Go to the documentation of this file.
29 #define LONG_BITSTREAM_READER
31 #include "config_components.h"
48 static void permute(uint8_t *dst,
const uint8_t *
src,
const uint8_t permutation[64])
51 for (
i = 0;
i < 64;
i++)
52 dst[
i] = permutation[
src[
i]];
55 #define ALPHA_SHIFT_16_TO_10(alpha_val) (alpha_val >> 6)
56 #define ALPHA_SHIFT_8_TO_10(alpha_val) ((alpha_val << 2) | (alpha_val >> 6))
57 #define ALPHA_SHIFT_16_TO_12(alpha_val) (alpha_val >> 4)
58 #define ALPHA_SHIFT_8_TO_12(alpha_val) ((alpha_val << 4) | (alpha_val >> 4))
61 const int num_bits,
const int decode_precision) {
62 const int mask = (1 << num_bits) - 1;
63 int i, idx,
val, alpha_val;
79 alpha_val = (alpha_val +
val) &
mask;
81 if (decode_precision == 10) {
87 if (decode_precision == 10) {
93 if (idx >= num_coeffs)
99 if (idx +
val > num_coeffs)
100 val = num_coeffs - idx;
101 if (num_bits == 16) {
102 for (
i = 0;
i <
val;
i++) {
103 if (decode_precision == 10) {
110 for (
i = 0;
i <
val;
i++) {
111 if (decode_precision == 10) {
118 }
while (idx < num_coeffs);
124 if (num_bits == 16) {
134 if (num_bits == 16) {
145 uint8_t idct_permutation[64];
150 case MKTAG(
'a',
'p',
'c',
'o'):
153 case MKTAG(
'a',
'p',
'c',
's'):
156 case MKTAG(
'a',
'p',
'c',
'n'):
159 case MKTAG(
'a',
'p',
'c',
'h'):
162 case MKTAG(
'a',
'p',
'4',
'h'):
166 case MKTAG(
'a',
'p',
'4',
'x'):
176 av_log(avctx,
AV_LOG_DEBUG,
"Auto bitdepth precision. Use 10b decoding based on codec tag.\n");
178 av_log(avctx,
AV_LOG_DEBUG,
"Auto bitdepth precision. Use 12b decoding based on codec tag.\n");
189 ctx->prodsp.idct_permutation_type);
216 ff_dlog(avctx,
"header size %d\n", hdr_size);
217 if (hdr_size > data_size) {
241 ctx->frame_type = (buf[12] >> 2) & 3;
242 ctx->alpha_info = buf[17] & 0xf;
244 if (
ctx->alpha_info > 2) {
250 ff_dlog(avctx,
"frame type %d\n",
ctx->frame_type);
252 if (
ctx->frame_type == 0) {
253 ctx->scan =
ctx->progressive_scan;
255 ctx->scan =
ctx->interlaced_scan;
256 ctx->frame->interlaced_frame = 1;
257 ctx->frame->top_field_first =
ctx->frame_type == 1;
260 if (
ctx->alpha_info) {
275 #define HWACCEL_MAX (CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL)
281 #if CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL
284 *fmtp++ =
ctx->pix_fmt;
303 if(buf + data_size - ptr < 64) {
310 memset(
ctx->qmat_luma, 4, 64);
314 if(buf + data_size - ptr < 64) {
318 permute(
ctx->qmat_chroma,
ctx->prodsp.idct_permutation, ptr);
320 memcpy(
ctx->qmat_chroma,
ctx->qmat_luma, 64);
329 int i, hdr_size, slice_count;
330 unsigned pic_data_size;
331 int log2_slice_mb_width, log2_slice_mb_height;
332 int slice_mb_count, mb_x, mb_y;
333 const uint8_t *data_ptr, *index_ptr;
335 hdr_size = buf[0] >> 3;
336 if (hdr_size < 8 || hdr_size > buf_size) {
341 pic_data_size =
AV_RB32(buf + 1);
342 if (pic_data_size > buf_size) {
347 log2_slice_mb_width = buf[7] >> 4;
348 log2_slice_mb_height = buf[7] & 0xF;
349 if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
351 1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
355 ctx->mb_width = (avctx->
width + 15) >> 4;
357 ctx->mb_height = (avctx->
height + 31) >> 5;
359 ctx->mb_height = (avctx->
height + 15) >> 4;
363 slice_count =
ctx->mb_height * ((
ctx->mb_width >> log2_slice_mb_width) +
366 if (
ctx->slice_count != slice_count || !
ctx->slices) {
368 ctx->slice_count = 0;
372 ctx->slice_count = slice_count;
378 if (hdr_size + slice_count*2 > buf_size) {
384 index_ptr = buf + hdr_size;
385 data_ptr = index_ptr + slice_count*2;
387 slice_mb_count = 1 << log2_slice_mb_width;
391 for (
i = 0;
i < slice_count;
i++) {
394 slice->
data = data_ptr;
395 data_ptr +=
AV_RB16(index_ptr +
i*2);
397 while (
ctx->mb_width - mb_x < slice_mb_count)
398 slice_mb_count >>= 1;
410 mb_x += slice_mb_count;
411 if (mb_x ==
ctx->mb_width) {
412 slice_mb_count = 1 << log2_slice_mb_width;
416 if (data_ptr > buf + buf_size) {
422 if (mb_x || mb_y !=
ctx->mb_height) {
424 mb_y,
ctx->mb_height);
428 return pic_data_size;
431 #define DECODE_CODEWORD(val, codebook, SKIP) \
433 unsigned int rice_order, exp_order, switch_bits; \
434 unsigned int q, buf, bits; \
436 UPDATE_CACHE(re, gb); \
437 buf = GET_CACHE(re, gb); \
440 switch_bits = codebook & 3; \
441 rice_order = codebook >> 5; \
442 exp_order = (codebook >> 2) & 7; \
444 q = 31 - av_log2(buf); \
446 if (q > switch_bits) { \
447 bits = exp_order - switch_bits + (q<<1); \
448 if (bits > FFMIN(MIN_CACHE_BITS, 31)) \
449 return AVERROR_INVALIDDATA; \
450 val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
451 ((switch_bits + 1) << rice_order); \
452 SKIP(re, gb, bits); \
453 } else if (rice_order) { \
454 SKIP_BITS(re, gb, q+1); \
455 val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
456 SKIP(re, gb, rice_order); \
463 #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
465 #define FIRST_DC_CB 0xB8
467 static const uint8_t
dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
470 int blocks_per_slice)
485 for (
i = 1;
i < blocks_per_slice;
i++,
out += 64) {
489 prev_dc += (((
code + 1) >> 1) ^ sign) - sign;
497 static const uint8_t
run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
498 static const uint8_t
lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
501 int16_t *
out,
int blocks_per_slice)
504 int block_mask, sign;
506 int max_coeffs,
i, bits_left;
507 int log2_block_count =
av_log2(blocks_per_slice);
514 max_coeffs = 64 << log2_block_count;
515 block_mask = blocks_per_slice - 1;
517 for (
pos = block_mask;;) {
519 if (!bits_left || (bits_left < 32 && !
SHOW_UBITS(
re, gb, bits_left)))
524 if (
pos >= max_coeffs) {
532 i =
pos >> log2_block_count;
536 out[((
pos & block_mask) << 6) +
ctx->scan[
i]] = ((
level ^ sign) - sign);
544 uint16_t *dst,
int dst_stride,
545 const uint8_t *buf,
unsigned buf_size,
552 int i, blocks_per_slice = slice->
mb_count<<2;
555 for (
i = 0;
i < blocks_per_slice;
i++)
556 ctx->bdsp.clear_block(blocks+(
i<<6));
567 ctx->prodsp.idct_put(dst, dst_stride,
block+(0<<6), qmat);
568 ctx->prodsp.idct_put(dst +8, dst_stride,
block+(1<<6), qmat);
569 ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride,
block+(2<<6), qmat);
570 ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride,
block+(3<<6), qmat);
578 uint16_t *dst,
int dst_stride,
579 const uint8_t *buf,
unsigned buf_size,
580 const int16_t *qmat,
int log2_blocks_per_mb)
586 int i, j, blocks_per_slice = slice->
mb_count << log2_blocks_per_mb;
589 for (
i = 0;
i < blocks_per_slice;
i++)
590 ctx->bdsp.clear_block(blocks+(
i<<6));
601 for (j = 0; j < log2_blocks_per_mb; j++) {
602 ctx->prodsp.idct_put(dst, dst_stride,
block+(0<<6), qmat);
603 ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride,
block+(1<<6), qmat);
615 uint16_t *dst,
int dst_stride,
616 const uint8_t *buf,
int buf_size,
617 int blocks_per_slice)
624 for (
i = 0;
i < blocks_per_slice<<2;
i++)
625 ctx->bdsp.clear_block(blocks+(
i<<6));
629 if (
ctx->alpha_info == 2) {
630 ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
632 ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
637 for (
i = 0;
i < 16;
i++) {
638 memcpy(dst,
block, 16 * blocks_per_slice *
sizeof(*dst));
639 dst += dst_stride >> 1;
640 block += 16 * blocks_per_slice;
648 const uint8_t *buf = slice->
data;
650 int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
651 int luma_stride, chroma_stride;
652 int y_data_size, u_data_size, v_data_size, a_data_size,
offset;
653 uint8_t *dest_y, *dest_u, *dest_v;
658 uint16_t val_no_chroma;
665 hdr_size = buf[0] >> 3;
666 qscale =
av_clip(buf[1], 1, 224);
667 qscale = qscale > 128 ? qscale - 96 << 2: qscale;
668 y_data_size =
AV_RB16(buf + 2);
669 u_data_size =
AV_RB16(buf + 4);
670 v_data_size = slice->
data_size - y_data_size - u_data_size - hdr_size;
671 if (hdr_size > 7) v_data_size =
AV_RB16(buf + 6);
672 a_data_size = slice->
data_size - y_data_size - u_data_size -
673 v_data_size - hdr_size;
675 if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
676 || hdr_size+y_data_size+u_data_size+v_data_size > slice->
data_size){
683 for (
i = 0;
i < 64;
i++) {
684 qmat_luma_scaled [
i] =
ctx->qmat_luma [
i] * qscale;
685 qmat_chroma_scaled[
i] =
ctx->qmat_chroma[
i] * qscale;
688 if (
ctx->frame_type == 0) {
692 luma_stride = pic->
linesize[0] << 1;
693 chroma_stride = pic->
linesize[1] << 1;
699 log2_chroma_blocks_per_mb = 2;
702 log2_chroma_blocks_per_mb = 1;
707 dest_u = pic->
data[1] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
708 dest_v = pic->
data[2] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
710 if (
ctx->frame_type &&
ctx->first_field ^
ctx->frame->top_field_first) {
718 buf, y_data_size, qmat_luma_scaled);
724 buf + y_data_size, u_data_size,
725 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
730 buf + y_data_size + u_data_size, v_data_size,
731 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
736 size_t mb_max_x = slice->
mb_count << (mb_x_shift - 1);
741 val_no_chroma = 511 * 4;
743 for (
i = 0;
i < 16; ++
i)
744 for (j = 0; j < mb_max_x; ++j) {
745 *(uint16_t*)(dest_u + (
i * chroma_stride) + (j << 1)) = val_no_chroma;
746 *(uint16_t*)(dest_v + (
i * chroma_stride) + (j << 1)) = val_no_chroma;
751 if (
ctx->alpha_info && pic->
data[3] && a_data_size) {
754 buf + y_data_size + u_data_size + v_data_size,
770 for (
i = 0;
i <
ctx->slice_count;
i++)
775 if (error < ctx->slice_count)
778 return ctx->slices[0].ret;
785 const uint8_t *buf = avpkt->
data;
786 int buf_size = avpkt->
size;
787 int frame_hdr_size, pic_size,
ret;
796 ctx->frame->key_frame = 1;
797 ctx->first_field = 1;
803 if (frame_hdr_size < 0)
804 return frame_hdr_size;
806 buf += frame_hdr_size;
807 buf_size -= frame_hdr_size;
839 buf_size -= pic_size;
841 if (
ctx->frame_type && buf_size > 0 &&
ctx->first_field) {
842 ctx->first_field = 0;
887 #if CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL
static void error(const char *err)
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define DECODE_CODEWORD(val, codebook, SKIP)
AVPixelFormat
Pixel format.
#define FF_PROFILE_PRORES_XQ
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
enum AVColorSpace colorspace
YUV colorspace type.
const AVProfile ff_prores_profiles[]
av_cold int ff_proresdsp_init(ProresDSPContext *dsp, AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
#define UPDATE_CACHE(name, gb)
#define AV_PIX_FMT_YUVA422P10
const uint8_t ff_prores_progressive_scan[64]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
AVCodec p
The public AVCodec.
enum AVPixelFormat pix_fmt
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames. The frames must then be freed with ff_thread_release_buffer(). Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
int flags
AV_CODEC_FLAG_*.
static double val(void *priv, double ch)
#define FF_PROFILE_PRORES_LT
#define ALPHA_SHIFT_8_TO_10(alpha_val)
#define AV_PIX_FMT_YUV444P10
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits, const int decode_precision)
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const FFCodec ff_prores_decoder
static const uint16_t mask[17]
#define CLOSE_READER(name, gb)
static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
#define FF_CODEC_DECODE_CB(func)
static int decode_picture(AVCodecContext *avctx)
#define SHOW_SBITS(name, gb, num)
static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
#define LOCAL_ALIGNED_16(t, v,...)
#define FF_PROFILE_UNKNOWN
static enum AVPixelFormat pix_fmts[]
#define AV_PIX_FMT_YUVA444P12
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static enum AVPixelFormat pix_fmt
#define SKIP_BITS(name, gb, num)
const uint8_t ff_prores_interlaced_scan[64]
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
#define FF_DECODE_ERROR_INVALID_BITSTREAM
#define LOCAL_ALIGNED_32(t, v,...)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
static av_always_inline int decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb, int16_t *out, int blocks_per_slice)
int(* end_frame)(AVCodecContext *avctx)
Called at the end of each frame or field picture.
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
static const uint8_t run_to_cb[16]
#define LAST_SKIP_BITS(name, gb, num)
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
#define AV_PIX_FMT_YUV422P10
static int decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat, int log2_blocks_per_mb)
static int decode_slice_luma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat)
static const uint8_t dc_codebook[7]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define FF_PROFILE_PRORES_HQ
#define FF_PROFILE_PRORES_STANDARD
#define AV_PIX_FMT_YUV422P12
#define ALPHA_SHIFT_16_TO_12(alpha_val)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define AV_PIX_FMT_YUV444P12
#define ALPHA_SHIFT_8_TO_12(alpha_val)
int skip_alpha
Skip processing alpha if supported by codec.
static av_cold int decode_close(AVCodecContext *avctx)
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, const int data_size, AVCodecContext *avctx)
#define OPEN_READER(name, gb)
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
#define AV_PIX_FMT_YUVA444P10
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
@ AV_PIX_FMT_VIDEOTOOLBOX
hardware decoding through Videotoolbox
static void decode_slice_alpha(ProresContext *ctx, uint16_t *dst, int dst_stride, const uint8_t *buf, int buf_size, int blocks_per_slice)
Decode alpha slice plane.
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
static int decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
const char * name
Name of the codec implementation.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread. Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little speed gain at this point but it should work. If there are inter-frame dependencies
static const uint8_t lev_to_cb[10]
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
#define HWACCEL_VIDEOTOOLBOX(codec)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define FF_PROFILE_PRORES_4444
#define FF_PROFILE_PRORES_PROXY
static void unpack_alpha_10(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits)
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
main external API structure.
#define ALPHA_SHIFT_16_TO_10(alpha_val)
#define SHOW_UBITS(name, gb, num)
#define AV_PIX_FMT_YUVA422P12
FF_DISABLE_DEPRECATION_WARNINGS enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
static av_always_inline int decode_dc_coeffs(GetBitContext *gb, int16_t *out, int blocks_per_slice)
int(* start_frame)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Called at the beginning of each frame or field picture.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
static av_cold int decode_init(AVCodecContext *avctx)
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
This structure stores compressed data.
static void unpack_alpha_12(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits)
int width
picture width / height.
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16