Go to the documentation of this file.
37 { 36, 68, 60, 92, 34, 66, 58, 90, },
38 { 100, 4, 124, 28, 98, 2, 122, 26, },
39 { 52, 84, 44, 76, 50, 82, 42, 74, },
40 { 116, 20, 108, 12, 114, 18, 106, 10, },
41 { 32, 64, 56, 88, 38, 70, 62, 94, },
42 { 96, 0, 120, 24, 102, 6, 126, 30, },
43 { 48, 80, 40, 72, 54, 86, 46, 78, },
44 { 112, 16, 104, 8, 118, 22, 110, 14, },
45 { 36, 68, 60, 92, 34, 66, 58, 90, },
49 64, 64, 64, 64, 64, 64, 64, 64
56 uint8_t *ptr = plane +
stride * y;
64 const uint8_t *_src,
const int16_t *
filter,
65 const int32_t *filterPos,
int filterSize)
70 const uint16_t *
src = (
const uint16_t *) _src;
80 for (
i = 0;
i < dstW;
i++) {
82 int srcPos = filterPos[
i];
85 for (j = 0; j < filterSize; j++) {
94 const uint8_t *_src,
const int16_t *
filter,
95 const int32_t *filterPos,
int filterSize)
99 const uint16_t *
src = (
const uint16_t *) _src;
100 int sh =
desc->comp[0].depth - 1;
108 for (
i = 0;
i < dstW;
i++) {
110 int srcPos = filterPos[
i];
113 for (j = 0; j < filterSize; j++) {
117 dst[
i] =
FFMIN(
val >> sh, (1 << 15) - 1);
123 const uint8_t *
src,
const int16_t *
filter,
124 const int32_t *filterPos,
int filterSize)
127 for (
i = 0;
i < dstW;
i++) {
129 int srcPos = filterPos[
i];
131 for (j = 0; j < filterSize; j++) {
139 const uint8_t *
src,
const int16_t *
filter,
140 const int32_t *filterPos,
int filterSize)
144 for (
i = 0;
i < dstW;
i++) {
146 int srcPos = filterPos[
i];
148 for (j = 0; j < filterSize; j++) {
161 dstU[
i] = (
FFMIN(dstU[
i], 30775) * 4663 - 9289992) >> 12;
162 dstV[
i] = (
FFMIN(dstV[
i], 30775) * 4663 - 9289992) >> 12;
170 dstU[
i] = (dstU[
i] * 1799 + 4081085) >> 11;
171 dstV[
i] = (dstV[
i] * 1799 + 4081085) >> 11;
179 dst[
i] = (
FFMIN(dst[
i], 30189) * 19077 - 39057361) >> 14;
186 dst[
i] = (dst[
i] * 14071 + 33561947) >> 14;
195 dstU[
i] = (
FFMIN(dstU[
i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12;
196 dstV[
i] = (
FFMIN(dstV[
i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12;
206 dstU[
i] = (dstU[
i] * 1799 + (4081085 << 4)) >> 11;
207 dstV[
i] = (dstV[
i] * 1799 + (4081085 << 4)) >> 11;
216 dst[
i] = ((
int)(
FFMIN(dst[
i], 30189 << 4) * 4769
U - (39057361 << 2))) >> 12;
225 dst[
i] = (dst[
i]*(14071/4) + (33561947<<4)/4)>>12;
229 #define DEBUG_SWSCALE_BUFFERS 0
230 #define DEBUG_BUFFERS(...) \
231 if (DEBUG_SWSCALE_BUFFERS) \
232 av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
235 int srcStride[],
int srcSliceY,
int srcSliceH,
236 uint8_t *dst[],
int dstStride[],
237 int dstSliceY,
int dstSliceH)
239 const int scale_dst = dstSliceY > 0 || dstSliceH <
c->dstH;
243 const int dstW =
c->dstW;
247 const int flags =
c->flags;
248 int32_t *vLumFilterPos =
c->vLumFilterPos;
249 int32_t *vChrFilterPos =
c->vChrFilterPos;
251 const int vLumFilterSize =
c->vLumFilterSize;
252 const int vChrFilterSize =
c->vChrFilterSize;
261 const int chrSrcSliceY = srcSliceY >>
c->chrSrcVSubSample;
263 int should_dither =
isNBPS(
c->srcFormat) ||
269 int lastInLumBuf =
c->lastInLumBuf;
270 int lastInChrBuf =
c->lastInChrBuf;
273 int lumEnd =
c->descIndex[0];
274 int chrStart = lumEnd;
275 int chrEnd =
c->descIndex[1];
277 int vEnd =
c->numDesc;
278 SwsSlice *src_slice = &
c->slice[lumStart];
279 SwsSlice *hout_slice = &
c->slice[
c->numSlice-2];
280 SwsSlice *vout_slice = &
c->slice[
c->numSlice-1];
283 int needAlpha =
c->needAlpha;
294 srcStride[3] = srcStride[0];
296 srcStride[1] *= 1 <<
c->vChrDrop;
297 srcStride[2] *= 1 <<
c->vChrDrop;
299 DEBUG_BUFFERS(
"swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
300 src[0], srcStride[0],
src[1], srcStride[1],
301 src[2], srcStride[2],
src[3], srcStride[3],
302 dst[0], dstStride[0], dst[1], dstStride[1],
303 dst[2], dstStride[2], dst[3], dstStride[3]);
304 DEBUG_BUFFERS(
"srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
307 vLumFilterSize, vChrFilterSize);
309 if (dstStride[0]&15 || dstStride[1]&15 ||
310 dstStride[2]&15 || dstStride[3]&15) {
315 "Warning: dstStride is not aligned!\n"
316 " ->cannot do aligned memory accesses anymore\n");
321 if ( (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
322 || (uintptr_t)
src[0]&15 || (uintptr_t)
src[1]&15 || (uintptr_t)
src[2]&15
323 || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
324 || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
337 dstH = dstY + dstSliceH;
340 }
else if (srcSliceY == 0) {
349 if (!should_dither) {
355 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX,
c->use_mmx_vfilter);
358 srcSliceY,
srcSliceH, chrSrcSliceY, chrSrcSliceH, 1);
361 dstY, dstSliceH, dstY >>
c->chrDstVSubSample,
363 if (srcSliceY == 0) {
373 hout_slice->
width = dstW;
376 for (; dstY < dstH; dstY++) {
377 const int chrDstY = dstY >>
c->chrDstVSubSample;
378 int use_mmx_vfilter=
c->use_mmx_vfilter;
381 const int firstLumSrcY =
FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
382 const int firstLumSrcY2 =
FFMAX(1 - vLumFilterSize, vLumFilterPos[
FFMIN(dstY | ((1 <<
c->chrDstVSubSample) - 1),
c->dstH - 1)]);
384 const int firstChrSrcY =
FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
387 int lastLumSrcY =
FFMIN(
c->srcH, firstLumSrcY + vLumFilterSize) - 1;
388 int lastLumSrcY2 =
FFMIN(
c->srcH, firstLumSrcY2 + vLumFilterSize) - 1;
389 int lastChrSrcY =
FFMIN(
c->chrSrcH, firstChrSrcY + vChrFilterSize) - 1;
393 int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
396 if (firstLumSrcY > lastInLumBuf) {
398 hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
406 lastInLumBuf = firstLumSrcY - 1;
408 if (firstChrSrcY > lastInChrBuf) {
410 hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
418 lastInChrBuf = firstChrSrcY - 1;
422 DEBUG_BUFFERS(
"\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
423 firstLumSrcY, lastLumSrcY, lastInLumBuf);
424 DEBUG_BUFFERS(
"\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
425 firstChrSrcY, lastChrSrcY, lastInChrBuf);
428 enough_lines = lastLumSrcY2 < srcSliceY +
srcSliceH &&
433 lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
434 DEBUG_BUFFERS(
"buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
435 lastLumSrcY, lastChrSrcY);
443 if (posY <= lastLumSrcY && !hasLumHoles) {
444 firstPosY =
FFMAX(firstLumSrcY, posY);
448 lastPosY = lastLumSrcY;
452 if (cPosY <= lastChrSrcY && !hasChrHoles) {
453 firstCPosY =
FFMAX(firstChrSrcY, cPosY);
457 lastCPosY = lastChrSrcY;
462 if (posY < lastLumSrcY + 1) {
463 for (
i = lumStart;
i < lumEnd; ++
i)
467 lastInLumBuf = lastLumSrcY;
469 if (cPosY < lastChrSrcY + 1) {
470 for (
i = chrStart;
i < chrEnd; ++
i)
474 lastInChrBuf = lastChrSrcY;
486 if (dstY >=
c->dstH - 2) {
490 &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
493 yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
496 for (
i = vStart;
i < vEnd; ++
i)
500 int offset = lastDstY - dstSliceY;
502 int height = dstY - lastDstY;
507 1,
desc->comp[3].depth,
509 }
else if (
is32BPS(dstFormat)) {
512 1,
desc->comp[3].depth,
518 #if HAVE_MMXEXT_INLINE
520 __asm__ volatile (
"sfence" :::
"memory");
526 c->lastInLumBuf = lastInLumBuf;
527 c->lastInChrBuf = lastInChrBuf;
529 return dstY - lastDstY;
534 c->lumConvertRange =
NULL;
535 c->chrConvertRange =
NULL;
536 if (
c->srcRange !=
c->dstRange && !
isAnyRGB(
c->dstFormat)) {
537 if (
c->dstBpc <= 14) {
562 &
c->yuv2nv12cX, &
c->yuv2packed1,
563 &
c->yuv2packed2, &
c->yuv2packedX, &
c->yuv2anyX);
567 if (
c->srcBpc == 8) {
568 if (
c->dstBpc <= 14) {
586 c->needs_hcscale = 1;
617 const int linesizes[4])
624 for (
i = 0;
i < 4;
i++) {
625 int plane =
desc->comp[
i].plane;
626 if (!
data[plane] || !linesizes[plane])
639 for (yp=0; yp<
h; yp++) {
640 for (xp=0; xp+2<
stride; xp+=3) {
641 int x, y, z,
r,
g,
b;
653 x =
c->xyzgamma[x>>4];
654 y =
c->xyzgamma[y>>4];
655 z =
c->xyzgamma[z>>4];
658 r =
c->xyz2rgb_matrix[0][0] * x +
659 c->xyz2rgb_matrix[0][1] * y +
660 c->xyz2rgb_matrix[0][2] * z >> 12;
661 g =
c->xyz2rgb_matrix[1][0] * x +
662 c->xyz2rgb_matrix[1][1] * y +
663 c->xyz2rgb_matrix[1][2] * z >> 12;
664 b =
c->xyz2rgb_matrix[2][0] * x +
665 c->xyz2rgb_matrix[2][1] * y +
666 c->xyz2rgb_matrix[2][2] * z >> 12;
675 AV_WB16(dst + xp + 0,
c->rgbgamma[
r] << 4);
676 AV_WB16(dst + xp + 1,
c->rgbgamma[
g] << 4);
677 AV_WB16(dst + xp + 2,
c->rgbgamma[
b] << 4);
679 AV_WL16(dst + xp + 0,
c->rgbgamma[
r] << 4);
680 AV_WL16(dst + xp + 1,
c->rgbgamma[
g] << 4);
681 AV_WL16(dst + xp + 2,
c->rgbgamma[
b] << 4);
695 for (yp=0; yp<
h; yp++) {
696 for (xp=0; xp+2<
stride; xp+=3) {
697 int x, y, z,
r,
g,
b;
709 r =
c->rgbgammainv[
r>>4];
710 g =
c->rgbgammainv[
g>>4];
711 b =
c->rgbgammainv[
b>>4];
714 x =
c->rgb2xyz_matrix[0][0] *
r +
715 c->rgb2xyz_matrix[0][1] *
g +
716 c->rgb2xyz_matrix[0][2] *
b >> 12;
717 y =
c->rgb2xyz_matrix[1][0] *
r +
718 c->rgb2xyz_matrix[1][1] *
g +
719 c->rgb2xyz_matrix[1][2] *
b >> 12;
720 z =
c->rgb2xyz_matrix[2][0] *
r +
721 c->rgb2xyz_matrix[2][1] *
g +
722 c->rgb2xyz_matrix[2][2] *
b >> 12;
731 AV_WB16(dst + xp + 0,
c->xyzgammainv[x] << 4);
732 AV_WB16(dst + xp + 1,
c->xyzgammainv[y] << 4);
733 AV_WB16(dst + xp + 2,
c->xyzgammainv[z] << 4);
735 AV_WL16(dst + xp + 0,
c->xyzgammainv[x] << 4);
736 AV_WL16(dst + xp + 1,
c->xyzgammainv[y] << 4);
737 AV_WL16(dst + xp + 2,
c->xyzgammainv[z] << 4);
747 for (
int i = 0;
i < 256;
i++) {
748 int r,
g,
b, y,
u, v,
a = 0xff;
751 a = (p >> 24) & 0xFF;
752 r = (p >> 16) & 0xFF;
757 g = ((
i >> 2) & 7) * 36;
761 g = ((
i >> 3) & 7) * 36;
764 r = (
i >> 3 ) * 255;
765 g = ((
i >> 1) & 3) * 85;
771 b = (
i >> 3 ) * 255;
772 g = ((
i >> 1) & 3) * 85;
775 #define RGB2YUV_SHIFT 15
776 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
777 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
778 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
779 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
780 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
781 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
782 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
783 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
784 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
789 c->pal_yuv[
i]= y + (
u<<8) + (v<<16) + ((unsigned)
a<<24);
791 switch (
c->dstFormat) {
796 c->pal_rgb[
i]=
r + (
g<<8) + (
b<<16) + ((unsigned)
a<<24);
802 c->pal_rgb[
i]=
a + (
r<<8) + (
g<<16) + ((unsigned)
b<<24);
808 c->pal_rgb[
i]=
a + (
b<<8) + (
g<<16) + ((unsigned)
r<<24);
815 c->pal_rgb[
i]=
b + (
g<<8) + (
r<<16) + ((unsigned)
a<<24);
821 const uint8_t *
const srcSlice[],
const int srcStride[],
823 uint8_t *
const dstSlice[],
const int dstStride[],
824 int dstSliceY,
int dstSliceH);
827 const uint8_t *
const srcSlice[],
const int srcStride[],
829 uint8_t *
const dstSlice[],
const int dstStride[],
830 int dstSliceY,
int dstSliceH)
833 srcSlice, srcStride, srcSliceY,
srcSliceH,
834 c->cascaded_tmp,
c->cascaded_tmpStride, 0,
c->srcH);
839 if (
c->cascaded_context[2])
842 c->cascaded1_tmp,
c->cascaded1_tmpStride, 0,
c->dstH);
846 dstSlice, dstStride, dstSliceY, dstSliceH);
851 if (
c->cascaded_context[2]) {
853 c->cascaded1_tmpStride,
c->cascaded_context[1]->dstY -
ret,
854 c->cascaded_context[1]->dstY,
855 dstSlice, dstStride, dstSliceY, dstSliceH);
861 const uint8_t *
const srcSlice[],
const int srcStride[],
863 uint8_t *
const dstSlice[],
const int dstStride[],
864 int dstSliceY,
int dstSliceH)
867 srcSlice, srcStride, srcSliceY,
srcSliceH,
868 c->cascaded_tmp,
c->cascaded_tmpStride,
869 0,
c->cascaded_context[0]->dstH);
873 (
const uint8_t *
const * )
c->cascaded_tmp,
c->cascaded_tmpStride,
874 0,
c->cascaded_context[0]->dstH,
875 dstSlice, dstStride, dstSliceY, dstSliceH);
880 const uint8_t *
const srcSlice[],
const int srcStride[],
882 uint8_t *
const dstSlice[],
const int dstStride[],
883 int dstSliceY,
int dstSliceH)
885 const int scale_dst = dstSliceY > 0 || dstSliceH <
c->dstH;
888 const uint8_t *
src2[4];
890 int macro_height_src =
isBayer(
c->srcFormat) ? 2 : (1 <<
c->chrSrcVSubSample);
891 int macro_height_dst =
isBayer(
c->dstFormat) ? 2 : (1 <<
c->chrDstVSubSample);
895 int srcSliceY_internal = srcSliceY;
897 if (!srcStride || !dstStride || !dstSlice || !srcSlice) {
898 av_log(
c,
AV_LOG_ERROR,
"One of the input parameters to sws_scale() is NULL, please check the calling code\n");
902 if ((srcSliceY & (macro_height_src - 1)) ||
909 if ((dstSliceY & (macro_height_dst - 1)) ||
910 ((dstSliceH & (macro_height_dst - 1)) && dstSliceY + dstSliceH !=
c->dstH) ||
911 dstSliceY + dstSliceH >
c->dstH) {
929 if (
c->gamma_flag &&
c->cascaded_context[0])
931 dstSlice, dstStride, dstSliceY, dstSliceH);
933 if (
c->cascaded_context[0] && srcSliceY == 0 &&
srcSliceH ==
c->cascaded_context[0]->srcH)
935 dstSlice, dstStride, dstSliceY, dstSliceH);
938 for (
i = 0;
i < 4;
i++)
939 memset(
c->dither_error[
i], 0,
sizeof(
c->dither_error[0][0]) * (
c->dstW+2));
944 memcpy(
src2, srcSlice,
sizeof(
src2));
945 memcpy(dst2, dstSlice,
sizeof(dst2));
946 memcpy(srcStride2, srcStride,
sizeof(srcStride2));
947 memcpy(dstStride2, dstStride,
sizeof(dstStride2));
950 if (srcSliceY != 0 && srcSliceY +
srcSliceH !=
c->srcH) {
955 c->sliceDir = (srcSliceY == 0) ? 1 : -1;
956 }
else if (scale_dst)
959 if (
c->src0Alpha && !
c->dst0Alpha &&
isALPHA(
c->dstFormat)) {
965 if (!
c->rgb0_scratch)
968 base = srcStride[0] < 0 ?
c->rgb0_scratch - srcStride[0] * (
srcSliceH-1) :
971 memcpy(
base + srcStride[0]*y,
src2[0] + srcStride[0]*y, 4*
c->srcW);
972 for (x=
c->src0Alpha-1; x<4*c->srcW; x+=4) {
973 base[ srcStride[0]*y + x] = 0xFF;
979 if (
c->srcXYZ && !(
c->dstXYZ &&
c->srcW==
c->dstW &&
c->srcH==
c->dstH)) {
987 base = srcStride[0] < 0 ?
c->xyz_scratch - srcStride[0] * (
srcSliceH-1) :
994 if (
c->sliceDir != 1) {
996 for (
i=0;
i<4;
i++) {
1003 src2[1] += ((
srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[1];
1004 src2[2] += ((
srcSliceH >>
c->chrSrcVSubSample) - 1) * srcStride[2];
1006 dst2[0] += (
c->dstH - 1) * dstStride[0];
1007 dst2[1] += ((
c->dstH >>
c->chrDstVSubSample) - 1) * dstStride[1];
1008 dst2[2] += ((
c->dstH >>
c->chrDstVSubSample) - 1) * dstStride[2];
1009 dst2[3] += (
c->dstH - 1) * dstStride[3];
1011 srcSliceY_internal =
c->srcH-srcSliceY-
srcSliceH;
1016 if (
c->convert_unscaled) {
1017 int offset = srcSliceY_internal;
1023 for (
i = 0;
i < 4 &&
src2[
i];
i++) {
1026 src2[
i] += (dstSliceY >> ((
i == 1 ||
i == 2) ?
c->chrSrcVSubSample : 0)) * srcStride2[
i];
1029 for (
i = 0;
i < 4 && dst2[
i];
i++) {
1030 if (!dst2[
i] || (
i > 0 &&
usePal(
c->dstFormat)))
1032 dst2[
i] -= (dstSliceY >> ((
i == 1 ||
i == 2) ?
c->chrDstVSubSample : 0)) * dstStride2[
i];
1035 slice_h = dstSliceH;
1041 dst2[0] += dstSliceY * dstStride2[0];
1044 dst2, dstStride2, dstSliceY, dstSliceH);
1047 if (
c->dstXYZ && !(
c->srcXYZ &&
c->srcW==
c->dstW &&
c->srcH==
c->dstH)) {
1051 dst16 = (uint16_t *)dst2[0];
1053 int dstY =
c->dstY ?
c->dstY : srcSliceY +
srcSliceH;
1058 dst16 = (uint16_t*)(dst2[0] + (dstY -
ret) * dstStride2[0]);
1066 if ((srcSliceY_internal +
srcSliceH ==
c->srcH) || scale_dst)
1076 c->src_ranges.nb_ranges = 0;
1081 int ret, allocated = 0;
1110 unsigned int slice_height)
1124 return c->slice_ctx[0]->dst_slice_align;
1126 return c->dst_slice_align;
1130 unsigned int slice_height)
1136 if (!(
c->src_ranges.nb_ranges == 1 &&
1137 c->src_ranges.ranges[0].start == 0 &&
1138 c->src_ranges.ranges[0].len ==
c->srcH))
1141 if ((slice_start > 0 || slice_height < c->dstH) &&
1142 (slice_start % align || slice_height % align)) {
1144 "Incorrectly aligned output: %u/%u not multiples of %u\n",
1145 slice_start, slice_height, align);
1149 if (
c->slicethread) {
1150 int nb_jobs =
c->slice_ctx[0]->dither ==
SWS_DITHER_ED ? 1 :
c->nb_slice_ctx;
1153 c->dst_slice_start = slice_start;
1154 c->dst_slice_height = slice_height;
1158 for (
int i = 0;
i <
c->nb_slice_ctx;
i++) {
1159 if (
c->slice_err[
i] < 0) {
1160 ret =
c->slice_err[
i];
1165 memset(
c->slice_err, 0,
c->nb_slice_ctx *
sizeof(*
c->slice_err));
1171 ptrdiff_t
offset =
c->frame_dst->linesize[
i] * (slice_start >>
c->chrDstVSubSample);
1176 c->frame_src->linesize, 0,
c->srcH,
1177 dst,
c->frame_dst->linesize, slice_start, slice_height);
1202 const uint8_t *
const srcSlice[],
1203 const int srcStride[],
int srcSliceY,
1205 const int dstStride[])
1207 if (
c->nb_slice_ctx)
1208 c =
c->slice_ctx[0];
1211 dst, dstStride, 0,
c->dstH);
1215 int nb_jobs,
int nb_threads)
1221 c->dst_slice_align);
1222 const int slice_start = jobnr * slice_height;
1227 uint8_t *dst[4] = {
NULL };
1230 const int vshift = (
i == 1 ||
i == 2) ?
c->chrDstVSubSample : 0;
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
void(* yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2], const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc[2], uint8_t *dest, int dstW, int yalpha, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing bilinear scalin...
void(* yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output without any additional vertical scaling (...
#define AV_LOG_WARNING
Something somehow does not look correct.
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
void(* yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc, const int16_t *chrUSrc[2], const int16_t *chrVSrc[2], const int16_t *alpSrc, uint8_t *dest, int dstW, int uvalpha, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output without any additional v...
AVPixelFormat
Pixel format.
int sliceH
number of lines
static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static av_always_inline int isPacked(enum AVPixelFormat pix_fmt)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
#define u(width, name, range_min, range_max)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
void ff_hyscale_fast_c(SwsContext *c, int16_t *dst, int dstWidth, const uint8_t *src, int srcW, int xInc)
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
SwsPlane plane[MAX_SLICE_PLANES]
color planes
void avpriv_slicethread_execute(AVSliceThread *ctx, int nb_jobs, int execute_main)
Execute slice threading.
This structure describes decoded (raw) audio or video data.
static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
void ff_sws_init_input_funcs(SwsContext *c)
Struct which holds all necessary data for processing a slice.
static void FUNC() yuv2planeX(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
@ AV_PIX_FMT_MONOWHITE
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb.
#define AV_PIX_FMT_RGB32_1
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
int attribute_align_arg sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dst[], const int dstStride[])
swscale wrapper, so we don't need to export the SwsContext.
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
#define DEBUG_BUFFERS(...)
static int scale_internal(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
static atomic_int cpu_flags
int sws_send_slice(struct SwsContext *c, unsigned int slice_start, unsigned int slice_height)
Indicate that a horizontal slice of input data is available in the source frame previously provided t...
static int scale_cascaded(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int sws_receive_slice(struct SwsContext *c, unsigned int slice_start, unsigned int slice_height)
Request a horizontal slice of the output data to be written into the frame previously provided to sws...
#define SWS_FAST_BILINEAR
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_init_swscale_aarch64(SwsContext *c)
void(* yuv2anyX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t **dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to YUV/RGB output by doing multi-point vertical scaling...
static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW, const uint8_t *src, const int16_t *filter, const int32_t *filterPos, int filterSize)
static double val(void *priv, double ch)
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_BGR8
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
static int frame_start(MpegEncContext *s)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static av_cold void sws_init_swscale(SwsContext *c)
int sws_frame_start(struct SwsContext *c, AVFrame *dst, const AVFrame *src)
Initialize the scaling process for a given pair of source/destination frames.
#define AV_CEIL_RSHIFT(a, b)
av_cold void ff_sws_init_swscale_arm(SwsContext *c)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
int width
Slice line width.
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
static int scale_gamma(SwsContext *c, const uint8_t *const srcSlice[], const int srcStride[], int srcSliceY, int srcSliceH, uint8_t *const dstSlice[], const int dstStride[], int dstSliceY, int dstSliceH)
static void lumRangeFromJpeg_c(int16_t *dst, int width)
static enum AVPixelFormat pix_fmt
void ff_init_vscale_pfn(SwsContext *c, yuv2planar1_fn yuv2plane1, yuv2planarX_fn yuv2planeX, yuv2interleavedX_fn yuv2nv12cX, yuv2packed1_fn yuv2packed1, yuv2packed2_fn yuv2packed2, yuv2packedX_fn yuv2packedX, yuv2anyX_fn yuv2anyX, int use_mmx)
setup vertical scaler functions
#define AV_PIX_FMT_BGR32_1
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
av_cold void ff_sws_init_range_convert(SwsContext *c)
@ AV_PIX_FMT_GRAY8A
alias for AV_PIX_FMT_YA8
static av_always_inline void fillPlane(uint8_t *plane, int stride, int width, int height, int y, uint8_t val)
int available_lines
max number of lines that can be hold by this plane
av_cold void ff_sws_init_swscale_x86(SwsContext *c)
@ AV_PIX_FMT_MONOBLACK
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb.
#define FF_PTR_ADD(ptr, off)
@ AV_PIX_FMT_RGB8
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
@ AV_PIX_FMT_BGR4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
int ff_range_add(RangeList *r, unsigned int start, unsigned int len)
static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
#define AV_CPU_FLAG_SSE2
PIV SSE2 functions.
void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads)
static av_always_inline int isBE(enum AVPixelFormat pix_fmt)
static void update_palette(SwsContext *c, const uint32_t *pal)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
void ff_sws_init_scale(SwsContext *c)
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static void fillPlane16(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian)
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW, const uint8_t *_src, const int16_t *filter, const int32_t *filterPos, int filterSize)
struct SwsContext ** slice_ctx
static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
static av_always_inline int is32BPS(enum AVPixelFormat pix_fmt)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
void ff_hcscale_fast_c(SwsContext *c, int16_t *dst1, int16_t *dst2, int dstWidth, const uint8_t *src1, const uint8_t *src2, int srcW, int xInc)
static void fillPlane32(uint8_t *plane, int stride, int width, int height, int y, int alpha, int bits, const int big_endian, int is_float)
#define DECLARE_ALIGNED(n, t, v)
int sws_scale_frame(struct SwsContext *c, AVFrame *dst, const AVFrame *src)
Scale source data from src and write the output to dst.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
#define i(width, name, range_min, range_max)
unsigned int sws_receive_slice_alignment(const struct SwsContext *c)
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
static int check_image_pointers(const uint8_t *const data[4], enum AVPixelFormat pix_fmt, const int linesizes[4])
void(* yuv2interleavedX_fn)(enum AVPixelFormat dstFormat, const uint8_t *chrDither, const int16_t *chrFilter, int chrFilterSize, const int16_t **chrUSrc, const int16_t **chrVSrc, uint8_t *dest, int dstW)
Write one line of horizontally scaled chroma to interleaved output with multi-point vertical scaling ...
#define AV_PIX_FMT_FLAG_BE
Pixel format is big-endian.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
@ AV_PIX_FMT_RGB4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
int ff_init_slice_from_src(SwsSlice *s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
av_cold void ff_sws_init_output_funcs(SwsContext *c, yuv2planar1_fn *yuv2plane1, yuv2planarX_fn *yuv2planeX, yuv2interleavedX_fn *yuv2nv12cX, yuv2packed1_fn *yuv2packed1, yuv2packed2_fn *yuv2packed2, yuv2packedX_fn *yuv2packedX, yuv2anyX_fn *yuv2anyX)
__asm__(".macro parse_r var r\n\t" "\\var = -1\n\t" _IFC_REG(0) _IFC_REG(1) _IFC_REG(2) _IFC_REG(3) _IFC_REG(4) _IFC_REG(5) _IFC_REG(6) _IFC_REG(7) _IFC_REG(8) _IFC_REG(9) _IFC_REG(10) _IFC_REG(11) _IFC_REG(12) _IFC_REG(13) _IFC_REG(14) _IFC_REG(15) _IFC_REG(16) _IFC_REG(17) _IFC_REG(18) _IFC_REG(19) _IFC_REG(20) _IFC_REG(21) _IFC_REG(22) _IFC_REG(23) _IFC_REG(24) _IFC_REG(25) _IFC_REG(26) _IFC_REG(27) _IFC_REG(28) _IFC_REG(29) _IFC_REG(30) _IFC_REG(31) ".iflt \\var\n\t" ".error \"Unable to parse register name \\r\"\n\t" ".endif\n\t" ".endm")
static const uint8_t sws_pb_64[8]
void sws_frame_end(struct SwsContext *c)
Finish the scaling process for a pair of source/destination frames previously submitted with sws_fram...
av_cold void ff_sws_init_swscale_ppc(SwsContext *c)
void(* yuv2planarX_fn)(const int16_t *filter, int filterSize, const int16_t **src, uint8_t *dest, int dstW, const uint8_t *dither, int offset)
Write one line of horizontally scaled data to planar output with multi-point vertical scaling between...
static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
void(* yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter, const int16_t **lumSrc, int lumFilterSize, const int16_t *chrFilter, const int16_t **chrUSrc, const int16_t **chrVSrc, int chrFilterSize, const int16_t **alpSrc, uint8_t *dest, int dstW, int y)
Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB output by doing multi-point ver...
#define atomic_exchange_explicit(object, desired, order)
static int swscale(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[], int dstSliceY, int dstSliceH)
const uint8_t ff_dither_8x8_128[9][8]
#define AV_CPU_FLAG_MMXEXT
SSE integer functions or AMD MMX ext.
static void lumRangeToJpeg_c(int16_t *dst, int width)
static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
static void lumRangeToJpeg16_c(int16_t *_dst, int width)
int sliceY
index of first line
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
void ff_updateMMXDitherTables(SwsContext *c, int dstY)
static av_always_inline int isPlanar(enum AVPixelFormat pix_fmt)
static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst, const uint16_t *src, int stride, int h)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16