Go to the documentation of this file.
21 #include "config_components.h"
36 #define MAX_THREADS 16
78 int w,
int h,
int n,
int plane,
float scale);
84 #define OFFSET(x) offsetof(ConvolveContext, x)
85 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
90 {
"first",
"process only first impulse, ignore rest", 0,
AV_OPT_TYPE_CONST, {.i64=0}, 0, 0,
FLAGS,
"impulse" },
125 s->planewidth[0] =
s->planewidth[3] =
w;
127 s->planeheight[0] =
s->planeheight[3] =
h;
129 s->nb_planes =
desc->nb_components;
130 s->depth =
desc->comp[0].depth;
132 for (
int i = 0;
i <
s->nb_planes;
i++) {
133 int w =
s->planewidth[
i];
134 int h =
s->planeheight[
i];
137 s->fft_len[
i] = 1 << (
av_log2(2 * n - 1));
171 if (
ctx->inputs[0]->w !=
ctx->inputs[1]->w ||
172 ctx->inputs[0]->h !=
ctx->inputs[1]->h) {
192 const int plane =
td->plane;
194 int start = (n * jobnr) / nb_jobs;
195 int end = (n * (jobnr+1)) / nb_jobs;
198 for (y = start; y < end; y++) {
199 s->tx_fn[plane](
s->fft[plane][jobnr], hdata_out + y * n, hdata_in + y * n,
sizeof(
float));
205 #define SQR(x) ((x) * (x))
210 int n,
int plane,
float scale)
217 for (y = 0; y <
h; y++) {
220 for (x = 0; x <
w; x++)
226 for (y = 0; y <
h; y++) {
229 for (x = 0; x <
w; x++)
235 for (y = 0; y <
h; y++) {
238 for (x = 0; x <
w; x++) {
240 fft_hdata[y * n + x].
im = 0;
243 for (x =
w; x < n; x++) {
244 fft_hdata[y * n + x].
re = 0;
245 fft_hdata[y * n + x].
im = 0;
249 for (y =
h; y < n; y++) {
250 for (x = 0; x < n; x++) {
251 fft_hdata[y * n + x].
re = 0;
252 fft_hdata[y * n + x].
im = 0;
256 for (y = 0; y <
h; y++) {
257 const uint16_t *
src = (
const uint16_t *)(in->
data[plane] + in->
linesize[plane] * y);
259 for (x = 0; x <
w; x++)
265 for (y = 0; y <
h; y++) {
266 const uint16_t *
src = (
const uint16_t *)(in->
data[plane] + in->
linesize[plane] * y);
268 for (x = 0; x <
w; x++)
274 for (y = 0; y <
h; y++) {
275 const uint16_t *
src = (
const uint16_t *)(in->
data[plane] + in->
linesize[plane] * y);
277 for (x = 0; x <
w; x++) {
279 fft_hdata[y * n + x].
im = 0;
282 for (x =
w; x < n; x++) {
283 fft_hdata[y * n + x].
re = 0;
284 fft_hdata[y * n + x].
im = 0;
288 for (y =
h; y < n; y++) {
289 for (x = 0; x < n; x++) {
290 fft_hdata[y * n + x].
re = 0;
291 fft_hdata[y * n + x].
im = 0;
300 const int iw = (n -
w) / 2, ih = (n -
h) / 2;
304 for (y = 0; y <
h; y++) {
307 for (x = 0; x <
w; x++) {
308 fft_hdata[(y + ih) * n + iw + x].
re =
src[x] *
scale;
309 fft_hdata[(y + ih) * n + iw + x].
im = 0;
312 for (x = 0; x < iw; x++) {
313 fft_hdata[(y + ih) * n + x].
re = fft_hdata[(y + ih) * n + iw].
re;
314 fft_hdata[(y + ih) * n + x].
im = 0;
317 for (x = n - iw; x < n; x++) {
318 fft_hdata[(y + ih) * n + x].
re = fft_hdata[(y + ih) * n + n - iw - 1].
re;
319 fft_hdata[(y + ih) * n + x].
im = 0;
323 for (y = 0; y < ih; y++) {
324 for (x = 0; x < n; x++) {
325 fft_hdata[y * n + x].
re = fft_hdata[ih * n + x].
re;
326 fft_hdata[y * n + x].
im = 0;
330 for (y = n - ih; y < n; y++) {
331 for (x = 0; x < n; x++) {
332 fft_hdata[y * n + x].
re = fft_hdata[(n - ih - 1) * n + x].
re;
333 fft_hdata[y * n + x].
im = 0;
337 for (y = 0; y <
h; y++) {
338 const uint16_t *
src = (
const uint16_t *)(in->
data[plane] + in->
linesize[plane] * y);
340 for (x = 0; x <
w; x++) {
341 fft_hdata[(y + ih) * n + iw + x].
re =
src[x] *
scale;
342 fft_hdata[(y + ih) * n + iw + x].
im = 0;
345 for (x = 0; x < iw; x++) {
346 fft_hdata[(y + ih) * n + x].
re = fft_hdata[(y + ih) * n + iw].
re;
347 fft_hdata[(y + ih) * n + x].
im = 0;
350 for (x = n - iw; x < n; x++) {
351 fft_hdata[(y + ih) * n + x].
re = fft_hdata[(y + ih) * n + n - iw - 1].
re;
352 fft_hdata[(y + ih) * n + x].
im = 0;
356 for (y = 0; y < ih; y++) {
357 for (x = 0; x < n; x++) {
358 fft_hdata[y * n + x].
re = fft_hdata[ih * n + x].
re;
359 fft_hdata[y * n + x].
im = 0;
363 for (y = n - ih; y < n; y++) {
364 for (x = 0; x < n; x++) {
365 fft_hdata[y * n + x].
re = fft_hdata[(n - ih - 1) * n + x].
re;
366 fft_hdata[y * n + x].
im = 0;
379 const int plane =
td->plane;
381 int start = (n * jobnr) / nb_jobs;
382 int end = (n * (jobnr+1)) / nb_jobs;
385 for (y = start; y < end; y++) {
386 for (x = 0; x < n; x++) {
387 vdata_in[y * n + x].
re = hdata[x * n + y].
re;
388 vdata_in[y * n + x].
im = hdata[x * n + y].
im;
391 s->tx_fn[plane](
s->fft[plane][jobnr], vdata_out + y * n, vdata_in + y * n,
sizeof(
float));
404 const int plane =
td->plane;
406 int start = (n * jobnr) / nb_jobs;
407 int end = (n * (jobnr+1)) / nb_jobs;
410 for (y = start; y < end; y++) {
411 s->itx_fn[plane](
s->ifft[plane][jobnr], vdata_out + y * n, vdata_in + y * n,
sizeof(
float));
413 for (x = 0; x < n; x++) {
414 hdata[x * n + y].
re = vdata_out[y * n + x].
re;
415 hdata[x * n + y].
im = vdata_out[y * n + x].
im;
428 const int plane =
td->plane;
430 int start = (n * jobnr) / nb_jobs;
431 int end = (n * (jobnr+1)) / nb_jobs;
434 for (y = start; y < end; y++) {
435 s->itx_fn[plane](
s->ifft[plane][jobnr], hdata_out + y * n, hdata_in + y * n,
sizeof(
float));
442 int w,
int h,
int n,
int plane,
float scale)
444 const int imax = (1 <<
s->depth) - 1;
448 for (
int y = 0; y <
h; y++) {
449 uint8_t *dst =
out->data[plane] + y *
out->linesize[plane];
450 for (
int x = 0; x <
w; x++)
454 for (
int y = 0; y <
h; y++) {
455 uint16_t *dst = (uint16_t *)(
out->data[plane] + y *
out->linesize[plane]);
456 for (
int x = 0; x <
w; x++)
463 int w,
int h,
int n,
int plane,
float scale)
465 const int max = (1 <<
s->depth) - 1;
466 const int hh =
h / 2;
467 const int hw =
w / 2;
471 for (y = 0; y < hh; y++) {
472 uint8_t *dst =
out->data[plane] + (y + hh) *
out->linesize[plane] + hw;
473 for (x = 0; x < hw; x++)
476 for (y = 0; y < hh; y++) {
477 uint8_t *dst =
out->data[plane] + (y + hh) *
out->linesize[plane];
478 for (x = 0; x < hw; x++)
481 for (y = 0; y < hh; y++) {
482 uint8_t *dst =
out->data[plane] + y *
out->linesize[plane] + hw;
483 for (x = 0; x < hw; x++)
486 for (y = 0; y < hh; y++) {
487 uint8_t *dst =
out->data[plane] + y *
out->linesize[plane];
488 for (x = 0; x < hw; x++)
492 for (y = 0; y < hh; y++) {
493 uint16_t *dst = (uint16_t *)(
out->data[plane] + (y + hh) *
out->linesize[plane] + hw * 2);
494 for (x = 0; x < hw; x++)
497 for (y = 0; y < hh; y++) {
498 uint16_t *dst = (uint16_t *)(
out->data[plane] + (y + hh) *
out->linesize[plane]);
499 for (x = 0; x < hw; x++)
502 for (y = 0; y < hh; y++) {
503 uint16_t *dst = (uint16_t *)(
out->data[plane] + y *
out->linesize[plane] + hw * 2);
504 for (x = 0; x < hw; x++)
507 for (y = 0; y < hh; y++) {
508 uint16_t *dst = (uint16_t *)(
out->data[plane] + y *
out->linesize[plane]);
509 for (x = 0; x < hw; x++)
521 const float noise =
s->noise;
523 int start = (n * jobnr) / nb_jobs;
524 int end = (n * (jobnr+1)) / nb_jobs;
527 for (y = start; y < end; y++) {
530 for (x = 0; x < n; x++) {
531 float re,
im, ire, iim;
552 const float scale = 1.f / (n * n);
553 int start = (n * jobnr) / nb_jobs;
554 int end = (n * (jobnr+1)) / nb_jobs;
556 for (
int y = start; y < end; y++) {
559 for (
int x = 0; x < n; x++) {
560 float re,
im, ire, iim;
581 const float noise =
s->noise;
583 int start = (n * jobnr) / nb_jobs;
584 int end = (n * (jobnr+1)) / nb_jobs;
587 for (y = start; y < end; y++) {
590 for (x = 0; x < n; x++) {
591 float re,
im, ire, iim, div;
597 div = ire * ire + iim * iim +
noise;
599 input[yn + x].re = (ire *
re + iim *
im) / div;
600 input[yn + x].im = (ire *
im - iim *
re) / div;
610 const int n =
s->fft_len[plane];
611 const int w =
s->secondarywidth[plane];
612 const int h =
s->secondaryheight[plane];
617 for (
int y = 0; y <
h; y++) {
618 const uint8_t *
src = (
const uint8_t *)(impulsepic->
data[plane] + y * impulsepic->
linesize[plane]) ;
619 for (
int x = 0; x <
w; x++) {
624 for (
int y = 0; y <
h; y++) {
625 const uint16_t *
src = (
const uint16_t *)(impulsepic->
data[plane] + y * impulsepic->
linesize[plane]) ;
626 for (
int x = 0; x <
w; x++) {
631 total =
FFMAX(1, total);
633 s->get_input(
s,
s->fft_hdata_impulse_in[plane], impulsepic,
w,
h, n, plane, 1.f / total);
637 td.hdata_in =
s->fft_hdata_impulse_in[plane];
638 td.vdata_in =
s->fft_vdata_impulse_in[plane];
639 td.hdata_out =
s->fft_hdata_impulse_out[plane];
640 td.vdata_out =
s->fft_vdata_impulse_out[plane];
647 s->got_impulse[plane] = 1;
653 const int n =
s->fft_len[plane];
656 s->get_input(
s,
s->fft_hdata_impulse_in[plane], secondary,
657 s->secondarywidth[plane],
658 s->secondaryheight[plane],
663 td.hdata_in =
s->fft_hdata_impulse_in[plane];
664 td.vdata_in =
s->fft_vdata_impulse_in[plane];
665 td.hdata_out =
s->fft_hdata_impulse_out[plane];
666 td.vdata_out =
s->fft_vdata_impulse_out[plane];
673 s->got_impulse[plane] = 1;
690 for (plane = 0; plane <
s->nb_planes; plane++) {
693 const int n =
s->fft_len[plane];
694 const int w =
s->primarywidth[plane];
695 const int h =
s->primaryheight[plane];
696 const int ow =
s->planewidth[plane];
697 const int oh =
s->planeheight[plane];
700 if (!(
s->planes & (1 << plane))) {
704 td.plane = plane,
td.n = n;
705 s->get_input(
s,
s->fft_hdata_in[plane], mainpic,
w,
h, n, plane, 1.f);
707 td.hdata_in =
s->fft_hdata_in[plane];
708 td.vdata_in =
s->fft_vdata_in[plane];
709 td.hdata_out =
s->fft_hdata_out[plane];
710 td.vdata_out =
s->fft_vdata_out[plane];
717 if ((!
s->impulse && !
s->got_impulse[plane]) ||
s->impulse) {
718 s->prepare_impulse(
ctx, impulsepic, plane);
727 td.hdata_in =
s->fft_hdata_out[plane];
728 td.vdata_in =
s->fft_vdata_out[plane];
729 td.hdata_out =
s->fft_hdata_in[plane];
730 td.vdata_out =
s->fft_vdata_in[plane];
735 td.hdata_out =
s->fft_hdata_out[plane];
736 td.hdata_in =
s->fft_hdata_in[plane];
741 s->get_output(
s,
s->fft_hdata_out[plane], mainpic, ow, oh, n, plane, 1.f / (n * n));
757 s->primarywidth[0] =
s->primarywidth[3] = mainlink->
w;
759 s->primaryheight[0] =
s->primaryheight[3] = mainlink->
h;
762 s->secondarywidth[0] =
s->secondarywidth[3] = secondlink->
w;
764 s->secondaryheight[0] =
s->secondaryheight[3] = secondlink->
h;
770 outlink->
w = mainlink->
w;
771 outlink->
h = mainlink->
h;
779 for (
i = 0;
i <
s->nb_planes;
i++) {
805 if (!strcmp(
ctx->filter->name,
"convolve")) {
810 }
else if (!strcmp(
ctx->filter->name,
"xcorrelate")) {
815 }
else if (!strcmp(
ctx->filter->name,
"deconvolve")) {
832 for (
i = 0;
i < 4;
i++) {
873 #if CONFIG_CONVOLVE_FILTER
880 .preinit = convolve_framesync_preinit,
885 .priv_class = &convolve_class,
894 #if CONFIG_DECONVOLVE_FILTER
896 static const AVOption deconvolve_options[] = {
899 {
"first",
"process only first impulse, ignore rest", 0,
AV_OPT_TYPE_CONST, {.i64=0}, 0, 0,
FLAGS,
"impulse" },
908 .
name =
"deconvolve",
910 .preinit = convolve_framesync_preinit,
915 .priv_class = &deconvolve_class,
924 #if CONFIG_XCORRELATE_FILTER
926 static const AVOption xcorrelate_options[] = {
929 {
"first",
"process only first secondary frame, ignore rest", 0,
AV_OPT_TYPE_CONST, {.i64=0}, 0, 0,
FLAGS,
"impulse" },
940 if (
ctx->inputs[0]->w <=
ctx->inputs[1]->w ||
941 ctx->inputs[0]->h <=
ctx->inputs[1]->h) {
942 av_log(
ctx,
AV_LOG_ERROR,
"Width and height of second input videos must be less than first input.\n");
957 .config_props = config_input_secondary,
970 .
name =
"xcorrelate",
971 .description =
NULL_IF_CONFIG_SMALL(
"Cross-correlate first video stream with second video stream."),
972 .preinit = convolve_framesync_preinit,
977 .priv_class = &xcorrelate_class,
#define AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_GBRAP16
AVComplexFloat * vdata_out
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define FRAMESYNC_AUXILIARY_FUNCS(func_prefix, context, field)
int(* filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
const AVFilter ff_vf_deconvolve
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define FILTER_PIXFMTS_ARRAY(array)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static int complex_divide(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_YUVA422P9
This structure describes decoded (raw) audio or video data.
#define AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUV420P10
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
const char * name
Filter name.
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
AVComplexFloat * hdata_in
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
AVComplexFloat * vdata_in
AVComplexFloat * fft_hdata_out[4]
#define AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUVA444P16
static enum AVPixelFormat pixel_fmts_fftfilt[]
#define AV_PIX_FMT_YUV422P9
static int ifft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static av_always_inline float scale(float x, float s)
#define AV_PIX_FMT_GRAY16
A filter pad used for either input or output.
void(* get_input)(struct ConvolveContext *s, AVComplexFloat *fft_hdata, AVFrame *in, int w, int h, int n, int plane, float scale)
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define AV_PIX_FMT_YUV422P16
void(* av_tx_fn)(AVTXContext *s, void *out, void *in, ptrdiff_t stride)
Function pointer to a function to perform the transform.
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
AVComplexFloat * fft_hdata_in[4]
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
static const AVFilterPad convolve_inputs[]
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0,...
static void get_output(ConvolveContext *s, AVComplexFloat *input, AVFrame *out, int w, int h, int n, int plane, float scale)
@ AV_TX_FLOAT_FFT
Standard complex to complex FFT with sample data type of AVComplexFloat, AVComplexDouble or AVComplex...
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
static void get_zeropadded_input(ConvolveContext *s, AVComplexFloat *fft_hdata, AVFrame *in, int w, int h, int n, int plane, float scale)
#define AV_PIX_FMT_GRAY14
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static int fft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define FILTER_INPUTS(array)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define AV_PIX_FMT_GRAY10
static int config_input(AVFilterLink *inlink)
#define AV_PIX_FMT_GBRP16
Describe the class of an AVClass context structure.
#define fs(width, name, subs,...)
AVTXContext * ifft[4][MAX_THREADS]
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
void(* prepare_impulse)(AVFilterContext *ctx, AVFrame *impulsepic, int plane)
static int config_input_impulse(AVFilterLink *inlink)
static void prepare_secondary(AVFilterContext *ctx, AVFrame *secondary, int plane)
static __device__ float sqrtf(float a)
#define AV_PIX_FMT_YUV422P10
AVComplexFloat * fft_hdata_impulse_out[4]
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
AVComplexFloat * fft_vdata_impulse_in[4]
AVTXContext * fft[4][MAX_THREADS]
static const struct @328 planes[]
AVComplexFloat * fft_vdata_out[4]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
void(* get_output)(struct ConvolveContext *s, AVComplexFloat *input, AVFrame *out, int w, int h, int n, int plane, float scale)
int format
agreed upon media format
#define AV_PIX_FMT_YUV422P12
#define FRAMESYNC_DEFINE_PURE_CLASS(name, desc, func_prefix, options)
#define AV_PIX_FMT_YUV444P12
static const AVFilterPad convolve_outputs[]
static int complex_multiply(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
AVFilterContext * src
source filter
static void convolve(float *tgt, const float *src, int len, int n)
static int activate(AVFilterContext *ctx)
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
AVComplexFloat * fft_hdata_impulse_in[4]
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
AVComplexFloat * hdata_out
static av_cold void uninit(AVFilterContext *ctx)
static int do_convolve(FFFrameSync *fs)
static int fft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define i(width, name, range_min, range_max)
static int ifft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
void * av_calloc(size_t nmemb, size_t size)
#define AV_PIX_FMT_YUV444P9
static const AVOption convolve_options[]
static void prepare_impulse(AVFilterContext *ctx, AVFrame *impulsepic, int plane)
#define AV_PIX_FMT_YUVA444P9
static void get_input(ConvolveContext *s, AVComplexFloat *fft_hdata, AVFrame *in, int w, int h, int n, int plane, float scale)
const AVFilter ff_vf_convolve
#define AV_PIX_FMT_YUV420P12
AVComplexFloat * fft_vdata_in[4]
static int complex_xcorrelate(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_YUV422P14
AVComplexFloat * fft_vdata_impulse_out[4]
int h
agreed upon image height
static int noise(AVBSFContext *ctx, AVPacket *pkt)
static void get_xoutput(ConvolveContext *s, AVComplexFloat *input, AVFrame *out, int w, int h, int n, int plane, float scale)
static float mean(const float *input, int size)
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
const AVFilter ff_vf_xcorrelate
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static av_cold int init(AVFilterContext *ctx)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
#define FILTER_OUTPUTS(array)
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV444P14
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
static int config_output(AVFilterLink *outlink)
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
#define AV_PIX_FMT_GRAY12
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14