Go to the documentation of this file.
21 #define BITSTREAM_WRITER_LE
35 #define UPDATE_WEIGHT(weight, delta, source, result) \
36 if ((source) && (result)) { \
37 int32_t s = (int32_t) ((source) ^ (result)) >> 31; \
38 weight = ((delta) ^ s) + ((weight) - s); \
41 #define APPLY_WEIGHT_F(weight, sample) ((((((sample) & 0xffff) * (weight)) >> 9) + \
42 ((((sample) & ~0xffff) >> 9) * (weight)) + 1) >> 1)
44 #define APPLY_WEIGHT_I(weight, sample) (((weight) * (sample) + 512) >> 10)
46 #define APPLY_WEIGHT(weight, sample) ((sample) != (short) (sample) ? \
47 APPLY_WEIGHT_F(weight, sample) : APPLY_WEIGHT_I (weight, sample))
49 #define CLEAR(destin) memset(&destin, 0, sizeof(destin));
52 #define SHIFT_MASK (0x1FU << SHIFT_LSB)
55 #define MAG_MASK (0x1FU << MAG_LSB)
58 #define SRATE_MASK (0xFU << SRATE_LSB)
60 #define EXTRA_TRY_DELTAS 1
61 #define EXTRA_ADJUST_DELTAS 2
62 #define EXTRA_SORT_FIRST 4
63 #define EXTRA_BRANCHES 8
64 #define EXTRA_SORT_LAST 16
160 s->decorr_filter = 3;
179 s->decorr_filter = 2;
182 s->decorr_filter = 1;
185 s->decorr_filter = 0;
193 s->delta_decay = 2.0;
201 for (
i = 0;
i < nb_samples;
i++)
206 int nb_samples,
int shift)
209 for (
i = 0;
i < nb_samples;
i++) {
215 #define FLOAT_SHIFT_ONES 1
216 #define FLOAT_SHIFT_SAME 2
217 #define FLOAT_SHIFT_SENT 4
218 #define FLOAT_ZEROS_SENT 8
219 #define FLOAT_NEG_ZEROS 0x10
220 #define FLOAT_EXCEPTIONS 0x20
222 #define get_mantissa(f) ((f) & 0x7fffff)
223 #define get_exponent(f) (((f) >> 23) & 0xff)
224 #define get_sign(f) (((f) >> 31) & 0x1)
238 shift_count =
s->max_exp ?
s->max_exp - 1 : 0;
242 if (shift_count < 25)
243 value >>= shift_count;
252 }
else if (shift_count) {
271 uint32_t crc = 0xffffffff
u;
274 s->shifted_ones =
s->shifted_zeros =
s->shifted_both =
s->ordata = 0;
275 s->float_shift =
s->float_flags = 0;
276 s->false_zeros =
s->neg_zeros = 0;
280 for (
i = 0;
i < nb_samples;
i++) {
288 for (
i = 0;
i < nb_samples;
i++) {
307 for (
i = 0;
i < nb_samples;
i++)
310 for (
i = 0;
i < nb_samples;
i++) {
316 s->float_max_exp =
s->max_exp;
320 else if (
s->shifted_ones && !
s->shifted_zeros)
322 else if (
s->shifted_ones &&
s->shifted_zeros)
324 else if (
s->ordata && !(
s->ordata & 1)) {
328 }
while (!(
s->ordata & 1));
333 shift_stereo(samples_l, samples_r, nb_samples,
s->float_shift);
343 if (
s->false_zeros ||
s->neg_zeros)
357 uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
358 int i, total_shift = 0;
360 s->int32_sent_bits =
s->int32_zeros =
s->int32_ones =
s->int32_dups = 0;
363 for (
i = 0;
i < nb_samples;
i++) {
366 magdata |= (
M < 0) ? ~
M :
M;
367 xordata |=
M ^ -(
M & 1);
371 if ((ordata & 1) && !(anddata & 1) && (xordata & 2))
375 for (
i = 0;
i < nb_samples;
i++) {
379 magdata |= (
L < 0) ? ~
L :
L;
380 magdata |= (
R < 0) ? ~
R :
R;
381 xordata |=
L ^ -(
L & 1);
382 xordata |=
R ^ -(
R & 1);
386 if ((ordata & 1) && !(anddata & 1) && (xordata & 2))
407 }
while (!(ordata & 1));
408 }
else if (anddata & 1) {
414 }
while (anddata & 1);
415 }
else if (!(xordata & 2)) {
421 }
while (!(xordata & 2));
428 shift_mono(samples_l, nb_samples, total_shift);
430 shift_stereo(samples_l, samples_r, nb_samples, total_shift);
438 uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0;
439 uint32_t crc = 0xffffffff
u;
440 int i, total_shift = 0;
442 s->int32_sent_bits =
s->int32_zeros =
s->int32_ones =
s->int32_dups = 0;
445 for (
i = 0;
i < nb_samples;
i++) {
448 crc = crc * 9 + (
M & 0xffff) * 3 + ((
M >> 16) & 0xffff);
449 magdata |= (
M < 0) ? ~
M :
M;
450 xordata |=
M ^ -(
M & 1);
455 for (
i = 0;
i < nb_samples;
i++) {
459 crc = crc * 9 + (
L & 0xffff) * 3 + ((
L >> 16) & 0xffff);
460 crc = crc * 9 + (
R & 0xffff) * 3 + ((
R >> 16) & 0xffff);
461 magdata |= (
L < 0) ? ~
L :
L;
462 magdata |= (
R < 0) ? ~
R :
R;
463 xordata |=
L ^ -(
L & 1);
464 xordata |=
R ^ -(
R & 1);
489 }
while (!(ordata & 1));
490 else if (anddata & 1)
496 }
while (anddata & 1);
497 else if (!(xordata & 2))
503 }
while (!(xordata & 2));
507 total_shift +=
s->int32_sent_bits;
516 shift_mono(samples_l, nb_samples, total_shift);
518 shift_stereo(samples_l, samples_r, nb_samples, total_shift);
521 return s->int32_sent_bits;
549 int nb_samples,
struct Decorr *dpp,
int dir)
556 out_samples += (nb_samples - 1);
557 in_samples += (nb_samples - 1);
566 while (nb_samples--) {
577 out_samples[0] =
left;
581 }
else if (dpp->
value > 0) {
582 while (nb_samples--) {
593 out_samples[0] =
left;
630 }
else if (dpp->
value > 1) {
633 for (
i = 0, j = dpp->
value - 1, k = 0; k < dpp->
value / 2;
i++, j--, k++) {
643 #define count_bits(av) ((av) ? 32 - ff_clz(av) : 0)
649 if ((v += v >> 9) < (1 << 8)) {
664 while (nb_samples--) {
672 int nb_samples,
int limit)
675 while (nb_samples--) {
684 int nb_samples,
struct Decorr *dpp,
687 struct Decorr dp, *dppi = dpp + tindex;
695 pre_delta =
delta + 1;
699 dp.
delta = pre_delta;
723 int depth,
int delta, uint32_t input_bits)
725 int term, branches =
s->num_branches - depth;
727 uint32_t term_bits[22],
bits;
729 if (branches < 1 || depth + 1 == info->nterms)
734 outsamples =
s->sampleptrs[depth + 1][0];
736 for (term = 1; term <= 18; term++) {
737 if (term == 17 && branches == 1 && depth + 1 <
info->nterms)
740 if (term > 8 && term < 17)
743 if (!
s->extra_flags && (term > 4 && term < 17))
746 info->dps[depth].value = term;
751 if (bits < info->best_bits) {
754 memcpy(
s->decorr_passes,
info->dps,
sizeof(
info->dps[0]) * (depth + 1));
755 memcpy(
s->sampleptrs[
info->nterms + 1][0],
756 s->sampleptrs[depth + 1][0],
s->block_samples * 4);
759 term_bits[term + 3] =
bits;
762 while (depth + 1 <
info->nterms && branches--) {
763 uint32_t local_best_bits = input_bits;
764 int best_term = 0,
i;
766 for (
i = 0;
i < 22;
i++)
767 if (term_bits[
i] && term_bits[
i] < local_best_bits) {
768 local_best_bits = term_bits[
i];
775 term_bits[best_term + 3] = 0;
777 info->dps[depth].value = best_term;
793 memcpy(
info->dps,
s->decorr_passes,
sizeof(
s->decorr_passes));
796 for (ri = 0; ri <
info->nterms &&
s->decorr_passes[ri].value; ri++) {
798 if (ri + 1 >=
info->nterms || !
s->decorr_passes[ri+1].value)
801 if (
s->decorr_passes[ri].value ==
s->decorr_passes[ri+1].value) {
803 s->block_samples,
info->dps, ri);
807 info->dps[ri ] =
s->decorr_passes[ri+1];
808 info->dps[ri+1] =
s->decorr_passes[ri ];
810 for (
i = ri;
i <
info->nterms &&
s->decorr_passes[
i].value;
i++)
812 s->block_samples,
info->dps,
i);
815 if (bits < info->best_bits) {
819 memcpy(
s->decorr_passes,
info->dps,
sizeof(
info->dps[0]) *
i);
820 memcpy(
s->sampleptrs[
info->nterms + 1][0],
s->sampleptrs[
i][0],
821 s->block_samples * 4);
823 info->dps[ri ] =
s->decorr_passes[ri];
824 info->dps[ri+1] =
s->decorr_passes[ri+1];
826 s->block_samples,
info->dps, ri);
837 if (!
s->decorr_passes[0].value)
839 delta =
s->decorr_passes[0].delta;
844 for (
i = 0;
i <
info->nterms &&
s->decorr_passes[
i].value;
i++) {
845 info->dps[
i].value =
s->decorr_passes[
i].value;
848 s->block_samples,
info->dps,
i);
858 memcpy(
s->decorr_passes,
info->dps,
sizeof(
info->dps[0]) *
i);
859 memcpy(
s->sampleptrs[
info->nterms + 1][0],
s->sampleptrs[
i][0],
860 s->block_samples * 4);
863 for (
d =
delta + 1; !lower &&
d <= 7;
d++) {
866 for (
i = 0;
i <
info->nterms &&
s->decorr_passes[
i].value;
i++) {
867 info->dps[
i].value =
s->decorr_passes[
i].value;
870 s->block_samples,
info->dps,
i);
879 memcpy(
s->decorr_passes,
info->dps,
sizeof(
info->dps[0]) *
i);
880 memcpy(
s->sampleptrs[
info->nterms + 1][0],
s->sampleptrs[
i][0],
881 s->block_samples * 4);
889 for (
i = 0;
i < nterms + 2;
i++) {
891 s->block_samples * 4);
892 if (!
s->sampleptrs[
i][0])
896 s->block_samples * 4);
897 if (!
s->sampleptrs[
i][1])
909 for (
i = 0;
i < 2;
i++) {
911 s->block_samples * 4);
912 if (!
s->best_buffer[0])
916 s->block_samples * 4);
917 if (!
s->temp_buffer[
i][0])
921 s->block_samples * 4);
922 if (!
s->best_buffer[1])
926 s->block_samples * 4);
927 if (!
s->temp_buffer[
i][1])
943 info.nterms =
s->num_terms;
948 memcpy(
info.dps,
s->decorr_passes,
sizeof(
info.dps));
949 memcpy(
s->sampleptrs[0][0],
samples,
s->block_samples * 4);
953 s->block_samples,
info.dps +
i, 1);
956 memcpy(
s->sampleptrs[
info.nterms + 1][0],
s->sampleptrs[
i][0],
s->block_samples * 4);
960 log2mono(
s->sampleptrs[0][0],
s->block_samples, 0));
969 s->delta_decay = (
float)((
s->delta_decay * 2.0 +
s->decorr_passes[0].delta) / 3.0);
971 s->delta_decay = 2.0;
978 memcpy(
samples,
s->sampleptrs[
info.nterms + 1][0],
s->block_samples * 4);
980 for (
i = 0;
i <
info.nterms;
i++)
981 if (!
s->decorr_passes[
i].value)
993 while (nb_samples--) {
1020 int no_history,
int do_samples)
1022 struct Decorr temp_decorr_pass, save_decorr_passes[
MAX_TERMS] = {{0}};
1023 int nb_samples =
s->block_samples;
1024 int buf_size =
sizeof(
int32_t) * nb_samples;
1025 uint32_t best_size = UINT32_MAX,
size;
1026 int log_limit, pi,
i,
ret;
1028 for (
i = 0;
i < nb_samples;
i++)
1032 if (
i == nb_samples) {
1040 log_limit =
FFMIN(6912, log_limit);
1045 if (no_history ||
s->num_passes >= 7)
1046 s->best_decorr =
s->mask_decorr = 0;
1048 for (pi = 0; pi <
s->num_passes;) {
1055 if (
s->mask_decorr == 0)
1058 c = (
s->best_decorr & (
s->mask_decorr - 1)) |
s->mask_decorr;
1060 if (
c ==
s->best_decorr) {
1061 s->mask_decorr =
s->mask_decorr ? ((
s->mask_decorr << 1) & (
s->num_decorrs - 1)) : 1;
1066 wpds = &
s->decorr_specs[
c];
1070 memcpy(
s->temp_buffer[0][0],
samples, buf_size);
1071 CLEAR(save_decorr_passes);
1073 for (j = 0; j < nterms; j++) {
1074 CLEAR(temp_decorr_pass);
1078 if (temp_decorr_pass.
value < 0)
1079 temp_decorr_pass.
value = 1;
1081 decorr_mono(
s->temp_buffer[j&1][0],
s->temp_buffer[~j&1][0],
1082 FFMIN(nb_samples, 2048), &temp_decorr_pass, -1);
1090 memcpy(save_decorr_passes + j, &temp_decorr_pass,
sizeof(
struct Decorr));
1091 decorr_mono(
s->temp_buffer[j&1][0],
s->temp_buffer[~j&1][0],
1092 nb_samples, &temp_decorr_pass, 1);
1095 size =
log2mono(
s->temp_buffer[j&1][0], nb_samples, log_limit);
1096 if (
size != UINT32_MAX || !nterms)
1101 if (
size < best_size) {
1102 memcpy(
s->best_buffer[0],
s->temp_buffer[j&1][0], buf_size);
1103 memcpy(
s->decorr_passes, save_decorr_passes,
sizeof(
struct Decorr) *
MAX_TERMS);
1104 s->num_terms = nterms;
1110 s->mask_decorr =
s->mask_decorr ? ((
s->mask_decorr << 1) & (
s->num_decorrs - 1)) : 1;
1115 else if (do_samples)
1116 memcpy(
samples,
s->best_buffer[0], buf_size);
1118 if (no_history ||
s->extra_flags) {
1120 scan_word(
s, &
s->w.c[0],
s->best_buffer[0], nb_samples, -1);
1127 int nb_samples,
struct Decorr *dpp,
int dir)
1134 out_left += nb_samples - 1;
1135 out_right += nb_samples - 1;
1136 in_left += nb_samples - 1;
1137 in_right += nb_samples - 1;
1148 switch (dpp->
value) {
1150 while (nb_samples--) {
1172 while (nb_samples--) {
1194 while (nb_samples--) {
1218 while (nb_samples--) {
1255 while (nb_samples--) {
1274 while (nb_samples--) {
1293 while (nb_samples--) {
1323 if (dpp->
value & 1) {
1336 if (dpp->
value & 1) {
1346 }
else if (dpp->
value > 1) {
1349 for (
i = 0, j = dpp->
value - 1, k = 0; k < dpp->
value / 2;
i++, j--, k++) {
1364 int nb_samples,
struct Decorr *dpp)
1376 switch (dpp->
value) {
1378 for (
i = 0;
i < nb_samples;
i++) {
1393 for (
i = 0;
i < nb_samples;
i++) {
1408 for (
i = 0;
i < nb_samples;
i++) {
1425 for (
i = 0;
i < nb_samples;
i++) {
1456 for (
i = 0;
i < nb_samples;
i++) {
1468 for (
i = 0;
i < nb_samples;
i++) {
1480 for (
i = 0;
i < nb_samples;
i++) {
1501 int nb_samples,
int tindex)
1503 struct Decorr dp = {0}, *dppi =
info->dps + tindex;
1504 int delta = dppi->delta, pre_delta;
1505 int term = dppi->value;
1512 pre_delta =
delta + 1;
1515 dp.
delta = pre_delta;
1517 FFMIN(2048, nb_samples), &dp, -1);
1534 decorr_stereo(in_left, in_right, out_left, out_right, nb_samples, &dp, 1);
1538 dppi->weightA = dp.
weightA = dp.
sumA / nb_samples;
1539 dppi->weightB = dp.
weightB = dp.
sumB / nb_samples;
1544 nb_samples, &dp, 1);
1558 memcpy(
info->dps,
s->decorr_passes,
sizeof(
s->decorr_passes));
1561 for (ri = 0; ri <
info->nterms &&
s->decorr_passes[ri].value; ri++) {
1563 if (ri + 1 >=
info->nterms || !
s->decorr_passes[ri+1].value)
1566 if (
s->decorr_passes[ri].value ==
s->decorr_passes[ri+1].value) {
1568 s->sampleptrs[ri ][0],
s->sampleptrs[ri ][1],
1569 s->sampleptrs[ri+1][0],
s->sampleptrs[ri+1][1],
1570 s->block_samples, ri);
1574 info->dps[ri ] =
s->decorr_passes[ri+1];
1575 info->dps[ri+1] =
s->decorr_passes[ri ];
1577 for (
i = ri;
i <
info->nterms &&
s->decorr_passes[
i].value;
i++)
1579 s->sampleptrs[
i ][0],
s->sampleptrs[
i ][1],
1580 s->sampleptrs[
i+1][0],
s->sampleptrs[
i+1][1],
1581 s->block_samples,
i);
1584 s->block_samples,
info->log_limit);
1586 if (bits < info->best_bits) {
1590 memcpy(
s->decorr_passes,
info->dps,
sizeof(
info->dps[0]) *
i);
1591 memcpy(
s->sampleptrs[
info->nterms + 1][0],
1592 s->sampleptrs[
i][0],
s->block_samples * 4);
1593 memcpy(
s->sampleptrs[
info->nterms + 1][1],
1594 s->sampleptrs[
i][1],
s->block_samples * 4);
1596 info->dps[ri ] =
s->decorr_passes[ri ];
1597 info->dps[ri+1] =
s->decorr_passes[ri+1];
1599 s->sampleptrs[ri ][0],
s->sampleptrs[ri ][1],
1600 s->sampleptrs[ri+1][0],
s->sampleptrs[ri+1][1],
1601 s->block_samples, ri);
1612 if (!
s->decorr_passes[0].value)
1614 delta =
s->decorr_passes[0].delta;
1617 for (
i = 0;
i <
info->nterms &&
s->decorr_passes[
i].value;
i++) {
1618 info->dps[
i].value =
s->decorr_passes[
i].value;
1621 s->sampleptrs[
i ][0],
s->sampleptrs[
i ][1],
1622 s->sampleptrs[
i+1][0],
s->sampleptrs[
i+1][1],
1623 s->block_samples,
i);
1627 s->block_samples,
info->log_limit);
1633 memcpy(
s->decorr_passes,
info->dps,
sizeof(
info->dps[0]) *
i);
1634 memcpy(
s->sampleptrs[
info->nterms + 1][0],
s->sampleptrs[
i][0],
1635 s->block_samples * 4);
1636 memcpy(
s->sampleptrs[
info->nterms + 1][1],
s->sampleptrs[
i][1],
1637 s->block_samples * 4);
1640 for (
d =
delta + 1; !lower &&
d <= 7;
d++) {
1641 for (
i = 0;
i <
info->nterms &&
s->decorr_passes[
i].value;
i++) {
1642 info->dps[
i].value =
s->decorr_passes[
i].value;
1645 s->sampleptrs[
i ][0],
s->sampleptrs[
i ][1],
1646 s->sampleptrs[
i+1][0],
s->sampleptrs[
i+1][1],
1647 s->block_samples,
i);
1651 s->block_samples,
info->log_limit);
1653 if (bits < info->best_bits) {
1656 memcpy(
s->decorr_passes,
info->dps,
sizeof(
info->dps[0]) *
i);
1657 memcpy(
s->sampleptrs[
info->nterms + 1][0],
1658 s->sampleptrs[
i][0],
s->block_samples * 4);
1659 memcpy(
s->sampleptrs[
info->nterms + 1][1],
1660 s->sampleptrs[
i][1],
s->block_samples * 4);
1668 int depth,
int delta, uint32_t input_bits)
1670 int term, branches =
s->num_branches - depth;
1671 int32_t *in_left, *in_right, *out_left, *out_right;
1672 uint32_t term_bits[22],
bits;
1674 if (branches < 1 || depth + 1 == info->nterms)
1678 in_left =
s->sampleptrs[depth ][0];
1679 in_right =
s->sampleptrs[depth ][1];
1680 out_left =
s->sampleptrs[depth + 1][0];
1681 out_right =
s->sampleptrs[depth + 1][1];
1683 for (term = -3; term <= 18; term++) {
1684 if (!term || (term > 8 && term < 17))
1687 if (term == 17 && branches == 1 && depth + 1 <
info->nterms)
1690 if (term == -1 || term == -2)
1694 if (!
s->extra_flags && (term > 4 && term < 17))
1697 info->dps[depth].value = term;
1700 s->block_samples, depth);
1703 if (bits < info->best_bits) {
1706 memcpy(
s->decorr_passes,
info->dps,
sizeof(
info->dps[0]) * (depth + 1));
1707 memcpy(
s->sampleptrs[
info->nterms + 1][0],
s->sampleptrs[depth + 1][0],
1708 s->block_samples * 4);
1709 memcpy(
s->sampleptrs[
info->nterms + 1][1],
s->sampleptrs[depth + 1][1],
1710 s->block_samples * 4);
1713 term_bits[term + 3] =
bits;
1716 while (depth + 1 <
info->nterms && branches--) {
1717 uint32_t local_best_bits = input_bits;
1718 int best_term = 0,
i;
1720 for (
i = 0;
i < 22;
i++)
1721 if (term_bits[
i] && term_bits[
i] < local_best_bits) {
1722 local_best_bits = term_bits[
i];
1729 term_bits[best_term + 3] = 0;
1731 info->dps[depth].value = best_term;
1734 s->block_samples, depth);
1752 info.nterms =
s->num_terms;
1757 memcpy(
info.dps,
s->decorr_passes,
sizeof(
info.dps));
1758 memcpy(
s->sampleptrs[0][0], in_left,
s->block_samples * 4);
1759 memcpy(
s->sampleptrs[0][1], in_right,
s->block_samples * 4);
1764 s->sampleptrs[
i + 1][0],
s->sampleptrs[
i + 1][1],
1765 s->block_samples,
info.dps +
i, 1);
1768 s->sampleptrs[
i + 1][0],
s->sampleptrs[
i + 1][1],
1769 s->block_samples,
info.dps +
i);
1772 s->block_samples, 0);
1774 memcpy(
s->sampleptrs[
info.nterms + 1][0],
s->sampleptrs[
i][0],
s->block_samples * 4);
1775 memcpy(
s->sampleptrs[
info.nterms + 1][1],
s->sampleptrs[
i][1],
s->block_samples * 4);
1780 s->block_samples, 0));
1789 s->delta_decay = (
float)((
s->delta_decay * 2.0 +
s->decorr_passes[0].delta) / 3.0);
1791 s->delta_decay = 2.0;
1798 memcpy(in_left,
s->sampleptrs[
info.nterms + 1][0],
s->block_samples * 4);
1799 memcpy(in_right,
s->sampleptrs[
info.nterms + 1][1],
s->block_samples * 4);
1802 for (
i = 0;
i <
info.nterms;
i++)
1803 if (!
s->decorr_passes[
i].value)
1811 int no_history,
int do_samples)
1813 struct Decorr temp_decorr_pass, save_decorr_passes[
MAX_TERMS] = {{0}};
1814 int nb_samples =
s->block_samples,
ret;
1815 int buf_size =
sizeof(
int32_t) * nb_samples;
1816 int log_limit, force_js = 0, force_ts = 0, got_js = 0, pi,
i;
1817 uint32_t best_size = UINT32_MAX,
size;
1819 for (
i = 0;
i < nb_samples;
i++)
1820 if (samples_l[
i] || samples_r[
i])
1823 if (
i == nb_samples) {
1832 log_limit =
FFMIN(6912, log_limit);
1834 if (
s->joint != -1) {
1835 force_js =
s->joint;
1836 force_ts = !
s->joint;
1842 if (no_history ||
s->num_passes >= 7)
1843 s->best_decorr =
s->mask_decorr = 0;
1845 for (pi = 0; pi <
s->num_passes;) {
1852 if (
s->mask_decorr == 0)
1855 c = (
s->best_decorr & (
s->mask_decorr - 1)) |
s->mask_decorr;
1857 if (
c ==
s->best_decorr) {
1858 s->mask_decorr =
s->mask_decorr ? ((
s->mask_decorr << 1) & (
s->num_decorrs - 1)) : 1;
1863 wpds = &
s->decorr_specs[
c];
1871 memcpy(
s->js_left, samples_l, buf_size);
1872 memcpy(
s->js_right, samples_r, buf_size);
1874 for (
i = 0;
i < nb_samples;
i++)
1875 s->js_right[
i] += ((
s->js_left[
i] -=
s->js_right[
i]) >> 1);
1879 memcpy(
s->temp_buffer[0][0],
s->js_left, buf_size);
1880 memcpy(
s->temp_buffer[0][1],
s->js_right, buf_size);
1882 memcpy(
s->temp_buffer[0][0], samples_l, buf_size);
1883 memcpy(
s->temp_buffer[0][1], samples_r, buf_size);
1886 CLEAR(save_decorr_passes);
1888 for (j = 0; j < nterms; j++) {
1889 CLEAR(temp_decorr_pass);
1894 temp_decorr_pass.
value = -3;
1897 s->temp_buffer[~j&1][0],
s->temp_buffer[~j&1][1],
1898 FFMIN(2048, nb_samples), &temp_decorr_pass, -1);
1907 memcpy(save_decorr_passes + j, &temp_decorr_pass,
sizeof(
struct Decorr));
1911 s->temp_buffer[~j&1][0],
s->temp_buffer[~j&1][1],
1912 nb_samples, &temp_decorr_pass, 1);
1915 s->temp_buffer[~j&1][0],
s->temp_buffer[~j&1][1],
1916 nb_samples, &temp_decorr_pass);
1920 nb_samples, log_limit);
1921 if (
size != UINT32_MAX || !nterms)
1926 if (
size < best_size) {
1927 memcpy(
s->best_buffer[0],
s->temp_buffer[j&1][0], buf_size);
1928 memcpy(
s->best_buffer[1],
s->temp_buffer[j&1][1], buf_size);
1929 memcpy(
s->decorr_passes, save_decorr_passes,
sizeof(
struct Decorr) *
MAX_TERMS);
1930 s->num_terms = nterms;
1936 s->mask_decorr =
s->mask_decorr ? ((
s->mask_decorr << 1) & (
s->num_decorrs - 1)) : 1;
1939 if (force_js || (
s->decorr_specs[
s->best_decorr].joint_stereo && !force_ts))
1944 if (
s->extra_flags) {
1949 memcpy(samples_l,
s->js_left, buf_size);
1950 memcpy(samples_r,
s->js_right, buf_size);
1954 }
else if (do_samples) {
1955 memcpy(samples_l,
s->best_buffer[0], buf_size);
1956 memcpy(samples_r,
s->best_buffer[1], buf_size);
1959 if (
s->extra_flags || no_history ||
1960 s->joint_stereo !=
s->decorr_specs[
s->best_decorr].joint_stereo) {
1961 s->joint_stereo =
s->decorr_specs[
s->best_decorr].joint_stereo;
1963 scan_word(
s, &
s->w.c[0],
s->best_buffer[0], nb_samples, -1);
1964 scan_word(
s, &
s->w.c[1],
s->best_buffer[1], nb_samples, -1);
1982 put_bits(pb, cbits, (1 << cbits) - 1);
1989 while (
w->zeros_acc > 1) {
1997 if (
w->holding_one) {
1998 if (
w->holding_one >= 16) {
2003 w->holding_one -= 16;
2011 put_bits(pb, cbits, (1 << cbits) - 1);
2018 while (
w->holding_one > 1) {
2020 w->holding_one >>= 1;
2023 w->holding_zero = 0;
2025 put_bits(pb,
w->holding_one, (1 <<
w->holding_one) - 1);
2031 if (
w->holding_zero) {
2033 w->holding_zero = 0;
2036 if (
w->pend_count) {
2038 w->pend_data =
w->pend_count = 0;
2045 uint32_t ones_count, low, high;
2048 if (
s->w.c[0].median[0] < 2 && !
s->w.holding_zero &&
s->w.c[1].median[0] < 2) {
2070 ones_count = low = 0;
2091 low += (ones_count - 2) *
GET_MED(2);
2098 if (
w->holding_zero) {
2105 w->holding_zero = 1;
2108 w->holding_zero = 0;
2110 w->holding_zero = 1;
2112 w->holding_one = ones_count * 2;
2115 uint32_t maxcode = high - low,
code =
sample - low;
2117 uint32_t extras = (1 << bitcount) - maxcode - 1;
2119 if (
code < extras) {
2120 w->pend_data |=
code <<
w->pend_count;
2121 w->pend_count += bitcount - 1;
2123 w->pend_data |= ((
code + extras) >> 1) <<
w->pend_count;
2124 w->pend_count += bitcount - 1;
2125 w->pend_data |= ((
code + extras) & 1) <<
w->pend_count++;
2129 w->pend_data |= ((
int32_t) sign <<
w->pend_count++);
2131 if (!
w->holding_zero)
2139 const int sent_bits =
s->int32_sent_bits;
2143 pre_shift =
s->int32_zeros +
s->int32_ones +
s->int32_dups;
2149 for (
i = 0;
i < nb_samples;
i++) {
2150 put_sbits(pb, sent_bits, samples_l[
i] >> pre_shift);
2153 for (
i = 0;
i < nb_samples;
i++) {
2154 put_sbits(pb, sent_bits, samples_l[
i] >> pre_shift);
2155 put_sbits(pb, sent_bits, samples_r[
i] >> pre_shift);
2162 const int max_exp =
s->float_max_exp;
2180 shift_count = max_exp ? max_exp - 1 : 0;
2184 if (shift_count < 25)
2185 value >>= shift_count;
2206 }
else if (shift_count) {
2222 for (
i = 0;
i < nb_samples;
i++)
2225 for (
i = 0;
i < nb_samples;
i++) {
2238 switch (dpp->
value) {
2240 for (
i = 0;
i < nb_samples;
i++) {
2255 for (
i = 0;
i < nb_samples;
i++) {
2298 for (
i = 0;
i < nb_samples;
i++) {
2310 for (
i = 0;
i < nb_samples;
i++) {
2322 for (
i = 0;
i < nb_samples;
i++) {
2340 #define update_weight_d2(weight, delta, source, result) \
2341 if (source && result) \
2342 weight -= (((source ^ result) >> 29) & 4) - 2;
2344 #define update_weight_clip_d2(weight, delta, source, result) \
2345 if (source && result) { \
2346 const int32_t s = (source ^ result) >> 31; \
2347 if ((weight = (weight ^ s) + (2 - s)) > 1024) weight = 1024; \
2348 weight = (weight ^ s) - s; \
2357 switch (dpp->
value) {
2359 for (
i = 0;
i < nb_samples;
i++) {
2374 for (
i = 0;
i < nb_samples;
i++) {
2418 for (
i = 0;
i < nb_samples;
i++) {
2430 for (
i = 0;
i < nb_samples;
i++) {
2442 for (
i = 0;
i < nb_samples;
i++) {
2465 bytestream2_put_byte(pb,
flags);
2466 bytestream2_put_byte(pb, (
size + 1) >> 1);
2473 int block_size, start, end, data_size, tcount,
temp, m = 0;
2474 int i, j,
ret = 0, got_extra = 0, nb_samples =
s->block_samples;
2475 uint32_t crc = 0xffffffff
u;
2482 if (!(
s->flags &
WV_MONO) &&
s->optimize_mono) {
2485 for (
i = 0;
i < nb_samples;
i++) {
2486 lor |= samples_l[
i] | samples_r[
i];
2487 diff |= samples_l[
i] - samples_r[
i];
2493 if (
i == nb_samples && lor && !
diff) {
2497 if (!
s->false_stereo) {
2498 s->false_stereo = 1;
2502 }
else if (
s->false_stereo) {
2503 s->false_stereo = 0;
2518 if ((mag -=
shift) < 0)
2526 memcpy(
s->orig_l, samples_l,
sizeof(
int32_t) * nb_samples);
2529 memcpy(
s->orig_r, samples_r,
sizeof(
int32_t) * nb_samples);
2533 got_extra =
scan_float(
s, samples_l, samples_r, nb_samples);
2535 got_extra =
scan_int32(
s, samples_l, samples_r, nb_samples);
2539 if (
s->shift !=
s->int32_zeros +
s->int32_ones +
s->int32_dups) {
2540 s->shift =
s->int32_zeros +
s->int32_ones +
s->int32_dups;
2545 if (!
s->num_passes && !
s->num_terms) {
2556 for (
i = 0;
i < nb_samples;
i++)
2557 crc += (crc << 1) + samples_l[
i];
2562 for (
i = 0;
i < nb_samples;
i++)
2563 crc += (crc << 3) + ((uint32_t)samples_l[
i] << 1) + samples_l[
i] + samples_r[
i];
2574 s->ch_offset += 1 + !(
s->flags &
WV_MONO);
2576 if (
s->ch_offset ==
s->avctx->ch_layout.nb_channels)
2580 bytestream2_put_le32(&pb,
MKTAG(
'w',
'v',
'p',
'k'));
2581 bytestream2_put_le32(&pb, 0);
2582 bytestream2_put_le16(&pb, 0x410);
2583 bytestream2_put_le16(&pb, 0);
2584 bytestream2_put_le32(&pb, 0);
2585 bytestream2_put_le32(&pb,
s->sample_index);
2586 bytestream2_put_le32(&pb, nb_samples);
2587 bytestream2_put_le32(&pb,
s->flags);
2588 bytestream2_put_le32(&pb, crc);
2595 bytestream2_put_byte(&pb,
s->avctx->ch_layout.nb_channels);
2596 bytestream2_put_le32(&pb,
s->avctx->ch_layout.u.mask);
2597 bytestream2_put_byte(&pb, 0);
2602 bytestream2_put_le24(&pb,
s->avctx->sample_rate);
2603 bytestream2_put_byte(&pb, 0);
2607 for (
i = 0;
i <
s->num_terms;
i++) {
2608 struct Decorr *dpp = &
s->decorr_passes[
i];
2609 bytestream2_put_byte(&pb, ((dpp->
value + 5) & 0x1f) | ((dpp->
delta << 5) & 0xe0));
2611 if (
s->num_terms & 1)
2612 bytestream2_put_byte(&pb, 0);
2614 #define WRITE_DECWEIGHT(type) do { \
2615 temp = store_weight(type); \
2616 bytestream2_put_byte(&pb, temp); \
2617 type = restore_weight(temp); \
2621 bytestream2_put_byte(&pb, 0);
2623 for (
i =
s->num_terms - 1;
i >= 0; --
i) {
2624 struct Decorr *dpp = &
s->decorr_passes[
i];
2631 for (
i = 0;
i <
s->num_terms;
i++) {
2632 struct Decorr *dpp = &
s->decorr_passes[
i];
2643 out[start - 1] = (end - start + 1) >> 1;
2644 if ((end - start) & 1)
2645 bytestream2_put_byte(&pb, 0);
2647 #define WRITE_DECSAMPLE(type) do { \
2648 temp = log2s(type); \
2649 type = wp_exp2(temp); \
2650 bytestream2_put_le16(&pb, temp); \
2654 bytestream2_put_byte(&pb, 0);
2656 for (
i = 0;
i <
s->num_terms;
i++) {
2657 struct Decorr *dpp = &
s->decorr_passes[
i];
2666 }
else if (dpp->
value < 0) {
2670 for (j = 0; j < dpp->
value; j++) {
2682 out[start - 1] = (end - start) >> 1;
2684 #define WRITE_CHAN_ENTROPY(chan) do { \
2685 for (i = 0; i < 3; i++) { \
2686 temp = wp_log2(s->w.c[chan].median[i]); \
2687 bytestream2_put_le16(&pb, temp); \
2688 s->w.c[chan].median[i] = wp_exp2(temp); \
2699 bytestream2_put_byte(&pb,
s->float_flags);
2700 bytestream2_put_byte(&pb,
s->float_shift);
2701 bytestream2_put_byte(&pb,
s->float_max_exp);
2702 bytestream2_put_byte(&pb, 127);
2707 bytestream2_put_byte(&pb,
s->int32_sent_bits);
2708 bytestream2_put_byte(&pb,
s->int32_zeros);
2709 bytestream2_put_byte(&pb,
s->int32_ones);
2710 bytestream2_put_byte(&pb,
s->int32_dups);
2714 for (
i = 0;
i < nb_samples;
i++) {
2717 for (tcount =
s->num_terms, dpp =
s->decorr_passes; tcount--; dpp++) {
2738 samples_l[
i] =
code;
2741 for (tcount =
s->num_terms, dpp =
s->decorr_passes; tcount--; dpp++)
2756 }
else if (!
s->num_passes) {
2758 for (
i = 0;
i < nb_samples;
i++)
2759 samples_r[
i] += ((samples_l[
i] -= samples_r[
i]) >> 1);
2762 for (
i = 0;
i <
s->num_terms;
i++) {
2763 struct Decorr *dpp = &
s->decorr_passes[
i];
2774 for (
i = 0;
i < nb_samples;
i++)
2777 for (
i = 0;
i < nb_samples;
i++) {
2785 bytestream2_put_le24(&pb, (data_size + 1) >> 1);
2788 bytestream2_put_byte(&pb, 0);
2799 bytestream2_put_le24(&pb, (data_size + 5) >> 1);
2800 bytestream2_put_le32(&pb,
s->crc_x);
2803 bytestream2_put_byte(&pb, 0);
2820 #define COPY_SAMPLES(type, offset, shift) do { \
2821 const type *sptr = (const type *)src; \
2822 for (i = 0; i < nb_samples; i++) \
2823 dst[i] = (sptr[i] - offset) >> shift; \
2826 switch (
s->avctx->sample_fmt) {
2834 if (
s->avctx->bits_per_raw_sample <= 24) {
2839 memcpy(dst,
src, nb_samples * 4);
2847 for (
i = 0;
i < 15;
i++) {
2862 s->block_samples =
frame->nb_samples;
2864 sizeof(
int32_t) *
s->block_samples);
2869 sizeof(
int32_t) *
s->block_samples);
2883 switch (
s->avctx->sample_fmt) {
2897 s->flags += (1 <<
MAG_LSB) * ((
s->flags & 3) * 8 + 7);
2900 buf, buf_size)) < 0)
2906 s->sample_index +=
frame->nb_samples;
2911 *got_packet_ptr = 1;
2923 s->sampleptrs_size[
i][0] =
s->sampleptrs_size[
i][1] = 0;
2926 for (
i = 0;
i < 2;
i++) {
2928 s->samples_size[
i] = 0;
2931 s->best_buffer_size[
i] = 0;
2935 s->temp_buffer_size[
i][0] =
s->temp_buffer_size[
i][1] = 0;
2940 s->js_left_size =
s->js_right_size = 0;
2944 s->orig_l_size =
s->orig_r_size = 0;
2949 #define OFFSET(x) offsetof(WavPackEncodeContext, x)
2950 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
2965 .
p.
name =
"wavpack",
int frame_size
Number of samples per channel in an audio frame.
int32_t * temp_buffer[2][2]
@ AV_SAMPLE_FMT_FLTP
float, planar
static const WavPackDecorrSpec *const decorr_filters[]
const FFCodec ff_wavpack_encoder
static void shift_mono(int32_t *samples, int nb_samples, int shift)
static av_always_inline unsigned int bytestream2_get_eof(PutByteContext *p)
struct Decorr decorr_passes[MAX_TERMS]
#define update_weight_clip_d2(weight, delta, source, result)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int restore_weight(int8_t weight)
static uint32_t log2sample(uint32_t v, int limit, uint32_t *result)
static void encode_flush(WavPackEncodeContext *s)
static int put_bytes_output(const PutBitContext *s)
int sample_rate
samples per second
#define u(width, name, range_min, range_max)
#define WRITE_DECWEIGHT(type)
static void scan_int23(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
#define AV_CH_LAYOUT_MONO
static void put_sbits(PutBitContext *pb, int n, int32_t value)
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
static int scan_float(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
static av_always_inline int bytestream2_tell_p(PutByteContext *p)
static const AVClass wavpack_encoder_class
#define WRITE_CHAN_ENTROPY(chan)
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
static int wavpack_encode_block(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, uint8_t *out, int out_size)
#define COPY_SAMPLES(type, offset, shift)
int nb_channels
Number of channels in this layout.
#define FF_COMPRESSION_DEFAULT
#define update_weight_d2(weight, delta, source, result)
static void set_samplerate(WavPackEncodeContext *s)
static void decorr_stereo_buffer(WavPackExtraInfo *info, int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, int tindex)
int8_t terms[MAX_TERMS+1]
static void decorr_mono_buffer(int32_t *samples, int32_t *outsamples, int nb_samples, struct Decorr *dpp, int tindex)
AVCodec p
The public AVCodec.
static void recurse_mono(WavPackEncodeContext *s, WavPackExtraInfo *info, int depth, int delta, uint32_t input_bits)
AVChannelLayout ch_layout
Audio channel layout.
static av_cold int wavpack_encode_close(AVCodecContext *avctx)
#define FF_CODEC_ENCODE_CB(func)
int temp_buffer_size[2][2]
#define AV_CH_LAYOUT_STEREO
static av_always_inline int wp_log2(uint32_t val)
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static av_always_inline int bytestream2_get_bytes_left_p(PutByteContext *p)
int sampleptrs_size[MAX_TERMS+2][2]
@ AV_CHANNEL_ORDER_NATIVE
The native channel order, i.e.
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
static const uint16_t mask[17]
static const uint8_t decorr_filter_nterms[]
static int wv_stereo(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int no_history, int do_samples)
static __device__ float floor(float a)
static const int wv_rates[16]
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static av_always_inline int wp_exp2(int16_t val)
static int8_t store_weight(int weight)
static int log2s(int32_t value)
static void delta_mono(WavPackEncodeContext *s, WavPackExtraInfo *info)
const WavPackDecorrSpec * decorr_specs
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static void sort_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info)
const char * av_default_item_name(void *ptr)
Return the context name.
static void decorr_stereo_pass_id2(struct Decorr *dpp, int32_t *samples_l, int32_t *samples_r, int nb_samples)
static void reverse_mono_decorr(struct Decorr *dpp)
static int scan_int32(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
static void analyze_stereo(WavPackEncodeContext *s, int32_t *in_left, int32_t *in_right, int do_samples)
static void pack_int32(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_cold int wavpack_encode_init(AVCodecContext *avctx)
static int weight(int i, int blen, int offset)
static int wavpack_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
@ AV_SAMPLE_FMT_U8P
unsigned 8 bits, planar
int32_t * sampleptrs[MAX_TERMS+2][2]
static void process_float(WavPackEncodeContext *s, int32_t *sample)
static const uint16_t decorr_filter_sizes[]
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
static void pack_float_sample(WavPackEncodeContext *s, int32_t *sample)
static void decorr_stereo(int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, struct Decorr *dpp, int dir)
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
static av_always_inline void bytestream2_skip_p(PutByteContext *p, unsigned int size)
AVSampleFormat
Audio sample formats.
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
static void put_metadata_block(PutByteContext *pb, int flags, int size)
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
const char * name
Name of the codec implementation.
#define EXTRA_ADJUST_DELTAS
static double limit(double x)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define APPLY_WEIGHT(weight, sample)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
main external API structure.
#define APPLY_WEIGHT_I(weight, sample)
static int allocate_buffers(WavPackEncodeContext *s)
#define UPDATE_WEIGHT_CLIP(weight, delta, samples, in)
static uint32_t log2mono(int32_t *samples, int nb_samples, int limit)
static void sort_mono(WavPackEncodeContext *s, WavPackExtraInfo *info)
static void reverse_decorr(struct Decorr *dpp)
static void decorr_stereo_quick(int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, struct Decorr *dpp)
Filter the word “frame” indicates either a video frame or a group of audio samples
#define UPDATE_WEIGHT(weight, delta, source, result)
#define WRITE_DECSAMPLE(type)
static void decorr_mono(int32_t *in_samples, int32_t *out_samples, int nb_samples, struct Decorr *dpp, int dir)
static void recurse_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info, int depth, int delta, uint32_t input_bits)
static int shift(int a, int b)
static void scan_word(WavPackEncodeContext *s, WvChannel *c, int32_t *samples, int nb_samples, int dir)
static uint32_t log2stereo(int32_t *samples_l, int32_t *samples_r, int nb_samples, int limit)
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
static void fill_buffer(WavPackEncodeContext *s, const int8_t *src, int32_t *dst, int nb_samples)
static av_always_inline int diff(const uint32_t a, const uint32_t b)
This structure stores compressed data.
static void analyze_mono(WavPackEncodeContext *s, int32_t *samples, int do_samples)
static void delta_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info)
static void shift_stereo(int32_t *left, int32_t *right, int nb_samples, int shift)
const uint8_t ff_wp_log2_table[256]
#define flags(name, subs,...)
static void wavpack_encode_sample(WavPackEncodeContext *s, WvChannel *c, int32_t sample)
#define MKTAG(a, b, c, d)
static void decorr_stereo_pass2(struct Decorr *dpp, int32_t *samples_l, int32_t *samples_r, int nb_samples)
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
static int allocate_buffers2(WavPackEncodeContext *s, int nterms)
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
static void pack_float(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples)
static int wv_mono(WavPackEncodeContext *s, int32_t *samples, int no_history, int do_samples)
static const AVOption options[]