Go to the documentation of this file.
97 int counts[17] = {0}, codes[17];
106 codes[0] = counts[0] = 0;
107 for (
int i = 0;
i < 16;
i++) {
108 codes[
i+1] = (codes[
i] + counts[
i]) << 1;
132 for(j = 0; j < 2; j++){
139 for(k = 0; k < 4; k++){
144 for(j = 0; j < 4; j++){
155 for(j = 0; j < 4; j++){
159 for(j = 0; j < 2; j++){
184 int pattern,
code, cbp=0;
186 static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
187 static const int shifts[4] = { 0, 2, 8, 10 };
188 const int *curshift =
shifts;
192 pattern =
code & 0xF;
202 for(
i = 0;
i < 4;
i++){
207 cbp |= cbp_masks[2] <<
i;
222 coef = 22 + ((1 << coef) |
get_bits(gb, coef));
228 *dst = (coef*q + 8) >> 4;
260 int q_dc,
int q_ac1,
int q_ac2)
283 int code, pattern, has_ac = 1;
287 pattern =
code & 0x7;
312 return has_ac | pattern;
327 for(
i = 0;
i < 5;
i++)
352 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
360 fill_rectangle(intra_types, 4, 4,
r->intra_types_stride, t,
sizeof(intra_types[0]));
369 if(
r->decode_intra_types(
r, gb, intra_types) < 0)
387 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
390 r->block_type =
r->decode_mb_info(
r);
391 if(
r->block_type == -1)
394 r->mb_type[mb_pos] =
r->block_type;
405 fill_rectangle(intra_types, 4, 4,
r->intra_types_stride, 0,
sizeof(intra_types[0]));
411 if(
IS_INTRA(
s->current_picture_ptr->mb_type[mb_pos])){
414 fill_rectangle(intra_types, 4, 4,
r->intra_types_stride, t,
sizeof(intra_types[0]));
417 if(
r->decode_intra_types(
r, gb, intra_types) < 0)
424 for(
i = 0;
i < 16;
i++)
425 intra_types[(
i & 3) + (
i>>2) *
r->intra_types_stride] = 0;
446 static const uint8_t
part_sizes_w[
RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
449 static const uint8_t
part_sizes_h[
RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
464 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
465 int A[2] = {0},
B[2],
C[2];
471 mv_pos += (subblock_no & 1) + (subblock_no >> 1)*
s->b8_stride;
476 A[0] =
s->current_picture_ptr->motion_val[0][mv_pos-1][0];
477 A[1] =
s->current_picture_ptr->motion_val[0][mv_pos-1][1];
480 B[0] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride][0];
481 B[1] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride][1];
487 if(avail[-4] && (avail[-1] ||
r->rv30)){
488 C[0] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride-1][0];
489 C[1] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride-1][1];
495 C[0] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride+c_off][0];
496 C[1] =
s->current_picture_ptr->motion_val[0][mv_pos-
s->b8_stride+c_off][1];
500 mx +=
r->dmv[dmv_no][0];
501 my +=
r->dmv[dmv_no][1];
504 s->current_picture_ptr->motion_val[0][mv_pos +
i + j*
s->b8_stride][0] = mx;
505 s->current_picture_ptr->motion_val[0][mv_pos +
i + j*
s->b8_stride][1] = my;
510 #define GET_PTS_DIFF(a, b) (((a) - (b) + 8192) & 0x1FFF)
517 int mul = dir ? -
r->mv_weight2 :
r->mv_weight1;
526 int A_avail,
int B_avail,
int C_avail,
529 if(A_avail + B_avail + C_avail != 3){
530 *mx =
A[0] +
B[0] +
C[0];
531 *my =
A[1] +
B[1] +
C[1];
532 if(A_avail + B_avail + C_avail == 2){
548 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
549 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
550 int A[2] = { 0 },
B[2] = { 0 },
C[2] = { 0 };
551 int has_A = 0, has_B = 0, has_C = 0;
554 Picture *cur_pic =
s->current_picture_ptr;
564 B[0] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride][0];
565 B[1] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride][1];
568 if(
r->avail_cache[6-4] && (
r->avail_cache[6-2] &
type) &
mask){
569 C[0] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride + 2][0];
570 C[1] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride + 2][1];
572 }
else if((
s->mb_x+1) ==
s->mb_width && (
r->avail_cache[6-5] &
type) &
mask){
573 C[0] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride - 1][0];
574 C[1] = cur_pic->
motion_val[dir][mv_pos -
s->b8_stride - 1][1];
580 mx +=
r->dmv[dir][0];
581 my +=
r->dmv[dir][1];
583 for(j = 0; j < 2; j++){
584 for(
i = 0;
i < 2;
i++){
585 cur_pic->
motion_val[dir][mv_pos +
i + j*
s->b8_stride][0] = mx;
586 cur_pic->
motion_val[dir][mv_pos +
i + j*
s->b8_stride][1] = my;
600 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
601 int A[2] = {0},
B[2],
C[2];
607 A[0] =
s->current_picture_ptr->motion_val[0][mv_pos - 1][0];
608 A[1] =
s->current_picture_ptr->motion_val[0][mv_pos - 1][1];
611 B[0] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride][0];
612 B[1] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride][1];
618 if(avail[-4] && (avail[-1])){
619 C[0] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride - 1][0];
620 C[1] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride - 1][1];
626 C[0] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride + 2][0];
627 C[1] =
s->current_picture_ptr->motion_val[0][mv_pos -
s->b8_stride + 2][1];
633 for(j = 0; j < 2; j++){
634 for(
i = 0;
i < 2;
i++){
635 for(k = 0; k < 2; k++){
636 s->current_picture_ptr->motion_val[k][mv_pos +
i + j*
s->b8_stride][0] = mx;
637 s->current_picture_ptr->motion_val[k][mv_pos +
i + j*
s->b8_stride][1] = my;
661 const int xoff,
const int yoff,
int mv_off,
663 const int thirdpel,
int weighted,
668 uint8_t *
Y, *
U, *
V, *srcY, *srcU, *srcV;
669 int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
670 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride + mv_off;
675 int chroma_mx, chroma_my;
676 mx = (
s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
677 my = (
s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
678 lx = (
s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
679 ly = (
s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
680 chroma_mx =
s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
681 chroma_my =
s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
682 umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
683 umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
688 mx =
s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
689 my =
s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
690 lx =
s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
691 ly =
s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
692 cx =
s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
693 cy =
s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
696 uvmx = (cx & 3) << 1;
697 uvmy = (cy & 3) << 1;
699 if(uvmx == 6 && uvmy == 6)
705 int mb_row =
s->mb_y + ((yoff + my + 5 + 8 *
height) >> 4);
706 ThreadFrame *
f = dir ? &
s->next_picture_ptr->tf : &
s->last_picture_ptr->tf;
711 srcY = dir ?
s->next_picture_ptr->f->data[0] :
s->last_picture_ptr->f->data[0];
712 srcU = dir ?
s->next_picture_ptr->f->data[1] :
s->last_picture_ptr->f->data[1];
713 srcV = dir ?
s->next_picture_ptr->f->data[2] :
s->last_picture_ptr->f->data[2];
714 src_x =
s->mb_x * 16 + xoff + mx;
715 src_y =
s->mb_y * 16 + yoff + my;
716 uvsrc_x =
s->mb_x * 8 + (xoff >> 1) + umx;
717 uvsrc_y =
s->mb_y * 8 + (yoff >> 1) + umy;
718 srcY += src_y *
s->linesize + src_x;
719 srcU += uvsrc_y *
s->uvlinesize + uvsrc_x;
720 srcV += uvsrc_y *
s->uvlinesize + uvsrc_x;
721 if(
s->h_edge_pos - (
width << 3) < 6 ||
s->v_edge_pos - (
height << 3) < 6 ||
722 (
unsigned)(src_x - !!lx*2) >
s->h_edge_pos - !!lx*2 - (
width <<3) - 4 ||
723 (unsigned)(src_y - !!ly*2) >
s->v_edge_pos - !!ly*2 - (
height<<3) - 4) {
724 srcY -= 2 + 2*
s->linesize;
725 s->vdsp.emulated_edge_mc(
s->sc.edge_emu_buffer, srcY,
726 s->linesize,
s->linesize,
728 src_x - 2, src_y - 2,
729 s->h_edge_pos,
s->v_edge_pos);
730 srcY =
s->sc.edge_emu_buffer + 2 + 2*
s->linesize;
734 Y =
s->dest[0] + xoff + yoff *
s->linesize;
735 U =
s->dest[1] + (xoff>>1) + (yoff>>1)*
s->uvlinesize;
736 V =
s->dest[2] + (xoff>>1) + (yoff>>1)*
s->uvlinesize;
738 Y =
r->tmp_b_block_y [dir] + xoff + yoff *
s->linesize;
739 U =
r->tmp_b_block_uv[dir*2] + (xoff>>1) + (yoff>>1)*
s->uvlinesize;
740 V =
r->tmp_b_block_uv[dir*2+1] + (xoff>>1) + (yoff>>1)*
s->uvlinesize;
744 qpel_mc[1][dxy](
Y, srcY,
s->linesize);
748 qpel_mc[1][dxy](
Y, srcY,
s->linesize);
749 Y += 8 *
s->linesize;
750 srcY += 8 *
s->linesize;
753 qpel_mc[!is16x16][dxy](
Y, srcY,
s->linesize);
755 uint8_t *uvbuf =
s->sc.edge_emu_buffer;
757 s->vdsp.emulated_edge_mc(uvbuf, srcU,
758 s->uvlinesize,
s->uvlinesize,
761 s->h_edge_pos >> 1,
s->v_edge_pos >> 1);
763 uvbuf += 9*
s->uvlinesize;
765 s->vdsp.emulated_edge_mc(uvbuf, srcV,
766 s->uvlinesize,
s->uvlinesize,
769 s->h_edge_pos >> 1,
s->v_edge_pos >> 1);
777 const int xoff,
const int yoff,
int mv_off,
780 rv34_mc(
r, block_type, xoff, yoff, mv_off,
width,
height, dir,
r->rv30, 0,
781 r->rdsp.put_pixels_tab,
782 r->rdsp.put_chroma_pixels_tab);
787 r->rdsp.rv40_weight_pixels_tab[
r->scaled_weight][0](
r->s.dest[0],
793 r->rdsp.rv40_weight_pixels_tab[
r->scaled_weight][1](
r->s.dest[1],
794 r->tmp_b_block_uv[0],
795 r->tmp_b_block_uv[2],
799 r->rdsp.rv40_weight_pixels_tab[
r->scaled_weight][1](
r->s.dest[2],
800 r->tmp_b_block_uv[1],
801 r->tmp_b_block_uv[3],
811 rv34_mc(
r, block_type, 0, 0, 0, 2, 2, 0,
r->rv30, weighted,
812 r->rdsp.put_pixels_tab,
813 r->rdsp.put_chroma_pixels_tab);
815 rv34_mc(
r, block_type, 0, 0, 0, 2, 2, 1,
r->rv30, 0,
816 r->rdsp.avg_pixels_tab,
817 r->rdsp.avg_chroma_pixels_tab);
819 rv34_mc(
r, block_type, 0, 0, 0, 2, 2, 1,
r->rv30, 1,
820 r->rdsp.put_pixels_tab,
821 r->rdsp.put_chroma_pixels_tab);
829 int weighted = !
r->rv30 &&
r->weight1 != 8192;
831 for(j = 0; j < 2; j++)
832 for(
i = 0;
i < 2;
i++){
835 r->rdsp.put_pixels_tab,
836 r->rdsp.put_chroma_pixels_tab);
839 weighted ?
r->rdsp.put_pixels_tab :
r->rdsp.avg_pixels_tab,
840 weighted ?
r->rdsp.put_chroma_pixels_tab :
r->rdsp.avg_chroma_pixels_tab);
847 static const int num_mvs[
RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
858 int mv_pos =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
861 memset(
r->dmv, 0,
sizeof(
r->dmv));
867 r->dmv[
i][0] =
r->dmv[
i][1] = 0;
874 ZERO8x2(
s->current_picture_ptr->motion_val[0][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
878 ZERO8x2(
s->current_picture_ptr->motion_val[0][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
888 next_bt =
s->next_picture_ptr->mb_type[
s->mb_x +
s->mb_y *
s->mb_stride];
890 ZERO8x2(
s->current_picture_ptr->motion_val[0][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
891 ZERO8x2(
s->current_picture_ptr->motion_val[1][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
893 for(j = 0; j < 2; j++)
894 for(
i = 0;
i < 2;
i++)
895 for(k = 0; k < 2; k++)
896 for(l = 0; l < 2; l++)
897 s->current_picture_ptr->motion_val[l][mv_pos +
i + j*
s->b8_stride][k] =
calc_add_mv(
r, l,
s->next_picture_ptr->motion_val[0][mv_pos +
i + j*
s->b8_stride][k]);
902 ZERO8x2(
s->current_picture_ptr->motion_val[0][
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride],
s->b8_stride);
911 r->dmv[1][0] =
r->dmv[0][0];
912 r->dmv[1][1] =
r->dmv[0][1];
940 rv34_mc_1mv (
r, block_type, (
i&1)<<3, (
i&2)<<2, (
i&1)+(
i>>1)*
s->b8_stride, 1, 1, 0);
969 uint8_t *prev = dst -
stride + 4;
988 topleft = dst[-
stride + 3] * 0x01010101
u;
989 prev = (uint8_t*)&topleft;
991 r->h.pred4x4[itype](dst, prev,
stride);
1011 uint8_t *pdst,
int stride,
1012 int fc,
int sc,
int q_dc,
int q_ac)
1015 int16_t *ptr =
s->block[0];
1017 fc, sc, q_dc, q_ac, q_ac);
1019 r->rdsp.rv34_idct_add(pdst,
stride, ptr);
1021 r->rdsp.rv34_idct_dc_add(pdst,
stride, ptr[0]);
1033 uint8_t *dst =
s->dest[0];
1034 int16_t *ptr =
s->block[0];
1035 int i, j, itype, has_ac;
1037 memset(block16, 0, 16 *
sizeof(*block16));
1041 r->rdsp.rv34_inv_transform(block16);
1043 r->rdsp.rv34_inv_transform_dc(block16);
1046 itype =
adjust_pred16(itype,
r->avail_cache[6-4],
r->avail_cache[6-1]);
1047 r->h.pred16x16[itype](dst,
s->linesize);
1049 for(j = 0; j < 4; j++){
1050 for(
i = 0; i < 4; i++, cbp >>= 1){
1051 int dc = block16[
i + j*4];
1060 r->rdsp.rv34_idct_add(dst+4*
i,
s->linesize, ptr);
1062 r->rdsp.rv34_idct_dc_add(dst+4*
i,
s->linesize,
dc);
1065 dst += 4*
s->linesize;
1070 itype =
adjust_pred16(itype,
r->avail_cache[6-4],
r->avail_cache[6-1]);
1075 for(j = 1; j < 3; j++){
1077 r->h.pred8x8[itype](dst,
s->uvlinesize);
1078 for(
i = 0; i < 4; i++, cbp >>= 1){
1080 if(!(cbp & 1))
continue;
1081 pdst = dst + (
i&1)*4 + (
i&2)*2*
s->uvlinesize;
1084 r->chroma_vlc, 1, q_dc, q_ac);
1092 uint8_t *dst =
s->dest[0];
1093 int avail[6*8] = {0};
1095 int idx, q_ac, q_dc;
1098 if(
r->avail_cache[1])
1100 if(
r->avail_cache[2])
1101 avail[1] = avail[2] = 1;
1102 if(
r->avail_cache[3])
1103 avail[3] = avail[4] = 1;
1104 if(
r->avail_cache[4])
1106 if(
r->avail_cache[5])
1107 avail[8] = avail[16] = 1;
1108 if(
r->avail_cache[9])
1109 avail[24] = avail[32] = 1;
1112 for(j = 0; j < 4; j++){
1114 for(
i = 0; i < 4; i++, cbp >>= 1, dst += 4, idx++){
1117 if(!(cbp & 1))
continue;
1120 r->luma_vlc, 0, q_ac, q_ac);
1122 dst +=
s->linesize * 4 - 4*4;
1123 intra_types +=
r->intra_types_stride;
1126 intra_types -=
r->intra_types_stride * 4;
1131 for(k = 0; k < 2; k++){
1135 for(j = 0; j < 2; j++){
1136 int* acache =
r->avail_cache + 6 + j*4;
1137 for(
i = 0; i < 2; i++, cbp >>= 1, acache++){
1138 int itype =
ittrans[intra_types[
i*2+j*2*
r->intra_types_stride]];
1142 if(!(cbp&1))
continue;
1145 r->chroma_vlc, 1, q_dc, q_ac);
1148 dst += 4*
s->uvlinesize;
1156 d = motion_val[0][0] - motion_val[-
step][0];
1159 d = motion_val[0][1] - motion_val[-
step][1];
1168 int hmvmask = 0, vmvmask = 0,
i, j;
1169 int midx =
s->mb_x * 2 +
s->mb_y * 2 *
s->b8_stride;
1170 int16_t (*motion_val)[2] = &
s->current_picture_ptr->motion_val[0][midx];
1171 for(j = 0; j < 16; j += 8){
1172 for(
i = 0;
i < 2;
i++){
1174 vmvmask |= 0x11 << (j +
i*2);
1176 hmvmask |= 0x03 << (j +
i*2);
1178 motion_val +=
s->b8_stride;
1180 if(
s->first_slice_line)
1185 vmvmask |= (vmvmask & 0x4444) >> 1;
1186 hmvmask |= (hmvmask & 0x0F00) >> 4;
1188 r->deblock_coefs[
s->mb_x - 1 +
s->mb_y*
s->mb_stride] |= (vmvmask & 0x1111) << 3;
1189 if(!
s->first_slice_line)
1190 r->deblock_coefs[
s->mb_x + (
s->mb_y - 1)*
s->mb_stride] |= (hmvmask & 0xF) << 12;
1192 return hmvmask | vmvmask;
1199 uint8_t *dst =
s->dest[0];
1200 int16_t *ptr =
s->block[0];
1201 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
1203 int q_dc, q_ac, has_ac;
1208 memset(
r->avail_cache, 0,
sizeof(
r->avail_cache));
1210 dist = (
s->mb_x -
s->resync_mb_x) + (
s->mb_y -
s->resync_mb_y) *
s->mb_width;
1213 r->avail_cache[9] =
s->current_picture_ptr->mb_type[mb_pos - 1];
1214 if(dist >=
s->mb_width)
1216 r->avail_cache[3] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride];
1217 if(((
s->mb_x+1) <
s->mb_width) && dist >=
s->mb_width - 1)
1218 r->avail_cache[4] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride + 1];
1219 if(
s->mb_x && dist >
s->mb_width)
1220 r->avail_cache[1] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride - 1];
1222 s->qscale =
r->si.quant;
1224 r->cbp_luma [mb_pos] = cbp;
1225 r->cbp_chroma[mb_pos] = cbp >> 16;
1227 s->current_picture_ptr->qscale_table[mb_pos] =
s->qscale;
1232 if (
IS_INTRA(
s->current_picture_ptr->mb_type[mb_pos])){
1241 memset(block16, 0, 16 *
sizeof(*block16));
1245 r->rdsp.rv34_inv_transform(block16);
1247 r->rdsp.rv34_inv_transform_dc(block16);
1251 for(j = 0; j < 4; j++){
1252 for(
i = 0; i < 4; i++, cbp >>= 1){
1253 int dc = block16[
i + j*4];
1262 r->rdsp.rv34_idct_add(dst+4*
i,
s->linesize, ptr);
1264 r->rdsp.rv34_idct_dc_add(dst+4*
i,
s->linesize,
dc);
1267 dst += 4*
s->linesize;
1274 for(j = 0; j < 4; j++){
1275 for(
i = 0; i < 4; i++, cbp >>= 1){
1276 if(!(cbp & 1))
continue;
1279 r->luma_vlc, 0, q_ac, q_ac);
1281 dst += 4*
s->linesize;
1288 for(j = 1; j < 3; j++){
1290 for(
i = 0; i < 4; i++, cbp >>= 1){
1292 if(!(cbp & 1))
continue;
1293 pdst = dst + (
i&1)*4 + (
i&2)*2*
s->uvlinesize;
1296 r->chroma_vlc, 1, q_dc, q_ac);
1307 int mb_pos =
s->mb_x +
s->mb_y *
s->mb_stride;
1310 memset(
r->avail_cache, 0,
sizeof(
r->avail_cache));
1312 dist = (
s->mb_x -
s->resync_mb_x) + (
s->mb_y -
s->resync_mb_y) *
s->mb_width;
1315 r->avail_cache[9] =
s->current_picture_ptr->mb_type[mb_pos - 1];
1316 if(dist >=
s->mb_width)
1318 r->avail_cache[3] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride];
1319 if(((
s->mb_x+1) <
s->mb_width) && dist >=
s->mb_width - 1)
1320 r->avail_cache[4] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride + 1];
1321 if(
s->mb_x && dist >
s->mb_width)
1322 r->avail_cache[1] =
s->current_picture_ptr->mb_type[mb_pos -
s->mb_stride - 1];
1324 s->qscale =
r->si.quant;
1326 r->cbp_luma [mb_pos] = cbp;
1327 r->cbp_chroma[mb_pos] = cbp >> 16;
1328 r->deblock_coefs[mb_pos] = 0xFFFF;
1329 s->current_picture_ptr->qscale_table[mb_pos] =
s->qscale;
1346 if(
s->mb_y >=
s->mb_height)
1350 if(
r->s.mb_skip_run > 1)
1362 r->intra_types =
NULL;
1373 r->intra_types_stride =
r->s.mb_width * 4 + 4;
1375 r->cbp_chroma =
av_mallocz(
r->s.mb_stride *
r->s.mb_height *
1376 sizeof(*
r->cbp_chroma));
1378 sizeof(*
r->cbp_luma));
1379 r->deblock_coefs =
av_mallocz(
r->s.mb_stride *
r->s.mb_height *
1380 sizeof(*
r->deblock_coefs));
1381 r->intra_types_hist =
av_malloc(
r->intra_types_stride * 4 * 2 *
1382 sizeof(*
r->intra_types_hist));
1384 sizeof(*
r->mb_type));
1386 if (!(
r->cbp_chroma &&
r->cbp_luma &&
r->deblock_coefs &&
1387 r->intra_types_hist &&
r->mb_type)) {
1388 r->s.context_reinit = 1;
1393 r->intra_types =
r->intra_types_hist +
r->intra_types_stride * 4;
1410 int mb_pos, slice_type;
1414 res =
r->parse_slice_header(
r, gb, &
r->si);
1421 if (slice_type !=
s->pict_type) {
1425 if (
s->width !=
r->si.width ||
s->height !=
r->si.height) {
1431 s->qscale =
r->si.quant;
1432 s->mb_num_left =
r->si.end -
r->si.start;
1433 r->s.mb_skip_run = 0;
1435 mb_pos =
s->mb_x +
s->mb_y *
s->mb_width;
1436 if(
r->si.start != mb_pos){
1438 s->mb_x =
r->si.start %
s->mb_width;
1439 s->mb_y =
r->si.start /
s->mb_width;
1441 memset(
r->intra_types_hist, -1,
r->intra_types_stride * 4 * 2 *
sizeof(*
r->intra_types_hist));
1442 s->first_slice_line = 1;
1443 s->resync_mb_x =
s->mb_x;
1444 s->resync_mb_y =
s->mb_y;
1458 if (++
s->mb_x ==
s->mb_width) {
1463 memmove(
r->intra_types_hist,
r->intra_types,
r->intra_types_stride * 4 *
sizeof(*
r->intra_types_hist));
1464 memset(
r->intra_types, -1,
r->intra_types_stride * 4 *
sizeof(*
r->intra_types_hist));
1466 if(
r->loop_filter &&
s->mb_y >= 2)
1467 r->loop_filter(
r,
s->mb_y - 2);
1474 if(
s->mb_x ==
s->resync_mb_x)
1475 s->first_slice_line=0;
1480 return s->mb_y ==
s->mb_height;
1524 if (dst ==
src || !
s1->context_initialized)
1527 if (
s->height !=
s1->height ||
s->width !=
s1->width ||
s->context_reinit) {
1528 s->height =
s1->height;
1529 s->width =
s1->width;
1536 r->cur_pts = r1->cur_pts;
1537 r->last_pts = r1->last_pts;
1538 r->next_pts = r1->next_pts;
1540 memset(&
r->si, 0,
sizeof(
r->si));
1544 if (!
s1->context_initialized)
1552 if (n < slice_count) {
1563 int got_picture = 0,
ret;
1578 }
else if (
s->last_picture_ptr) {
1600 int *got_picture_ptr,
AVPacket *avpkt)
1602 const uint8_t *buf = avpkt->
data;
1603 int buf_size = avpkt->
size;
1609 const uint8_t *slices_hdr =
NULL;
1615 if (buf_size == 0) {
1617 if (
s->low_delay==0 &&
s->next_picture_ptr) {
1620 s->next_picture_ptr =
NULL;
1622 *got_picture_ptr = 1;
1628 slice_count = (*buf++) + 1;
1629 slices_hdr = buf + 4;
1630 buf += 8 * slice_count;
1631 buf_size -= 1 + 8 * slice_count;
1637 if(offset < 0 || offset > buf_size){
1642 if(
r->parse_slice_header(
r, &
r->s.gb, &si) < 0 || si.
start){
1646 if ((!
s->last_picture_ptr || !
s->last_picture_ptr->f->data[0]) &&
1649 "reference data.\n");
1658 if (si.
start == 0) {
1659 if (
s->mb_num_left > 0 &&
s->current_picture_ptr) {
1662 if (!
s->context_reinit)
1667 if (
s->width != si.
width ||
s->height != si.
height ||
s->context_reinit) {
1677 s->width,
s->height,
s->avctx->sample_aspect_ratio,
1696 if (!
r->tmp_b_block_base) {
1699 r->tmp_b_block_base =
av_malloc(
s->linesize * 48);
1700 for (
i = 0;
i < 2;
i++)
1701 r->tmp_b_block_y[
i] =
r->tmp_b_block_base
1702 +
i * 16 *
s->linesize;
1704 r->tmp_b_block_uv[
i] =
r->tmp_b_block_base + 32 *
s->linesize
1705 + (
i >> 1) * 8 *
s->uvlinesize
1708 r->cur_pts = si.
pts;
1710 r->last_pts =
r->next_pts;
1711 r->next_pts =
r->cur_pts;
1718 r->mv_weight1 =
r->mv_weight2 =
r->weight1 =
r->weight2 = 8192;
1719 r->scaled_weight = 0;
1721 if (
FFMAX(dist0, dist1) > refdist)
1724 r->mv_weight1 = (dist0 << 14) / refdist;
1725 r->mv_weight2 = (dist1 << 14) / refdist;
1726 if((
r->mv_weight1|
r->mv_weight2) & 511){
1727 r->weight1 =
r->mv_weight1;
1728 r->weight2 =
r->mv_weight2;
1729 r->scaled_weight = 0;
1731 r->weight1 =
r->mv_weight1 >> 9;
1732 r->weight2 =
r->mv_weight2 >> 9;
1733 r->scaled_weight = 1;
1737 s->mb_x =
s->mb_y = 0;
1739 }
else if (
s->context_reinit) {
1741 "reinitialize (start MB is %d).\n", si.
start);
1743 }
else if (HAVE_THREADS &&
1746 "multithreading mode (start MB is %d).\n", si.
start);
1750 for(
i = 0;
i < slice_count;
i++){
1755 if(offset < 0 || offset > offset1 || offset1 > buf_size){
1761 r->si.end =
s->mb_width *
s->mb_height;
1762 s->mb_num_left =
r->s.mb_x +
r->s.mb_y*
r->s.mb_width -
r->si.start;
1764 if(
i+1 < slice_count){
1766 if (offset2 < offset1 || offset2 > buf_size) {
1771 if(
r->parse_slice_header(
r, &
r->s.gb, &si) < 0){
1782 if (
s->current_picture_ptr) {
1785 r->loop_filter(
r,
s->mb_height - 1);
1790 *got_picture_ptr =
ret;
1791 }
else if (HAVE_THREADS &&
av_cold int ff_mpv_common_init(MpegEncContext *s)
init common structure for both encoder and decoder.
static const int rv34_mb_type_to_lavc[12]
translation of RV30/40 macroblock types to lavc ones
#define AV_LOG_WARNING
Something somehow does not look correct.
static const uint16_t rv34_qscale_tab[32]
This table is used for dequantizing.
static void rv34_output_intra(RV34DecContext *r, int8_t *intra_types, int cbp)
static int get_bits_left(GetBitContext *gb)
av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
motion vector prediction - RV3 version
#define u(width, name, range_min, range_max)
VLC third_pattern[2]
VLCs used for decoding coefficients in the last subblock.
static const uint8_t rv34_table_inter_secondpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
static const int ittrans16[4]
mapping of RV30/40 intra 16x16 prediction types to standard H.264 types
static const int num_mvs[RV34_MB_TYPES]
number of motion vectors in each macroblock type
static const int chroma_coeffs[3]
int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
Decode starting slice position.
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
int * slice_offset
slice offsets in the frame in bytes
int ff_rv34_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
static const uint16_t table[]
static int rv34_decoder_realloc(RV34DecContext *r)
static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
#define fc(width, name, range_min, range_max)
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
void ff_init_block_index(MpegEncContext *s)
static int rv34_set_deblock_coef(RV34DecContext *r)
#define MB_TYPE_INTRA16x16
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
static const uint8_t avail_indexes[4]
availability index for subblocks
int slice_count
slice count
static void decode_subblock(int16_t *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc, int q)
Decode 2x2 subblock of coefficients.
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int adjust_pred16(int itype, int up, int left)
@ RV34_MB_B_FORWARD
B-frame macroblock, forward prediction.
static int rv34_decoder_alloc(RV34DecContext *r)
enum AVDiscard skip_frame
Skip decoding for selected frames.
static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
motion vector prediction
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, ptrdiff_t srcStride, int h, int x, int y)
@ RV34_MB_B_DIRECT
Bidirectionally predicted B-frame macroblock, no motion vectors.
static double val(void *priv, double ch)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static const uint8_t rv34_count_ones[16]
number of ones in nibble minus one
static int quant(float coef, const float Q, const float rounding)
Quantize one coefficient.
static const uint8_t rv34_table_intra_firstpat[NUM_INTRA_TABLES][4][FIRSTBLK_VLC_SIZE]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
void ff_mpv_common_end(MpegEncContext *s)
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_TRACE
Extremely verbose debugging, useful for libav* development.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
Initialize decoder.
static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
Perform 4x4 intra prediction.
static int rv34_decode_intra_macroblock(RV34DecContext *r, int8_t *intra_types)
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static void ZERO8x2(void *dst, int stride)
static const uint16_t mask[17]
VLC tables used by the decoder.
int has_b_frames
Size of the frame reordering buffer in the decoder.
int ff_mpv_common_frame_size_change(MpegEncContext *s)
static void rv34_mc_1mv(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir)
static int rv34_decode_inter_macroblock(RV34DecContext *r, int8_t *intra_types)
static RV34VLC intra_vlcs[NUM_INTRA_TABLES]
VLC second_pattern[2]
VLCs used for decoding coefficients in the subblocks 2 and 3.
#define VERT_LEFT_PRED_RV40_NODOWN
VLC cbp[2][4]
VLCs used for coded block patterns decoding.
void ff_mpeg_er_frame_start(MpegEncContext *s)
static int calc_add_mv(RV34DecContext *r, int dir, int val)
Calculate motion vector component that should be added for direct blocks.
#define LOCAL_ALIGNED_16(t, v,...)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static int finish_frame(AVCodecContext *avctx, AVFrame *pict)
static const uint16_t rv34_mb_max_sizes[6]
maximum number of macroblocks for each of the possible slice offset sizes
static float mul(float src0, float src1)
@ AVDISCARD_ALL
discard all
static const uint8_t rv34_inter_coeff[NUM_INTER_TABLES][COEFF_VLC_SIZE]
static void decode_subblock3(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q_dc, int q_ac1, int q_ac2)
#define GET_PTS_DIFF(a, b)
static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t *buf, int buf_size)
static av_cold void rv34_init_tables(void)
Initialize all tables.
av_cold void ff_mpv_idct_init(MpegEncContext *s)
@ RV34_MB_SKIP
Skipped block.
Rational number (pair of numerator and denominator).
static const uint8_t rv34_table_intra_cbppat[NUM_INTRA_TABLES][2][CBPPAT_VLC_SIZE]
int type
slice type (intra, inter)
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
VLC cbppattern[2]
VLCs used for pattern of coded block patterns decoding.
static const uint8_t rv34_table_intra_secondpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
#define FF_MPV_QSCALE_TYPE_MPEG1
static int rv34_decode_mv(RV34DecContext *r, int block_type)
Decode motion vector differences and perform motion vector reconstruction and motion compensation.
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
@ RV34_MB_P_8x8
P-frame macroblock, 8x8 motion compensation partitions.
static const uint8_t rv34_table_intra_thirdpat[NUM_INTRA_TABLES][2][OTHERBLK_VLC_SIZE]
static void decode_coeff(int16_t *dst, int coef, int esc, GetBitContext *gb, VLC *vlc, int q)
Get one coefficient value from the bitstream and store it.
static void rv34_mc_2mv_skip(RV34DecContext *r)
@ AVDISCARD_NONKEY
discard all frames except keyframes
static const uint8_t rv34_cbp_code[16]
values used to reconstruct coded block pattern
static int is_mv_diff_gt_3(int16_t(*motion_val)[2], int step)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
@ RV34_MB_B_BACKWARD
B-frame macroblock, backward prediction.
int ff_rv34_decode_frame(AVCodecContext *avctx, AVFrame *pict, int *got_picture_ptr, AVPacket *avpkt)
static AVRational update_sar(int old_w, int old_h, AVRational sar, int new_w, int new_h)
#define FIRSTBLK_VLC_SIZE
static int get_interleaved_se_golomb(GetBitContext *gb)
@ RV34_MB_P_8x16
P-frame macroblock, 8x16 motion compensation partitions.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
static const uint8_t rv34_inter_cbppat[NUM_INTER_TABLES][CBPPAT_VLC_SIZE]
int ff_mpv_frame_start(MpegEncContext *s, AVCodecContext *avctx)
generic function called after decoding the header and before a frame is decoded.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define OTHERBLK_VLC_SIZE
int16_t(*[2] motion_val)[2]
static void rv34_output_i16x16(RV34DecContext *r, int8_t *intra_types, int cbp)
@ RV34_MB_TYPE_INTRA16x16
Intra macroblock with DCs in a separate 4x4 block.
#define AV_LOG_INFO
Standard information.
static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
motion vector prediction for B-frames
#define FF_THREAD_FRAME
Decode more than one frame at once.
static const uint8_t rv34_table_inter_thirdpat[NUM_INTER_TABLES][2][OTHERBLK_VLC_SIZE]
#define DIAG_DOWN_LEFT_PRED_RV40_NODOWN
static void ff_update_block_index(MpegEncContext *s)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static const uint8_t part_sizes_h[RV34_MB_TYPES]
macroblock partition height in 8x8 blocks
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
static const uint8_t rv34_table_inter_firstpat[NUM_INTER_TABLES][2][FIRSTBLK_VLC_SIZE]
int ff_init_vlc_sparse(VLC *vlc, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int flags)
void ff_mpv_decode_init(MpegEncContext *s, AVCodecContext *avctx)
Initialize the given MpegEncContext for decoding.
#define HOR_UP_PRED_RV40_NODOWN
static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *syms, int *offset)
Generate VLC from codeword lengths.
static const uint8_t rv34_table_intra_cbp[NUM_INTRA_TABLES][8][CBP_VLC_SIZE]
@ RV34_MB_TYPE_INTRA
Intra macroblock.
int ff_mpv_export_qp_table(MpegEncContext *s, AVFrame *f, Picture *p, int qp_type)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
static VLCElem table_data[117592]
static const uint8_t rv34_quant_to_vlc_set[2][32]
tables used to translate a quantizer value into a VLC set for decoding The first table is used for in...
essential slice information
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n, int slice_count, int buf_size)
static int mod(int a, int b)
Modulo operation with only positive remainders.
static void decode_subblock1(int16_t *dst, int code, GetBitContext *gb, VLC *vlc, int q)
Decode a single coefficient.
#define INIT_VLC_STATIC_OVERLONG
static void rv4_weight(RV34DecContext *r)
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static const uint8_t rv34_inter_cbp[NUM_INTER_TABLES][4][CBP_VLC_SIZE]
int ff_mpeg_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
main external API structure.
uint32_t * mb_type
types and macros are defined in mpegutils.h
static int rv34_decode_inter_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode inter macroblock header and return CBP in case of success, -1 otherwise.
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
static const uint8_t rv34_intra_coeff[NUM_INTRA_TABLES][COEFF_VLC_SIZE]
static const uint8_t part_sizes_w[RV34_MB_TYPES]
macroblock partition width in 8x8 blocks
static const int ittrans[9]
mapping of RV30/40 intra prediction types to standard H.264 types
static void fill_rectangle(int x, int y, int w, int h)
static const uint8_t rv34_chroma_quant[2][32]
quantizer values used for AC and DC coefficients in chroma blocks
void ff_mpv_frame_end(MpegEncContext *s)
static int rv34_decode_block(int16_t *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc, int q_dc, int q_ac1, int q_ac2)
Decode coefficients for 4x4 block.
static int rv34_decode_intra_mb_header(RV34DecContext *r, int8_t *intra_types)
Decode intra macroblock header and return CBP in case of success, -1 otherwise.
static const uint8_t rv34_mb_bits_sizes[6]
bits needed to code the slice offset for the given size
static void rv34_process_block(RV34DecContext *r, uint8_t *pdst, int stride, int fc, int sc, int q_dc, int q_ac)
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
@ RV34_MB_P_MIX16x16
P-frame macroblock with DCs in a separate 4x4 block, one motion vector.
@ AV_PICTURE_TYPE_P
Predicted.
VLC coefficient
VLCs used for decoding big coefficients.
VLC first_pattern[4]
VLCs used for decoding coefficients in the first subblock.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static void rv34_mc(RV34DecContext *r, const int block_type, const int xoff, const int yoff, int mv_off, const int width, const int height, int dir, const int thirdpel, int weighted, qpel_mc_func(*qpel_mc)[16], h264_chroma_mc_func(*chroma_mc))
generic motion compensation function
#define MB_TYPE_SEPARATE_DC
@ RV34_MB_P_16x8
P-frame macroblock, 16x8 motion compensation partitions.
This structure stores compressed data.
void ff_er_frame_end(ERContext *s)
static RV34VLC inter_vlcs[NUM_INTER_TABLES]
#define flags(name, subs,...)
@ RV34_MB_P_16x16
P-frame macroblock, one motion frame.
static RV34VLC * choose_vlc_set(int quant, int mod, int type)
Select VLC set for decoding from current quantizer, modifier and frame type.
static const double coeff[2][5]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
@ RV34_MB_B_BIDIR
Bidirectionally predicted B-frame macroblock, two motion vectors.
static const uint8_t modulo_three_table[108]
precalculated results of division by three and modulo three for values 0-107
static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
Decode coded block pattern.
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
void ff_print_debug_info(MpegEncContext *s, Picture *p, AVFrame *pict)
@ AVDISCARD_NONREF
discard all non reference
static void rv34_decoder_free(RV34DecContext *r)
static const uint8_t shifts[2][12]
static void rv34_pred_b_vector(int A[2], int B[2], int C[2], int A_avail, int B_avail, int C_avail, int *mx, int *my)
Predict motion vector for B-frame macroblock.