buffer(). Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
static av_unused int vp8_rac_get_sint(VP56RangeCoder *c, int bits)
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
static av_always_inline int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y, int vp7)
static void vp8_filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static void vp7_get_quants(VP8Context *s)
@ VP8_SPLITMVMODE_16x8
2 16x8 blocks (vertical)
static av_cold int vp8_init_frames(VP8Context *s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
void ff_vp7dsp_init(VP8DSPContext *c)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void ff_vp8dsp_init(VP8DSPContext *c)
#define FF_ARRAY_ELEMS(a)
static const uint8_t vp8_dct_cat2_prob[]
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
#define LOCAL_ALIGNED(a, t, v,...)
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
static const uint8_t vp8_pred4x4_mode[]
static const uint8_t vp8_pred8x8c_prob_inter[3]
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
static const int8_t vp8_pred16x16_tree_intra[4][2]
static void parse_segment_info(VP8Context *s)
static const uint8_t vp8_pred4x4_prob_inter[9]
static enum AVPixelFormat pix_fmts[]
static const uint8_t vp8_mbsplits[5][16]
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
static av_always_inline int decode_block_coeffs(VP56RangeCoder *c, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, int zero_nhood, int16_t qmul[2], const uint8_t scan[16], int vp7)
static const int vp7_mode_contexts[31][4]
static av_always_inline int vp78_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *curframe, VP8Frame *prev_frame, int is_vp7)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define atomic_load(object)
static int vp8_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, VP8Frame *prev_frame)
@ VP8_SPLITMVMODE_8x16
2 8x16 blocks (horizontal)
static av_always_inline int vp78_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, const AVPacket *avpkt, int is_vp7)
static const uint8_t vp8_mv_default_prob[2][19]
static const int8_t vp8_coeff_band_indexes[8][10]
static const uint8_t vp8_pred16x16_prob_inter[4]
static void vp8_decode_flush_impl(AVCodecContext *avctx, int free_mem)
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
@ AVDISCARD_ALL
discard all
static av_always_inline void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VP56RangeCoder *c, VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9], int is_vp7)
static void flush(AVCodecContext *avctx)
static const int sizes[][2]
enum AVColorRange color_range
MPEG vs JPEG YUV range.
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
static int vp7_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
static int vp8_update_dimensions(VP8Context *s, int width, int height)
static int vp8_rac_get_uint(VP56RangeCoder *c, int bits)
static av_always_inline int vp8_rac_get_tree(VP56RangeCoder *c, const int8_t(*tree)[2], const uint8_t *probs)
int(* end_frame)(AVCodecContext *avctx)
Called at the end of each frame or field picture.
@ AV_PICTURE_TYPE_I
Intra.
AVBufferRef * hwaccel_priv_buf
#define check_thread_pos(td, otd, mb_x_check, mb_y_check)
static const uint16_t vp7_yac_qlookup[]
static const uint8_t vp8_token_default_probs[4][8][3][NUM_DCT_TOKENS - 1]
static av_always_inline void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], ThreadFrame *ref_frame, int x_off, int y_off, int bx_off, int by_off, int block_w, int block_h, int width, int height, VP56mv *mv)
static const uint8_t vp8_token_update_probs[4][8][3][NUM_DCT_TOKENS - 1]
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
static const uint8_t vp8_mbsplit_count[4]
int ff_vp8_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
static av_always_inline int decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static const uint8_t vp7_feature_value_size[2][4]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
void(* vp8_mc_func)(uint8_t *dst, ptrdiff_t dstStride, uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
av_cold int ff_vp8_decode_init(AVCodecContext *avctx)
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
static const uint8_t vp8_mbfirstidx[4][16]
@ AVDISCARD_NONKEY
discard all frames except keyframes
static av_always_inline void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int mb_x, int mb_y, int mb_width, int simple, int xchg)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static const int8_t vp8_pred4x4_tree[9][2]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static void copy(const float *p1, float *p2, const int length)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static const uint8_t vp8_coeff_band[16]
static const uint8_t subpel_idx[3][8]
static av_always_inline void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1, uint8_t *dst2, ThreadFrame *ref, const VP56mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, ptrdiff_t linesize, vp8_mc_func mc_func[3][3])
chroma MC function
static int vp7_update_dimensions(VP8Context *s, int width, int height)
#define EDGE_EMU_LINESIZE
static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y, int is_vp7)
static void vp8_release_frame(VP8Context *s, VP8Frame *f)
static av_always_inline void decode_mb_mode(VP8Context *s, VP8mvbounds *mv_bounds, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment, uint8_t *ref, int layout, int is_vp7)
static void free_buffers(VP8Context *s)
static int vp7_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, VP8Frame *prev_frame)
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
static const uint8_t vp8_pred8x8c_prob_intra[3]
static int vp8_read_mv_component(VP56RangeCoder *c, const uint8_t *p)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_RL24
static av_always_inline void vp8_decode_mvs(VP8Context *s, VP8mvbounds *mv_bounds, VP8Macroblock *mb, int mb_x, int mb_y, int layout)
static const uint8_t vp8_pred4x4_prob_intra[10][10][9]
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
static int vp8_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
static const uint8_t vp8_mbsplit_prob[3]
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
static const int8_t vp8_pred16x16_tree_inter[4][2]
int ff_vp56_init_range_decoder(VP56RangeCoder *c, const uint8_t *buf, int buf_size)
static const int8_t vp7_feature_index_tree[4][2]
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
#define HWACCEL_NVDEC(codec)
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
static av_always_inline int pthread_cond_destroy(pthread_cond_t *cond)
const AVCodec ff_vp8_decoder
#define FF_THREAD_FRAME
Decode more than one frame at once.
#define H_LOOP_FILTER_16Y_INNER(cond)
static av_always_inline int vp78_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static av_always_inline int pthread_mutex_destroy(pthread_mutex_t *mutex)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static av_always_inline void idct_mb(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb)
static av_always_inline int decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, uint8_t *token_prob, int16_t qmul[2], const uint8_t scan[16], int vp7)
#define i(width, name, range_min, range_max)
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
static const SiprModeParam modes[MODE_COUNT]
static av_always_inline void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, int mb_x, int keyframe, int layout)
static int vp7_fade_frame(VP8Context *s, int alpha, int beta)
static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread. Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little speed gain at this point but it should work. If there are inter-frame dependencies
static void vp78_reset_probability_tables(VP8Context *s)
static int vp7_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
static void fade(uint8_t *dst, ptrdiff_t dst_linesize, const uint8_t *src, ptrdiff_t src_linesize, int width, int height, int alpha, int beta)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
static int vp8_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
@ VP8_SPLITMVMODE_NONE
(only used in prediction) no split MVs
static int vp7_decode_block_coeffs_internal(VP56RangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, uint8_t *token_prob, int16_t qmul[2], const uint8_t scan[16])
AVBufferRef * av_buffer_allocz(size_t size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static av_always_inline int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y)
static const float pred[4]
static int vp7_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
#define FFSWAP(type, a, b)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static const uint8_t vp8_pred16x16_prob_intra[4]
static const uint16_t vp8_ac_qlookup[VP8_MAX_QUANT+1]
#define prob(name, subs,...)
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
static av_always_inline void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y)
Apply motion vectors to prediction buffer, chapter 18.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static av_always_inline int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, int layout, int is_vp7)
Split motion vector prediction, 16.4.
main external API structure.
int active_thread_type
Which multithreading methods are in use by the codec.
uint8_t intra4x4_pred_mode_top[4]
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
static int ref[MAX_W *MAX_W]
int(* start_frame)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Called at the beginning of each frame or field picture.
static av_always_inline void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst, ThreadFrame *ref, const VP56mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, ptrdiff_t linesize, vp8_mc_func mc_func[3][3])
luma MC function
static void vp78_update_probability_tables(VP8Context *s)
@ AV_PICTURE_TYPE_P
Predicted.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
#define vp56_rac_get_prob
#define FF_CODEC_CAP_ALLOCATE_PROGRESS
static void vp78_update_pred16x16_pred8x8_mvc_probabilities(VP8Context *s, int mvc_size)
#define avpriv_request_sample(...)
static void update_refs(VP8Context *s)
static void update_lf_deltas(VP8Context *s)
static av_always_inline void filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7)
static const int16_t alpha[]
This structure stores compressed data.
static enum AVPixelFormat get_pixel_format(VP8Context *s)
#define HWACCEL_VAAPI(codec)
static VP8Frame * vp8_find_free_buffer(VP8Context *s)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static const double coeff[2][5]
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void copy_chroma(AVFrame *dst, AVFrame *src, int width, int height)
static av_always_inline int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr)
static const uint16_t vp7_y2ac_qlookup[]
#define atomic_init(obj, value)
static const uint8_t vp7_submv_prob[3]
@ AVDISCARD_NONREF
discard all non reference
static av_always_inline unsigned int vp56_rac_renorm(VP56RangeCoder *c)
static const uint8_t vp8_dc_qlookup[VP8_MAX_QUANT+1]
static void vp8_decode_flush(AVCodecContext *avctx)
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static int vp8_alloc_frame(VP8Context *s, VP8Frame *f, int ref)
static const av_always_inline uint8_t * get_submv_prob(uint32_t left, uint32_t top, int is_vp7)
av_cold void ff_vp78dsp_init(VP8DSPContext *dsp)
void * hwaccel_picture_private