Go to the documentation of this file.
202 unsigned long dest_len = uncompressed_size;
204 if (uncompress(
td->tmp, &dest_len,
src, compressed_size) != Z_OK ||
205 dest_len != uncompressed_size)
210 s->dsp.predictor(
td->tmp, uncompressed_size);
211 s->dsp.reorder_pixels(
td->uncompressed_data,
td->tmp, uncompressed_size);
216 static int rle(uint8_t *dst,
const uint8_t *
src,
217 int compressed_size,
int uncompressed_size)
220 const int8_t *
s =
src;
221 int ssize = compressed_size;
222 int dsize = uncompressed_size;
223 uint8_t *dend =
d + dsize;
232 if ((dsize -= count) < 0 ||
233 (ssize -= count + 1) < 0)
241 if ((dsize -= count) < 0 ||
261 rle(
td->tmp,
src, compressed_size, uncompressed_size);
265 ctx->dsp.predictor(
td->tmp, uncompressed_size);
266 ctx->dsp.reorder_pixels(
td->uncompressed_data,
td->tmp, uncompressed_size);
271 #define USHORT_RANGE (1 << 16)
272 #define BITMAP_SIZE (1 << 13)
279 if ((
i == 0) || (bitmap[
i >> 3] & (1 << (
i & 7))))
289 static void apply_lut(
const uint16_t *lut, uint16_t *dst,
int dsize)
293 for (
i = 0;
i < dsize; ++
i)
294 dst[
i] = lut[dst[
i]];
297 #define HUF_ENCBITS 16 // literal (value) bit length
298 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
302 uint64_t
c, n[59] = { 0 };
309 for (
i = 58;
i > 0; --
i) {
310 uint64_t nc = ((
c + n[
i]) >> 1);
319 freq[
i] = l | (n[l]++ << 6);
323 #define SHORT_ZEROCODE_RUN 59
324 #define LONG_ZEROCODE_RUN 63
325 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
326 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
336 for (;
im <= iM;
im++) {
342 if (
im + zerun > iM + 1)
352 if (
im + zerun > iM + 1)
374 for (
int i =
im;
i < iM;
i++) {
376 td->he[j].len =
td->freq[
i] & 63;
377 td->he[j].code =
td->freq[
i] >> 6;
378 if (
td->he[j].len > 32) {
382 if (
td->he[j].len > 0)
393 if (
td->run_sym == -1) {
398 td->he[j].sym =
td->run_sym;
399 td->he[j].len =
td->freq[iM] & 63;
400 if (
td->he[j].len > 32) {
404 td->he[j].code =
td->freq[iM] >> 6;
409 &
td->he[0].len,
sizeof(
td->he[0]),
sizeof(
td->he[0].len),
410 &
td->he[0].code,
sizeof(
td->he[0]),
sizeof(
td->he[0].code),
411 &
td->he[0].sym,
sizeof(
td->he[0]),
sizeof(
td->he[0].sym), 0);
415 int no, uint16_t *
out)
428 if (oe == 0 || oe +
run > no)
446 uint16_t *dst,
int dst_size)
452 im = bytestream2_get_le32(gb);
453 iM = bytestream2_get_le32(gb);
455 nBits = bytestream2_get_le32(gb);
466 if (!
td->freq || !
td->he) {
482 return huf_decode(&
td->vlc, gb, nBits,
td->run_sym, dst_size, dst);
485 static inline void wdec14(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
490 int ai = ls + (hi & 1) + (hi >> 1);
492 int16_t bs = ai - hi;
499 #define A_OFFSET (1 << (NBITS - 1))
500 #define MOD_MASK ((1 << NBITS) - 1)
502 static inline void wdec16(uint16_t l, uint16_t
h, uint16_t *
a, uint16_t *
b)
513 int ny,
int oy, uint16_t mx)
515 int w14 = (mx < (1 << 14));
516 int n = (nx > ny) ? ny : nx;
529 uint16_t *ey = in + oy * (ny - p2);
530 uint16_t i00, i01, i10, i11;
536 for (; py <= ey; py += oy2) {
538 uint16_t *ex = py + ox * (nx - p2);
540 for (; px <= ex; px += ox2) {
541 uint16_t *p01 = px + ox1;
542 uint16_t *p10 = px + oy1;
543 uint16_t *p11 = p10 + ox1;
546 wdec14(*px, *p10, &i00, &i10);
547 wdec14(*p01, *p11, &i01, &i11);
548 wdec14(i00, i01, px, p01);
549 wdec14(i10, i11, p10, p11);
551 wdec16(*px, *p10, &i00, &i10);
552 wdec16(*p01, *p11, &i01, &i11);
553 wdec16(i00, i01, px, p01);
554 wdec16(i10, i11, p10, p11);
559 uint16_t *p10 = px + oy1;
562 wdec14(*px, *p10, &i00, p10);
564 wdec16(*px, *p10, &i00, p10);
572 uint16_t *ex = py + ox * (nx - p2);
574 for (; px <= ex; px += ox2) {
575 uint16_t *p01 = px + ox1;
578 wdec14(*px, *p01, &i00, p01);
580 wdec16(*px, *p01, &i00, p01);
595 uint16_t maxval, min_non_zero, max_non_zero;
597 uint16_t *
tmp = (uint16_t *)
td->tmp;
609 if (!
td->bitmap || !
td->lut) {
616 min_non_zero = bytestream2_get_le16(&gb);
617 max_non_zero = bytestream2_get_le16(&gb);
623 if (min_non_zero <= max_non_zero)
625 max_non_zero - min_non_zero + 1);
626 memset(
td->bitmap + max_non_zero + 1, 0,
BITMAP_SIZE - max_non_zero - 1);
636 for (
i = 0;
i <
s->nb_channels;
i++) {
644 for (j = 0; j < pixel_half_size; j++)
646 td->xsize * pixel_half_size, maxval);
647 ptr +=
td->xsize *
td->ysize * pixel_half_size;
652 out = (uint16_t *)
td->uncompressed_data;
655 for (j = 0; j <
s->nb_channels; j++) {
662 in =
tmp + tmp_offset *
td->xsize *
td->ysize +
i *
td->xsize * pixel_half_size;
663 tmp_offset += pixel_half_size;
666 s->bbdsp.bswap16_buf(
out, in,
td->xsize * pixel_half_size);
668 memcpy(
out, in,
td->xsize * 2 * pixel_half_size);
670 out +=
td->xsize * pixel_half_size;
678 int compressed_size,
int uncompressed_size,
681 unsigned long dest_len, expected_len = 0;
682 const uint8_t *in =
td->tmp;
686 for (
i = 0;
i <
s->nb_channels;
i++) {
688 expected_len += (
td->xsize *
td->ysize * 3);
689 }
else if (
s->channels[
i].pixel_type ==
EXR_HALF) {
690 expected_len += (
td->xsize *
td->ysize * 2);
692 expected_len += (
td->xsize *
td->ysize * 4);
696 dest_len = expected_len;
698 if (uncompress(
td->tmp, &dest_len,
src, compressed_size) != Z_OK) {
700 }
else if (dest_len != expected_len) {
704 out =
td->uncompressed_data;
705 for (
i = 0;
i <
td->ysize;
i++)
706 for (
c = 0;
c <
s->nb_channels;
c++) {
708 const uint8_t *ptr[4];
714 ptr[1] = ptr[0] +
td->xsize;
715 ptr[2] = ptr[1] +
td->xsize;
716 in = ptr[2] +
td->xsize;
718 for (j = 0; j <
td->xsize; ++j) {
719 uint32_t
diff = ((unsigned)*(ptr[0]++) << 24) |
720 (*(ptr[1]++) << 16) |
728 ptr[1] = ptr[0] +
td->xsize;
729 in = ptr[1] +
td->xsize;
730 for (j = 0; j <
td->xsize; j++) {
731 uint32_t
diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
739 ptr[1] = ptr[0] +
s->xdelta;
740 ptr[2] = ptr[1] +
s->xdelta;
741 ptr[3] = ptr[2] +
s->xdelta;
742 in = ptr[3] +
s->xdelta;
744 for (j = 0; j <
s->xdelta; ++j) {
745 uint32_t
diff = ((uint32_t)*(ptr[0]++) << 24) |
746 (*(ptr[1]++) << 16) |
747 (*(ptr[2]++) << 8 ) |
763 unsigned short shift = (
b[ 2] >> 2) & 15;
764 unsigned short bias = (0x20 <<
shift);
767 s[ 0] = (
b[0] << 8) |
b[1];
769 s[ 4] =
s[ 0] + ((((
b[ 2] << 4) | (
b[ 3] >> 4)) & 0x3f) <<
shift) - bias;
770 s[ 8] =
s[ 4] + ((((
b[ 3] << 2) | (
b[ 4] >> 6)) & 0x3f) <<
shift) - bias;
771 s[12] =
s[ 8] + ((
b[ 4] & 0x3f) <<
shift) - bias;
773 s[ 1] =
s[ 0] + ((
b[ 5] >> 2) <<
shift) - bias;
774 s[ 5] =
s[ 4] + ((((
b[ 5] << 4) | (
b[ 6] >> 4)) & 0x3f) <<
shift) - bias;
775 s[ 9] =
s[ 8] + ((((
b[ 6] << 2) | (
b[ 7] >> 6)) & 0x3f) <<
shift) - bias;
776 s[13] =
s[12] + ((
b[ 7] & 0x3f) <<
shift) - bias;
778 s[ 2] =
s[ 1] + ((
b[ 8] >> 2) <<
shift) - bias;
779 s[ 6] =
s[ 5] + ((((
b[ 8] << 4) | (
b[ 9] >> 4)) & 0x3f) <<
shift) - bias;
780 s[10] =
s[ 9] + ((((
b[ 9] << 2) | (
b[10] >> 6)) & 0x3f) <<
shift) - bias;
781 s[14] =
s[13] + ((
b[10] & 0x3f) <<
shift) - bias;
783 s[ 3] =
s[ 2] + ((
b[11] >> 2) <<
shift) - bias;
784 s[ 7] =
s[ 6] + ((((
b[11] << 4) | (
b[12] >> 4)) & 0x3f) <<
shift) - bias;
785 s[11] =
s[10] + ((((
b[12] << 2) | (
b[13] >> 6)) & 0x3f) <<
shift) - bias;
786 s[15] =
s[14] + ((
b[13] & 0x3f) <<
shift) - bias;
788 for (
i = 0;
i < 16; ++
i) {
800 s[0] = (
b[0] << 8) |
b[1];
807 for (
i = 1;
i < 16;
i++)
814 const int8_t *sr =
src;
815 int stay_to_uncompress = compressed_size;
816 int nb_b44_block_w, nb_b44_block_h;
817 int index_tl_x, index_tl_y, index_out, index_tmp;
818 uint16_t tmp_buffer[16];
820 int target_channel_offset = 0;
823 nb_b44_block_w =
td->xsize / 4;
824 if ((
td->xsize % 4) != 0)
827 nb_b44_block_h =
td->ysize / 4;
828 if ((
td->ysize % 4) != 0)
831 for (
c = 0;
c <
s->nb_channels;
c++) {
833 for (iY = 0; iY < nb_b44_block_h; iY++) {
834 for (iX = 0; iX < nb_b44_block_w; iX++) {
835 if (stay_to_uncompress < 3) {
840 if (
src[compressed_size - stay_to_uncompress + 2] == 0xfc) {
843 stay_to_uncompress -= 3;
845 if (stay_to_uncompress < 14) {
851 stay_to_uncompress -= 14;
858 for (y = index_tl_y; y <
FFMIN(index_tl_y + 4,
td->ysize); y++) {
859 for (x = index_tl_x; x <
FFMIN(index_tl_x + 4,
td->xsize); x++) {
860 index_out = target_channel_offset *
td->xsize + y *
td->channel_line_size + 2 * x;
861 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
862 td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
863 td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
868 target_channel_offset += 2;
870 if (stay_to_uncompress < td->ysize *
td->xsize * 4) {
875 for (y = 0; y <
td->ysize; y++) {
876 index_out = target_channel_offset *
td->xsize + y *
td->channel_line_size;
877 memcpy(&
td->uncompressed_data[index_out], sr,
td->xsize * 4);
880 target_channel_offset += 4;
882 stay_to_uncompress -=
td->ysize *
td->xsize * 4;
898 }
else if ((
val >> 8) == 0xff) {
923 float alpha[4], beta[4], theta[4], gamma[4];
941 gamma[0] = theta[0] + theta[1];
942 gamma[1] = theta[3] + theta[2];
943 gamma[2] = theta[3] - theta[2];
944 gamma[3] = theta[0] - theta[1];
946 blk[0 *
step] = gamma[0] + beta[0];
947 blk[1 *
step] = gamma[1] + beta[1];
948 blk[2 *
step] = gamma[2] + beta[2];
949 blk[3 *
step] = gamma[3] + beta[3];
951 blk[4 *
step] = gamma[3] - beta[3];
952 blk[5 *
step] = gamma[2] - beta[2];
953 blk[6 *
step] = gamma[1] - beta[1];
954 blk[7 *
step] = gamma[0] - beta[0];
959 for (
int i = 0;
i < 8;
i++)
962 for (
int i = 0;
i < 8;
i++) {
969 float *
b,
float *
g,
float *
r)
971 *
r = y + 1.5747f * v;
972 *
g = y - 0.1873f *
u - 0.4682f * v;
973 *
b = y + 1.8556f *
u;
992 int64_t
version, lo_usize, lo_size;
993 int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
994 int64_t ac_count, dc_count, ac_compression;
995 const int dc_w =
td->xsize >> 3;
996 const int dc_h =
td->ysize >> 3;
1000 if (compressed_size <= 88)
1018 if ( compressed_size < (uint64_t)(lo_size | ac_size | dc_size | rle_csize) || compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize
1019 || ac_count > (uint64_t)INT_MAX/2
1024 skip = bytestream2_get_le16(&gb);
1031 if (lo_usize > uncompressed_size)
1037 unsigned long dest_len;
1040 if (ac_count > 3LL *
td->xsize *
s->scan_lines_per_block)
1043 dest_len = ac_count * 2LL;
1049 switch (ac_compression) {
1056 if (uncompress(
td->ac_data, &dest_len, agb.
buffer, ac_size) != Z_OK ||
1057 dest_len != ac_count * 2LL)
1068 unsigned long dest_len;
1071 if (dc_count != dc_w * dc_h * 3)
1074 dest_len = dc_count * 2LL;
1080 if (uncompress(
td->dc_data +
FFALIGN(dest_len, 64), &dest_len, agb.
buffer, dc_size) != Z_OK ||
1081 (dest_len != dc_count * 2LL))
1084 s->dsp.predictor(
td->dc_data +
FFALIGN(dest_len, 64), dest_len);
1085 s->dsp.reorder_pixels(
td->dc_data,
td->dc_data +
FFALIGN(dest_len, 64), dest_len);
1090 if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1091 unsigned long dest_len = rle_usize;
1098 if (!
td->rle_raw_data)
1101 if (uncompress(
td->rle_data, &dest_len, gb.
buffer, rle_csize) != Z_OK ||
1102 (dest_len != rle_usize))
1105 ret =
rle(
td->rle_raw_data,
td->rle_data, rle_usize, rle_raw_size);
1113 for (
int y = 0; y <
td->ysize; y += 8) {
1114 for (
int x = 0; x <
td->xsize; x += 8) {
1115 memset(
td->block, 0,
sizeof(
td->block));
1117 for (
int j = 0; j < 3; j++) {
1119 const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1120 uint16_t *
dc = (uint16_t *)
td->dc_data;
1124 s->exponenttable,
s->offsettable);
1126 block[0] = dc_val.f;
1133 const int o =
s->nb_channels == 4;
1134 float *bo = ((
float *)
td->uncompressed_data) +
1135 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 0) + x;
1136 float *go = ((
float *)
td->uncompressed_data) +
1137 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 1) + x;
1138 float *ro = ((
float *)
td->uncompressed_data) +
1139 y *
td->xsize *
s->nb_channels +
td->xsize * (o + 2) + x;
1140 float *yb =
td->block[0];
1141 float *
ub =
td->block[1];
1142 float *vb =
td->block[2];
1144 for (
int yy = 0; yy < 8; yy++) {
1145 for (
int xx = 0; xx < 8; xx++) {
1146 const int idx = xx + yy * 8;
1148 convert(yb[idx],
ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1155 bo +=
td->xsize *
s->nb_channels;
1156 go +=
td->xsize *
s->nb_channels;
1157 ro +=
td->xsize *
s->nb_channels;
1163 if (
s->nb_channels < 4)
1166 for (
int y = 0; y <
td->ysize &&
td->rle_raw_data; y++) {
1167 uint32_t *ao = ((uint32_t *)
td->uncompressed_data) + y *
td->xsize *
s->nb_channels;
1168 uint8_t *ai0 =
td->rle_raw_data + y *
td->xsize;
1169 uint8_t *ai1 =
td->rle_raw_data + y *
td->xsize + rle_raw_size / 2;
1171 for (
int x = 0; x <
td->xsize; x++) {
1172 uint16_t ha = ai0[x] | (ai1[x] << 8);
1174 ao[x] =
half2float(ha,
s->mantissatable,
s->exponenttable,
s->offsettable);
1182 int jobnr,
int threadnr)
1187 const uint8_t *channel_buffer[4] = { 0 };
1188 const uint8_t *buf =
s->buf;
1189 uint64_t line_offset, uncompressed_size;
1193 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1196 int bxmin = 0, axmax = 0, window_xoffset = 0;
1197 int window_xmin, window_xmax, window_ymin, window_ymax;
1198 int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1199 int i, x, buf_size =
s->buf_size;
1200 int c, rgb_channel_count;
1201 float one_gamma = 1.0f /
s->gamma;
1205 line_offset =
AV_RL64(
s->gb.buffer + jobnr * 8);
1208 if (buf_size < 20 || line_offset > buf_size - 20)
1211 src = buf + line_offset + 20;
1212 if (
s->is_multipart)
1221 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1224 if (tile_level_x || tile_level_y) {
1229 if (tile_x &&
s->tile_attr.xSize + (int64_t)
FFMAX(
s->xmin, 0) >= INT_MAX / tile_x )
1231 if (tile_y &&
s->tile_attr.ySize + (int64_t)
FFMAX(
s->ymin, 0) >= INT_MAX / tile_y )
1234 line =
s->ymin +
s->tile_attr.ySize * tile_y;
1235 col =
s->tile_attr.xSize * tile_x;
1238 s->xmin + col < s->xmin ||
s->xmin + col >
s->xmax)
1241 td->ysize =
FFMIN(
s->tile_attr.ySize,
s->ydelta - tile_y *
s->tile_attr.ySize);
1242 td->xsize =
FFMIN(
s->tile_attr.xSize,
s->xdelta - tile_x *
s->tile_attr.xSize);
1244 if (
td->xsize * (uint64_t)
s->current_channel_offset > INT_MAX ||
1248 td->channel_line_size =
td->xsize *
s->current_channel_offset;
1249 uncompressed_size =
td->channel_line_size * (uint64_t)
td->ysize;
1251 if (buf_size < 8 || line_offset > buf_size - 8)
1254 src = buf + line_offset + 8;
1255 if (
s->is_multipart)
1263 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1266 td->ysize =
FFMIN(
s->scan_lines_per_block,
s->ymax -
line + 1);
1267 td->xsize =
s->xdelta;
1269 if (
td->xsize * (uint64_t)
s->current_channel_offset > INT_MAX ||
1273 td->channel_line_size =
td->xsize *
s->current_channel_offset;
1274 uncompressed_size =
td->channel_line_size * (uint64_t)
td->ysize;
1276 if ((
s->compression ==
EXR_RAW && (data_size != uncompressed_size ||
1277 line_offset > buf_size - uncompressed_size)) ||
1278 (
s->compression !=
EXR_RAW && (data_size > uncompressed_size ||
1279 line_offset > buf_size - data_size))) {
1288 xsize = window_xmax - window_xmin;
1289 ysize = window_ymax - window_ymin;
1292 if (xsize <= 0 || ysize <= 0)
1299 window_xoffset =
FFMAX(0,
s->xmin);
1301 bxmin = window_xoffset *
step;
1305 if(col +
td->xsize ==
s->xdelta) {
1306 window_xmax = avctx->
width;
1314 if (data_size < uncompressed_size || s->is_tile) {
1320 if (data_size < uncompressed_size) {
1322 &
td->uncompressed_size, uncompressed_size + 64);
1324 if (!
td->uncompressed_data)
1328 switch (
s->compression) {
1355 src =
td->uncompressed_data;
1361 data_window_offset = (data_yoffset *
td->channel_line_size) + data_xoffset;
1364 channel_buffer[0] =
src + (
td->xsize *
s->channel_offsets[0]) + data_window_offset;
1365 channel_buffer[1] =
src + (
td->xsize *
s->channel_offsets[1]) + data_window_offset;
1366 channel_buffer[2] =
src + (
td->xsize *
s->channel_offsets[2]) + data_window_offset;
1367 rgb_channel_count = 3;
1369 channel_buffer[0] =
src + (
td->xsize *
s->channel_offsets[1]) + data_window_offset;
1370 rgb_channel_count = 1;
1372 if (
s->channel_offsets[3] >= 0)
1373 channel_buffer[3] =
src + (
td->xsize *
s->channel_offsets[3]) + data_window_offset;
1377 int channel_count =
s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1379 channel_buffer[1] = channel_buffer[0];
1380 channel_buffer[2] = channel_buffer[0];
1383 for (
c = 0;
c < channel_count;
c++) {
1384 int plane =
s->desc->comp[
c].plane;
1385 ptr = p->
data[plane] + window_ymin * p->
linesize[plane] + (window_xmin * 4);
1387 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[plane]) {
1391 src = channel_buffer[
c];
1395 memset(ptr_x, 0, bxmin);
1396 ptr_x += window_xoffset;
1403 if (trc_func &&
c < 3) {
1404 for (x = 0; x < xsize; x++) {
1405 t.
i = bytestream_get_le32(&
src);
1406 t.
f = trc_func(t.
f);
1409 }
else if (one_gamma != 1.
f) {
1410 for (x = 0; x < xsize; x++) {
1411 t.
i = bytestream_get_le32(&
src);
1412 if (t.
f > 0.0f &&
c < 3)
1413 t.
f =
powf(t.
f, one_gamma);
1417 for (x = 0; x < xsize; x++) {
1418 t.
i = bytestream_get_le32(&
src);
1424 if (
c < 3 || !trc_func) {
1425 for (x = 0; x < xsize; x++) {
1426 *ptr_x++ =
s->gamma_table[bytestream_get_le16(&
src)];
1429 for (x = 0; x < xsize; x++) {
1440 memset(ptr_x, 0, axmax);
1441 channel_buffer[
c] +=
td->channel_line_size;
1447 ptr = p->
data[0] + window_ymin * p->
linesize[0] + (window_xmin *
s->desc->nb_components * 2);
1449 for (
i = 0;
i < ysize;
i++, ptr += p->
linesize[0]) {
1452 const uint8_t *
rgb[3];
1455 for (
c = 0;
c < rgb_channel_count;
c++) {
1456 rgb[
c] = channel_buffer[
c];
1459 if (channel_buffer[3])
1460 a = channel_buffer[3];
1462 ptr_x = (uint16_t *) ptr;
1465 memset(ptr_x, 0, bxmin);
1466 ptr_x += window_xoffset *
s->desc->nb_components;
1468 for (x = 0; x < xsize; x++) {
1469 for (
c = 0;
c < rgb_channel_count;
c++) {
1470 *ptr_x++ = bytestream_get_le32(&
rgb[
c]) >> 16;
1473 if (channel_buffer[3])
1474 *ptr_x++ = bytestream_get_le32(&
a) >> 16;
1478 memset(ptr_x, 0, axmax);
1480 channel_buffer[0] +=
td->channel_line_size;
1481 channel_buffer[1] +=
td->channel_line_size;
1482 channel_buffer[2] +=
td->channel_line_size;
1483 if (channel_buffer[3])
1484 channel_buffer[3] +=
td->channel_line_size;
1496 if (!bytestream2_peek_byte(gb))
1500 for (
int i = 0;
i < 2;
i++)
1501 while (bytestream2_get_byte(gb) != 0);
1521 const char *value_name,
1522 const char *value_type,
1523 unsigned int minimum_length)
1529 !strcmp(gb->
buffer, value_name)) {
1531 gb->
buffer += strlen(value_name) + 1;
1532 if (!strcmp(gb->
buffer, value_type)) {
1533 gb->
buffer += strlen(value_type) + 1;
1534 var_size = bytestream2_get_le32(gb);
1540 gb->
buffer -= strlen(value_name) + 1;
1542 "Unknown data type %s for header variable %s.\n",
1543 value_type, value_name);
1555 int layer_match = 0;
1557 int dup_channels = 0;
1559 s->current_channel_offset = 0;
1566 s->channel_offsets[0] = -1;
1567 s->channel_offsets[1] = -1;
1568 s->channel_offsets[2] = -1;
1569 s->channel_offsets[3] = -1;
1575 s->tile_attr.xSize = -1;
1576 s->tile_attr.ySize = -1;
1578 s->is_multipart = 0;
1580 s->current_part = 0;
1587 magic_number = bytestream2_get_le32(gb);
1588 if (magic_number != 20000630) {
1595 version = bytestream2_get_byte(gb);
1601 flags = bytestream2_get_le24(gb);
1606 s->is_multipart = 1;
1616 while (
s->is_multipart &&
s->current_part <
s->selected_part &&
1618 if (bytestream2_peek_byte(gb)) {
1622 if (!bytestream2_peek_byte(gb))
1629 if (!bytestream2_peek_byte(gb)) {
1630 if (!
s->is_multipart)
1633 if (
s->current_part ==
s->selected_part) {
1635 if (bytestream2_peek_byte(gb)) {
1639 if (!bytestream2_peek_byte(gb))
1644 if (!bytestream2_peek_byte(gb))
1650 "chlist", 38)) >= 0) {
1662 int channel_index = -1;
1665 if (strcmp(
s->layer,
"") != 0) {
1666 if (strncmp(ch_gb.
buffer,
s->layer, strlen(
s->layer)) == 0) {
1669 "Channel match layer : %s.\n", ch_gb.
buffer);
1670 ch_gb.
buffer += strlen(
s->layer);
1671 if (*ch_gb.
buffer ==
'.')
1676 "Channel doesn't match layer : %s.\n", ch_gb.
buffer);
1704 "Unsupported channel %.256s.\n", ch_gb.
buffer);
1710 bytestream2_get_byte(&ch_gb))
1719 current_pixel_type = bytestream2_get_le32(&ch_gb);
1722 current_pixel_type);
1728 xsub = bytestream2_get_le32(&ch_gb);
1729 ysub = bytestream2_get_le32(&ch_gb);
1731 if (xsub != 1 || ysub != 1) {
1733 "Subsampling %dx%d",
1739 if (channel_index >= 0 &&
s->channel_offsets[channel_index] == -1) {
1741 s->pixel_type != current_pixel_type) {
1743 "RGB channels not of the same depth.\n");
1747 s->pixel_type = current_pixel_type;
1748 s->channel_offsets[channel_index] =
s->current_channel_offset;
1749 }
else if (channel_index >= 0) {
1751 "Multiple channels with index %d.\n", channel_index);
1752 if (++dup_channels > 10) {
1764 channel = &
s->channels[
s->nb_channels - 1];
1765 channel->pixel_type = current_pixel_type;
1769 if (current_pixel_type ==
EXR_HALF) {
1770 s->current_channel_offset += 2;
1772 s->current_channel_offset += 4;
1779 if (
FFMIN3(
s->channel_offsets[0],
1780 s->channel_offsets[1],
1781 s->channel_offsets[2]) < 0) {
1782 if (
s->channel_offsets[0] < 0)
1784 if (
s->channel_offsets[1] < 0)
1786 if (
s->channel_offsets[2] < 0)
1798 int xmin, ymin, xmax, ymax;
1804 xmin = bytestream2_get_le32(gb);
1805 ymin = bytestream2_get_le32(gb);
1806 xmax = bytestream2_get_le32(gb);
1807 ymax = bytestream2_get_le32(gb);
1809 if (xmin > xmax || ymin > ymax ||
1810 ymax == INT_MAX || xmax == INT_MAX ||
1811 (
unsigned)xmax - xmin >= INT_MAX ||
1812 (
unsigned)ymax - ymin >= INT_MAX) {
1820 s->xdelta = (
s->xmax -
s->xmin) + 1;
1821 s->ydelta = (
s->ymax -
s->ymin) + 1;
1825 "box2i", 34)) >= 0) {
1833 sx = bytestream2_get_le32(gb);
1834 sy = bytestream2_get_le32(gb);
1835 dx = bytestream2_get_le32(gb);
1836 dy = bytestream2_get_le32(gb);
1838 s->w = (unsigned)dx - sx + 1;
1839 s->h = (unsigned)dy - sy + 1;
1843 "lineOrder", 25)) >= 0) {
1850 line_order = bytestream2_get_byte(gb);
1852 if (line_order > 2) {
1860 "float", 31)) >= 0) {
1866 s->sar = bytestream2_get_le32(gb);
1870 "compression", 29)) >= 0) {
1877 s->compression = bytestream2_get_byte(gb);
1881 "Found more than one compression attribute.\n");
1886 "tiledesc", 22)) >= 0) {
1891 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1893 s->tile_attr.xSize = bytestream2_get_le32(gb);
1894 s->tile_attr.ySize = bytestream2_get_le32(gb);
1896 tileLevel = bytestream2_get_byte(gb);
1897 s->tile_attr.level_mode = tileLevel & 0x0f;
1898 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1902 s->tile_attr.level_mode);
1909 s->tile_attr.level_round);
1916 "string", 1)) >= 0) {
1917 uint8_t
key[256] = { 0 };
1924 "rational", 33)) >= 0) {
1930 s->avctx->framerate.num = bytestream2_get_le32(gb);
1931 s->avctx->framerate.den = bytestream2_get_le32(gb);
1937 s->chunk_count = bytestream2_get_le32(gb);
1941 "string", 16)) >= 0) {
1942 uint8_t
key[256] = { 0 };
1945 if (strncmp(
"scanlineimage",
key, var_size) &&
1946 strncmp(
"tiledimage",
key, var_size))
1951 "preview", 16)) >= 0) {
1952 uint32_t pw = bytestream2_get_le32(gb);
1953 uint32_t ph = bytestream2_get_le32(gb);
1954 int64_t psize = 4LL * pw * ph;
1973 uint8_t
name[256] = { 0 };
1974 uint8_t
type[256] = { 0 };
1975 uint8_t
value[256] = { 0 };
1979 bytestream2_peek_byte(gb) &&
i < 255) {
1980 name[
i++] = bytestream2_get_byte(gb);
1986 bytestream2_peek_byte(gb) &&
i < 255) {
1987 type[
i++] = bytestream2_get_byte(gb);
1990 size = bytestream2_get_le32(gb);
1993 if (!strcmp(
type,
"string"))
2005 if (
s->tile_attr.xSize < 1 ||
s->tile_attr.ySize < 1) {
2018 frame->metadata = metadata;
2035 int i, y,
ret, ymax;
2039 uint64_t start_offset_table;
2040 uint64_t start_next_scanline;
2050 s->current_channel_offset *= 2;
2051 for (
int i = 0;
i < 4;
i++)
2052 s->channel_offsets[
i] *= 2;
2055 switch (
s->pixel_type) {
2058 if (
s->channel_offsets[3] >= 0) {
2074 if (
s->channel_offsets[3] >= 0) {
2096 switch (
s->compression) {
2100 s->scan_lines_per_block = 1;
2104 s->scan_lines_per_block = 16;
2110 s->scan_lines_per_block = 32;
2113 s->scan_lines_per_block = 256;
2122 if (
s->xmin >
s->xmax ||
s->ymin >
s->ymax ||
2123 s->ydelta == 0xFFFFFFFF ||
s->xdelta == 0xFFFFFFFF) {
2138 planes =
s->desc->nb_components;
2139 out_line_size = avctx->
width * 4;
2142 out_line_size = avctx->
width * 2 *
s->desc->nb_components;
2146 nb_blocks = ((
s->xdelta +
s->tile_attr.xSize - 1) /
s->tile_attr.xSize) *
2147 ((
s->ydelta +
s->tile_attr.ySize - 1) /
s->tile_attr.ySize);
2149 nb_blocks = (
s->ydelta +
s->scan_lines_per_block - 1) /
2150 s->scan_lines_per_block;
2160 if (!
s->is_tile && bytestream2_peek_le64(gb) == 0) {
2164 start_next_scanline = start_offset_table + nb_blocks * 8;
2167 for (y = 0; y < nb_blocks; y++) {
2169 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2173 start_next_scanline += (bytestream2_get_le32(gb) + 8);
2179 s->buf = avpkt->
data;
2180 s->buf_size = avpkt->
size;
2184 ptr = picture->
data[
i];
2185 for (y = 0; y <
FFMIN(
s->ymin,
s->h); y++) {
2186 memset(ptr, 0, out_line_size);
2191 s->picture = picture;
2195 ymax =
FFMAX(0,
s->ymax + 1);
2197 if (ymax < avctx->
height)
2200 for (y = ymax; y < avctx->
height; y++) {
2201 memset(ptr, 0, out_line_size);
2217 float one_gamma = 1.0
f /
s->gamma;
2232 for (
i = 0;
i < 65536; ++
i) {
2233 t.
i =
half2float(
i,
s->mantissatable,
s->exponenttable,
s->offsettable);
2234 t.
f = trc_func(t.
f);
2235 s->gamma_table[
i] = t;
2238 if (one_gamma > 0.9999
f && one_gamma < 1.0001
f) {
2239 for (
i = 0;
i < 65536; ++
i) {
2240 s->gamma_table[
i].i =
half2float(
i,
s->mantissatable,
s->exponenttable,
s->offsettable);
2243 for (
i = 0;
i < 65536; ++
i) {
2244 t.
i =
half2float(
i,
s->mantissatable,
s->exponenttable,
s->offsettable);
2247 s->gamma_table[
i] = t;
2249 t.
f =
powf(t.
f, one_gamma);
2250 s->gamma_table[
i] = t;
2258 if (!
s->thread_data)
2289 #define OFFSET(x) offsetof(EXRContext, x)
2290 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2292 {
"layer",
"Set the decoding layer",
OFFSET(layer),
2294 {
"part",
"Set the decoding part",
OFFSET(selected_part),
2296 {
"gamma",
"Set the float gamma value when decoding",
OFFSET(gamma),
2300 {
"apply_trc",
"color transfer characteristics to apply to EXR linear input",
OFFSET(apply_trc_type),
2302 {
"bt709",
"BT.709", 0,
2304 {
"gamma",
"gamma", 0,
2306 {
"gamma22",
"BT.470 M", 0,
2308 {
"gamma28",
"BT.470 BG", 0,
2310 {
"smpte170m",
"SMPTE 170 M", 0,
2312 {
"smpte240m",
"SMPTE 240 M", 0,
2314 {
"linear",
"Linear", 0,
2318 {
"log_sqrt",
"Log square root", 0,
2320 {
"iec61966_2_4",
"IEC 61966-2-4", 0,
2322 {
"bt1361",
"BT.1361", 0,
2324 {
"iec61966_2_1",
"IEC 61966-2-1", 0,
2326 {
"bt2020_10bit",
"BT.2020 - 10 bit", 0,
2328 {
"bt2020_12bit",
"BT.2020 - 12 bit", 0,
2330 {
"smpte2084",
"SMPTE ST 2084", 0,
2332 {
"smpte428_1",
"SMPTE ST 428-1", 0,
static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
enum ExrTileLevelRound level_round
#define AV_LOG_WARNING
Something somehow does not look correct.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option name
static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
AVColorTransferCharacteristic
Color Transfer Characteristic.
#define u(width, name, range_min, range_max)
uint8_t * uncompressed_data
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
@ AVCOL_TRC_LINEAR
"Linear transfer characteristics"
static int decode_header(EXRContext *s, AVFrame *frame)
static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
static int get_bits_count(const GetBitContext *s)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
static int decode_frame(AVCodecContext *avctx, AVFrame *picture, int *got_frame, AVPacket *avpkt)
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
@ AVCOL_TRC_NB
Not part of ABI.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
static av_cold int decode_init(AVCodecContext *avctx)
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
static int huf_uncompress(EXRContext *s, EXRThreadData *td, GetByteContext *gb, uint16_t *dst, int dst_size)
@ AVCOL_TRC_BT2020_12
ITU-R BT2020 for 12-bit system.
static const AVOption options[]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
static int rle(uint8_t *dst, const uint8_t *src, int compressed_size, int uncompressed_size)
static void convert(float y, float u, float v, float *b, float *g, float *r)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
EXRTileAttribute tile_attr
AVCodec p
The public AVCodec.
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
@ AVCOL_TRC_IEC61966_2_1
IEC 61966-2-1 (sRGB or sYCC)
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames. The frames must then be freed with ff_thread_release_buffer(). Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
@ AVCOL_TRC_GAMMA28
also ITU-R BT470BG
static double val(void *priv, double ch)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static av_always_inline float scale(float x, float s)
#define AV_PIX_FMT_GRAY16
@ AVCOL_TRC_LOG_SQRT
"Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
static __device__ float fabsf(float a)
const FFCodec ff_exr_decoder
@ AVCOL_TRC_GAMMA22
also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
int av_image_check_size2(unsigned int w, unsigned int h, int64_t max_pixels, enum AVPixelFormat pix_fmt, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of a plane of an image with...
static float to_linear(float x, float scale)
static av_cold int decode_end(AVCodecContext *avctx)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
enum ExrCompr compression
#define FF_CODEC_DECODE_CB(func)
static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length)
Check if the variable name corresponds to its data type.
static void huf_canonical_code_table(uint64_t *freq)
@ AVCOL_TRC_BT1361_ECG
ITU-R BT1361 Extended Colour Gamut.
int current_channel_offset
static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
enum ExrPixelType pixel_type
int64_t max_pixels
The number of pixels per image to maximally accept.
#define SHORTEST_LONG_RUN
static void skip_header_chunk(EXRContext *s)
#define AV_PIX_FMT_GRAYF32
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
const AVPixFmtDescriptor * desc
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
void * av_realloc(void *ptr, size_t size)
Allocate, reallocate, or free a block of memory.
#define LONG_ZEROCODE_RUN
#define SHORT_ZEROCODE_RUN
@ AVCOL_TRC_IEC61966_2_4
IEC 61966-2-4.
avpriv_trc_function avpriv_get_trc_function_from_trc(enum AVColorTransferCharacteristic trc)
Determine the function needed to apply the given AVColorTransferCharacteristic to linear input.
const char * av_default_item_name(void *ptr)
Return the context name.
@ AV_PICTURE_TYPE_I
Intra.
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
static void half2float_table(uint32_t *mantissatable, uint32_t *exponenttable, uint16_t *offsettable)
av_cold void ff_exrdsp_init(ExrDSPContext *c)
@ AVCOL_TRC_BT2020_10
ITU-R BT2020 for 10-bit system.
static void unpack_14(const uint8_t b[14], uint16_t s[16])
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
static av_always_inline int bytestream2_tell(GetByteContext *g)
static const struct @328 planes[]
enum ExrPixelType pixel_type
enum ExrTileLevelMode level_mode
EXRThreadData * thread_data
enum AVPictureType pict_type
Picture type of the frame.
static uint32_t half2float(uint16_t h, uint32_t *mantissatable, uint32_t *exponenttable, uint16_t *offsettable)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
@ AVCOL_TRC_LOG
"Logarithmic transfer characteristic (100:1 range)"
#define bytestream2_get_ne16
#define AV_PIX_FMT_GBRPF32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static void idct_1d(float *blk, int step)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
static int huf_build_dec_table(EXRContext *s, EXRThreadData *td, int im, int iM)
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
enum AVColorTransferCharacteristic apply_trc_type
static void unpack_3(const uint8_t b[3], uint16_t s[16])
#define AV_LOG_INFO
Standard information.
@ AVCOL_TRC_BT709
also ITU-R BT1361
static void dct_inverse(float *block)
#define i(width, name, range_min, range_max)
int ff_init_vlc_sparse(VLC *vlc, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
#define av_malloc_array(a, b)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
const char * name
Name of the codec implementation.
static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *freq)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
void ff_free_vlc(VLC *vlc)
const uint8_t ff_zigzag_direct[64]
static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym, int no, uint16_t *out)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
union av_intfloat32 gamma_table[65536]
double(* avpriv_trc_function)(double)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
main external API structure.
static void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
#define AV_PIX_FMT_GBRAPF32
uint32_t mantissatable[2048]
@ AVCOL_TRC_SMPTE170M
also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
static int shift(int a, int b)
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
#define avpriv_request_sample(...)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static const int16_t alpha[]
This structure stores compressed data.
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
int width
picture width / height.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static const AVClass exr_class
uint32_t exponenttable[64]
static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
The official guide to swscale for confused that consecutive non overlapping rectangles of slice_bottom special converter These generally are unscaled converters of common like for each output line the vertical scaler pulls lines from a ring buffer When the ring buffer does not contain the wanted line