Go to the documentation of this file.
43 #define MAX_CHANNELS 2
44 #define MAX_BYTESPERSAMPLE 3
46 #define APE_FRAMECODE_MONO_SILENCE 1
47 #define APE_FRAMECODE_STEREO_SILENCE 3
48 #define APE_FRAMECODE_PSEUDO_STEREO 4
50 #define HISTORY_SIZE 512
51 #define PREDICTOR_ORDER 8
53 #define PREDICTOR_SIZE 50
55 #define YDELAYA (18 + PREDICTOR_ORDER*4)
56 #define YDELAYB (18 + PREDICTOR_ORDER*3)
57 #define XDELAYA (18 + PREDICTOR_ORDER*2)
58 #define XDELAYB (18 + PREDICTOR_ORDER)
60 #define YADAPTCOEFFSA 18
61 #define XADAPTCOEFFSA 14
62 #define YADAPTCOEFFSB 10
63 #define XADAPTCOEFFSB 5
78 #define APE_FILTER_LEVELS 3
229 s->decoded_size =
s->data_size = 0;
262 "%d bits per coded sample",
s->bps);
272 s->compression_level,
s->flags);
274 !
s->compression_level ||
277 s->compression_level);
280 s->fset =
s->compression_level / 1000 - 1;
288 if (
s->fileversion < 3860) {
291 }
else if (
s->fileversion < 3900) {
294 }
else if (
s->fileversion < 3930) {
297 }
else if (
s->fileversion < 3990) {
305 if (
s->fileversion < 3930) {
308 }
else if (
s->fileversion < 3950) {
331 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
332 #define SHIFT_BITS (CODE_BITS - 9)
333 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
334 #define BOTTOM_VALUE (TOP_VALUE >> 8)
339 ctx->rc.buffer = bytestream_get_byte(&
ctx->ptr);
348 ctx->rc.buffer <<= 8;
349 if(
ctx->ptr <
ctx->data_end) {
350 ctx->rc.buffer += *
ctx->ptr;
355 ctx->rc.low = (
ctx->rc.low << 8) | ((
ctx->rc.buffer >> 1) & 0xFF);
369 ctx->rc.help =
ctx->rc.range / tot_f;
370 return ctx->rc.low /
ctx->rc.help;
382 return ctx->rc.low /
ctx->rc.help;
394 ctx->rc.low -=
ctx->rc.help * lt_f;
395 ctx->rc.range =
ctx->rc.help * sy_f;
407 #define MODEL_ELEMENTS 64
413 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
414 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
415 65450, 65469, 65480, 65487, 65491, 65493,
422 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
423 1104, 677, 415, 248, 150, 89, 54, 31,
431 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
432 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
433 65485, 65488, 65490, 65491, 65492, 65493,
440 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
441 261, 119, 65, 31, 19, 10, 6, 3,
452 const uint16_t counts[],
453 const uint16_t counts_diff[])
460 symbol= cf - 65535 + 63;
467 for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
477 int lim = rice->
k ? (1 << (rice->
k + 4)) : 0;
478 rice->
ksum += ((x + 1) / 2) - ((rice->
ksum + 16) >> 5);
480 if (rice->
ksum < lim)
482 else if (rice->
ksum >= (1 << (rice->
k + 5)) && rice->
k < 24)
505 if (
ctx->fileversion > 3880) {
521 rice->
ksum += x - (rice->
ksum + 8 >> 4);
522 if (rice->
ksum < (rice->
k ? 1 << (rice->
k + 4) : 0))
524 else if (rice->
ksum >= (1 << (rice->
k + 5)) && rice->
k < 24)
528 return ((x >> 1) ^ ((x & 1) - 1)) + 1;
542 tmpk = (rice->
k < 1) ? 0 : rice->
k - 1;
550 }
else if (tmpk <= 31) {
562 return ((x >> 1) ^ ((x & 1) - 1)) + 1;
579 if (pivot < 0x10000) {
583 int base_hi = pivot, base_lo;
586 while (base_hi & ~0xFFFF) {
595 base = (base_hi << bbits) + base_lo;
603 return ((x >> 1) ^ ((x & 1) - 1)) + 1;
615 unsigned ksummax, ksummin;
618 for (
i = 0;
i <
FFMIN(blockstodecode, 5);
i++) {
623 if (blockstodecode <= 5)
629 for (;
i <
FFMIN(blockstodecode, 64);
i++) {
637 if (blockstodecode <= 64)
641 ksummax = 1 << rice->
k + 7;
642 ksummin = rice->
k ? (1 << rice->
k + 6) : 0;
643 for (;
i < blockstodecode;
i++) {
650 while (rice->
ksum < ksummin) {
652 ksummin = rice->
k ? ksummin >> 1 : 0;
655 while (rice->
ksum >= ksummax) {
660 ksummin = ksummin ? ksummin << 1 : 128;
665 for (
i = 0;
i < blockstodecode;
i++)
687 while (blockstodecode--)
695 int blocks = blockstodecode;
697 while (blockstodecode--)
707 while (blockstodecode--)
715 int blocks = blockstodecode;
717 while (blockstodecode--)
732 while (blockstodecode--) {
742 while (blockstodecode--)
751 while (blockstodecode--) {
760 if (
ctx->fileversion >= 3900) {
761 if (
ctx->data_end -
ctx->ptr < 6)
763 ctx->CRC = bytestream_get_be32(&
ctx->ptr);
770 ctx->CRC_state = UINT32_MAX;
771 if ((
ctx->fileversion > 3820) && (
ctx->CRC & 0x80000000)) {
772 ctx->CRC &= ~0x80000000;
774 if (
ctx->data_end -
ctx->ptr < 6)
776 ctx->frameflags = bytestream_get_be32(&
ctx->ptr);
781 ctx->riceX.ksum = (1 <<
ctx->riceX.k) * 16;
783 ctx->riceY.ksum = (1 <<
ctx->riceY.k) * 16;
785 if (
ctx->fileversion >= 3900) {
827 if (
ctx->fileversion < 3930) {
847 if (
ctx->fileversion < 3930) {
869 return (x < 0) - (x > 0);
885 predictionA = p->
buf[delayA] * 2
U - p->
buf[delayA - 1];
888 if ((
decoded ^ predictionA) > 0)
900 const int delayA,
const int delayB,
901 const int start,
const int shift)
903 int32_t predictionA, predictionB, sign;
916 d1 = (p->
buf[delayA] - (unsigned)p->
buf[delayA - 1]) * 2;
917 d0 = p->
buf[delayA] + ((p->
buf[delayA - 2] - (unsigned)p->
buf[delayA - 1]) * 8);
918 d3 = p->
buf[delayB] * 2
U - p->
buf[delayB - 1];
947 int32_t coeffs[256], delay[256];
952 memset(coeffs, 0, order *
sizeof(*coeffs));
953 for (
i = 0;
i < order;
i++)
955 for (
i = order;
i < length;
i++) {
958 for (j = 0; j < order; j++) {
959 dotprod += delay[j] * (unsigned)coeffs[j];
960 coeffs[j] += ((delay[j] >> 31) | 1) * sign;
963 for (j = 0; j < order - 1; j++)
964 delay[j] = delay[j + 1];
974 uint32_t coeffs[8] = { 0 };
976 for (
i = 0;
i < length;
i++) {
979 for (j = 7; j >= 0; j--) {
980 dotprod += delay[j] * coeffs[j];
981 coeffs[j] += ((delay[j] >> 31) | 1) * sign;
983 for (j = 7; j > 0; j--)
984 delay[j] = delay[j - 1];
986 buffer[
i] -= (unsigned)(dotprod >> 9);
995 int start = 4,
shift = 10;
1002 int order = 128,
shift2 = 11;
1004 if (
ctx->fileversion >= 3830) {
1017 int X = *decoded0,
Y = *decoded1;
1049 int start = 4,
shift = 10;
1055 int order = 128,
shift2 = 11;
1057 if (
ctx->fileversion >= 3830) {
1095 uint32_t d0, d1, d2, d3;
1098 d0 = p->
buf[delayA ];
1099 d1 = p->
buf[delayA ] - (unsigned)p->
buf[delayA - 1];
1100 d2 = p->
buf[delayA - 1] - (
unsigned)p->
buf[delayA - 2];
1101 d3 = p->
buf[delayA - 2] - (unsigned)p->
buf[delayA - 3];
1130 int Y = *decoded1,
X = *decoded0;
1172 const int delayA,
const int delayB,
1173 const int adaptA,
const int adaptB)
1175 int64_t predictionA, predictionB;
1180 p->
buf[delayA - 1] = p->
buf[delayA] - (uint64_t)p->
buf[delayA - 1];
1191 p->
buf[delayB - 1] = p->
buf[delayB] - (uint64_t)p->
buf[delayB - 1];
1201 p->
lastA[
filter] =
decoded + ((int64_t)((uint64_t)predictionA + (predictionB >> 1)) >> 10);
1251 int32_t predictionA, currentA,
A, sign;
1255 currentA = p->
lastA[0];
1268 currentA =
A + (uint64_t)(predictionA >> 10);
1288 p->
filterA[0] = currentA + (uint64_t)((int64_t)(p->
filterA[0] * 31
U) >> 5);
1289 *(decoded0++) = p->
filterA[0];
1292 p->
lastA[0] = currentA;
1298 f->historybuffer = buf + order;
1299 f->delay =
f->historybuffer + order * 2;
1300 f->adaptcoeffs =
f->historybuffer + order;
1302 memset(
f->historybuffer, 0, (order * 2) *
sizeof(*
f->historybuffer));
1303 memset(
f->coeffs, 0, order *
sizeof(*
f->coeffs));
1314 int32_t *
data,
int count,
int order,
int fracbits)
1321 res =
ctx->adsp.scalarproduct_and_madd_int16(
f->coeffs,
1323 f->adaptcoeffs - order,
1325 res = (int64_t)(res + (1LL << (fracbits - 1))) >> fracbits;
1326 res += (unsigned)*
data;
1334 f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
1335 f->adaptcoeffs[-4] >>= 1;
1336 f->adaptcoeffs[-8] >>= 1;
1344 (8 << ((absres >
f->avg * 3LL) + (absres > (
f->avg +
f->avg / 3))));
1354 *
f->adaptcoeffs = 0;
1356 f->avg += (
int)(absres - (
unsigned)
f->avg) / 16;
1358 f->adaptcoeffs[-1] >>= 1;
1359 f->adaptcoeffs[-2] >>= 1;
1360 f->adaptcoeffs[-8] >>= 1;
1367 memmove(
f->historybuffer,
f->delay - (order * 2),
1368 (order * 2) *
sizeof(*
f->historybuffer));
1369 f->delay =
f->historybuffer + order * 2;
1370 f->adaptcoeffs =
f->historybuffer + order;
1377 int count,
int order,
int fracbits)
1422 ctx->entropy_decode_mono(
ctx, count);
1427 ctx->predictor_decode_mono(
ctx, count);
1430 if (
ctx->channels == 2) {
1431 memcpy(
ctx->decoded[1],
ctx->decoded[0], count *
sizeof(*
ctx->decoded[1]));
1437 unsigned left, right;
1447 ctx->entropy_decode_stereo(
ctx, count);
1452 ctx->predictor_decode_stereo(
ctx, count);
1456 left = *decoded1 - (unsigned)(*decoded0 / 2);
1457 right =
left + *decoded0;
1459 *(decoded0++) =
left;
1460 *(decoded1++) = right;
1465 int *got_frame_ptr,
AVPacket *avpkt)
1467 const uint8_t *buf = avpkt->
data;
1474 uint64_t decoded_buffer_size;
1481 uint32_t nblocks,
offset;
1488 if (avpkt->
size < 8) {
1492 buf_size = avpkt->
size & ~3;
1493 if (buf_size != avpkt->
size) {
1495 "extra bytes at the end will be skipped.\n");
1497 if (
s->fileversion < 3950)
1502 s->bdsp.bswap_buf((uint32_t *)
s->data, (
const uint32_t *) buf,
1504 memset(
s->data + (buf_size & ~3), 0, buf_size & 3);
1506 s->data_end =
s->data + buf_size;
1508 nblocks = bytestream_get_be32(&
s->ptr);
1509 offset = bytestream_get_be32(&
s->ptr);
1510 if (
s->fileversion >= 3900) {
1517 if (
s->data_end -
s->ptr <
offset) {
1525 if (
s->fileversion > 3800)
1531 if (!nblocks || nblocks > INT_MAX / 2 /
sizeof(*
s->decoded_buffer) - 8) {
1542 s->samples = nblocks;
1550 blockstodecode =
FFMIN(
s->blocks_per_loop,
s->samples);
1553 if (
s->fileversion < 3930)
1554 blockstodecode =
s->samples;
1557 decoded_buffer_size = 2LL *
FFALIGN(blockstodecode, 8) *
sizeof(*
s->decoded_buffer);
1561 frame->nb_samples = blockstodecode;
1568 if (!
s->decoded_buffer)
1570 memset(
s->decoded_buffer, 0, decoded_buffer_size);
1571 s->decoded[0] =
s->decoded_buffer;
1572 s->decoded[1] =
s->decoded_buffer +
FFALIGN(blockstodecode, 8);
1590 for (ch = 0; ch <
s->channels; ch++) {
1591 sample8 = (uint8_t *)
frame->data[ch];
1592 for (
i = 0;
i < blockstodecode;
i++)
1593 *sample8++ = (
s->decoded[ch][
i] + 0x80U) & 0xff;
1597 for (ch = 0; ch <
s->channels; ch++) {
1598 sample16 = (int16_t *)
frame->data[ch];
1599 for (
i = 0;
i < blockstodecode;
i++)
1600 *sample16++ =
s->decoded[ch][
i];
1604 for (ch = 0; ch <
s->channels; ch++) {
1606 for (
i = 0;
i < blockstodecode;
i++)
1607 *sample24++ =
s->decoded[ch][
i] * 256
U;
1612 s->samples -= blockstodecode;
1615 s->fileversion >= 3900 &&
s->bps < 24) {
1616 uint32_t crc =
s->CRC_state;
1618 for (
i = 0;
i < blockstodecode;
i++) {
1619 for (ch = 0; ch <
s->channels; ch++) {
1620 uint8_t *smp =
frame->data[ch] + (
i*(
s->bps >> 3));
1621 crc =
av_crc(crc_tab, crc, smp,
s->bps >> 3);
1625 if (!
s->samples && (~crc >> 1) ^
s->CRC) {
1627 "frames may have been affected as well.\n");
1637 return !
s->samples ? avpkt->
size : 0;
1646 #define OFFSET(x) offsetof(APEContext, x)
1647 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
1650 {
"all",
"no maximum. decode all samples for each packet at once", 0,
AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX,
PAR,
"max_samples" },
APERice riceX
rice code parameters for the second channel
static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
static int init_frame_decoder(APEContext *ctx)
uint8_t * data
current frame data
static void range_start_decoding(APEContext *ctx)
Start the decoder.
static void apply_filter(APEContext *ctx, APEFilter *f, int32_t *data0, int32_t *data1, int count, int order, int fracbits)
#define PREDICTOR_SIZE
Total size of all predictor histories.
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int16_t * filterbuf[APE_FILTER_LEVELS]
filter memory
#define APE_FILTER_LEVELS
uint32_t low
low end of interval
uint64_t coeffsA[2][4]
adaption coefficients
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static int init_entropy_decoder(APEContext *ctx)
static const uint16_t counts_diff_3980[21]
Probability ranges for symbols in Monkey Audio version 3.98.
This structure describes decoded (raw) audio or video data.
static const AVClass ape_decoder_class
static av_always_inline int predictor_update_filter(APEPredictor64 *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
static void predictor_decode_mono_3930(APEContext *ctx, int count)
APEFilter filters[APE_FILTER_LEVELS][2]
filters used for reconstruction
static void long_filter_ehigh_3830(int32_t *buffer, int length)
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
static void update_rice(APERice *rice, unsigned int x)
uint32_t CRC
signalled frame CRC
static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
#define AV_CHANNEL_LAYOUT_MONO
#define AV_LOG_VERBOSE
Detailed information.
#define AV_CHANNEL_LAYOUT_STEREO
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
uint32_t coeffsA[2][4]
adaption coefficients
static int get_k(int ksum)
static void ape_flush(AVCodecContext *avctx)
void(* predictor_decode_mono)(struct APEContext *ctx, int count)
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS]
Filter fraction bits depending on compression level.
int nb_channels
Number of channels in this layout.
int compression_level
compression levels
void(* entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode)
static int range_decode_bits(APEContext *ctx, int n)
Decode n bits (n <= 16) without modelling.
av_cold void ff_llauddsp_init(LLAudDSPContext *c)
static void predictor_decode_stereo_3930(APEContext *ctx, int count)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a it should return
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static void predictor_decode_mono_3800(APEContext *ctx, int count)
AVCodec p
The public AVCodec.
static av_cold int ape_decode_init(AVCodecContext *avctx)
AVChannelLayout ch_layout
Audio channel layout.
static void ape_unpack_mono(APEContext *ctx, int count)
int fileversion
codec version, very important in decoding process
static int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb, APERice *rice)
static void predictor_decode_stereo_3800(APEContext *ctx, int count)
static const AVOption options[]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
APERangecoder rc
rangecoder used to decode actual values
int samples
samples left to decode in current frame
const uint8_t * ptr
current position in frame data
#define FF_CODEC_DECODE_CB(func)
int16_t * historybuffer
filter memory
static void do_init_filter(APEFilter *f, int16_t *buf, int order)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
#define APE_FRAMECODE_STEREO_SILENCE
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
unsigned int buffer
buffer for input/output
const FFCodec ff_ape_decoder
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
static int ape_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)
static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
int fset
which filter set to use (calculated from compression level)
static int ape_decode_value_3900(APEContext *ctx, APERice *rice)
int32_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
#define LIBAVUTIL_VERSION_INT
uint32_t CRC_state
accumulated CRC
int frameflags
frame flags
Describe the class of an AVClass context structure.
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
#define FFABSU(a)
Unsigned Absolute value.
static int range_decode_culshift(APEContext *ctx, int shift)
Decode value with given size in bits.
static const int64_t initial_coeffs_3930_64bit[4]
static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
static const uint16_t counts_3970[22]
Fixed probabilities for symbols in Monkey Audio version 3.97.
const char * av_default_item_name(void *ptr)
Return the context name.
static av_always_inline int predictor_update_3930(APEPredictor *p, const int decoded, const int filter, const int delayA)
static void init_predictor_decoder(APEContext *ctx)
@ COMPRESSION_LEVEL_EXTRA_HIGH
#define AV_EF_EXPLODE
abort decoding on minor error detection
static int range_decode_culfreq(APEContext *ctx, int tot_f)
Calculate cumulative frequency for next symbol.
int64_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
@ AV_SAMPLE_FMT_U8P
unsigned 8 bits, planar
An AVChannelLayout holds information about the channel layout of audio data.
#define APE_FRAMECODE_PSEUDO_STEREO
void(* entropy_decode_mono)(struct APEContext *ctx, int blockstodecode)
enum AVSampleFormat sample_fmt
audio sample format
int16_t * coeffs
actual coefficients used in filtering
int16_t * delay
filtered values
uint32_t range
length of interval
static const int32_t initial_coeffs_a_3800[3]
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
void(* predictor_decode_stereo)(struct APEContext *ctx, int count)
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
uint64_t coeffsB[2][5]
adaption coefficients
APEPredictor64 predictor64
64bit predictor used for final reconstruction
static int ape_decode_value_3990(APEContext *ctx, APERice *rice)
static const int shift2[6]
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
static void decode_array_0000(APEContext *ctx, GetBitContext *gb, int32_t *out, APERice *rice, int blockstodecode)
static int range_get_symbol(APEContext *ctx, const uint16_t counts[], const uint16_t counts_diff[])
Decode symbol.
uint32_t coeffsB[2][5]
adaption coefficients
static void ape_unpack_stereo(APEContext *ctx, int count)
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
#define i(width, name, range_min, range_max)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
Update decoding state.
static av_always_inline int filter_3800(APEPredictor *p, const unsigned decoded, const int filter, const int delayA, const int delayB, const int start, const int shift)
AVSampleFormat
Audio sample formats.
static void range_dec_normalize(APEContext *ctx)
Perform normalization.
static const int32_t initial_coeffs_fast_3320[1]
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
@ COMPRESSION_LEVEL_INSANE
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
const char * name
Name of the codec implementation.
uint32_t help
bytes_to_follow resp. intermediate value
APECompressionLevel
Possible compression levels.
static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
static av_cold int ape_decode_close(AVCodecContext *avctx)
static void predictor_decode_stereo_3950(APEContext *ctx, int count)
static void predictor_decode_mono_3950(APEContext *ctx, int count)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int get_rice_ook(GetBitContext *gb, int k)
int data_size
frame data allocated size
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data,...
APEPredictor predictor
predictor used for final reconstruction
Filters applied to the decoded data.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
main external API structure.
static const uint16_t counts_3980[22]
Fixed probabilities for symbols in Monkey Audio version 3.98.
@ COMPRESSION_LEVEL_NORMAL
static const uint16_t counts_diff_3970[21]
Probability ranges for symbols in Monkey Audio version 3.97.
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
static const int32_t initial_coeffs_b_3800[2]
int32_t * decoded[MAX_CHANNELS]
decoded data for each channel
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static int APESIGN(int32_t x)
Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero)
APERice riceY
rice code parameters for the first channel
uint8_t * data_end
frame data end
static int shift(int a, int b)
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS]
Filter orders depending on compression level.
static const int32_t initial_coeffs_3930[4]
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time,...
Undefined Behavior In the C some operations are like signed integer overflow
#define avpriv_request_sample(...)
int blocks_per_loop
maximum number of samples to decode for each call
static av_always_inline int filter_fast_3320(APEPredictor *p, const int decoded, const int filter, const int delayA)
int flags
global decoder flags
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int16_t * adaptcoeffs
adaptive filter coefficients used for correcting of actual filter coefficients
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, int32_t *decoded1, int count)
static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)