Go to the documentation of this file.
45 #define FRAME_SIZE_SHIFT 2
46 #define FRAME_SIZE (120<<FRAME_SIZE_SHIFT)
47 #define WINDOW_SIZE (2*FRAME_SIZE)
48 #define FREQ_SIZE (FRAME_SIZE + 1)
50 #define PITCH_MIN_PERIOD 60
51 #define PITCH_MAX_PERIOD 768
52 #define PITCH_FRAME_SIZE 960
53 #define PITCH_BUF_SIZE (PITCH_MAX_PERIOD+PITCH_FRAME_SIZE)
55 #define SQUARE(x) ((x)*(x))
60 #define NB_DELTA_CEPS 6
62 #define NB_FEATURES (NB_BANDS+3*NB_DELTA_CEPS+2)
64 #define WEIGHTS_SCALE (1.f/256)
66 #define MAX_NEURONS 128
68 #define ACTIVATION_TANH 0
69 #define ACTIVATION_SIGMOID 1
70 #define ACTIVATION_RELU 2
152 #define F_ACTIVATION_TANH 0
153 #define F_ACTIVATION_SIGMOID 1
154 #define F_ACTIVATION_RELU 2
158 #define FREE_MAYBE(ptr) do { if (ptr) free(ptr); } while (0)
159 #define FREE_DENSE(name) do { \
161 av_free((void *) model->name->input_weights); \
162 av_free((void *) model->name->bias); \
163 av_free((void *) model->name); \
166 #define FREE_GRU(name) do { \
168 av_free((void *) model->name->input_weights); \
169 av_free((void *) model->name->recurrent_weights); \
170 av_free((void *) model->name->bias); \
171 av_free((void *) model->name); \
197 if (fscanf(
f,
"rnnoise-nu model file version %d\n", &in) != 1 || in != 1)
204 #define ALLOC_LAYER(type, name) \
205 name = av_calloc(1, sizeof(type)); \
207 rnnoise_model_free(ret); \
208 return AVERROR(ENOMEM); \
219 #define INPUT_VAL(name) do { \
220 if (fscanf(f, "%d", &in) != 1 || in < 0 || in > 128) { \
221 rnnoise_model_free(ret); \
222 return AVERROR(EINVAL); \
227 #define INPUT_ACTIVATION(name) do { \
229 INPUT_VAL(activation); \
230 switch (activation) { \
231 case F_ACTIVATION_SIGMOID: \
232 name = ACTIVATION_SIGMOID; \
234 case F_ACTIVATION_RELU: \
235 name = ACTIVATION_RELU; \
238 name = ACTIVATION_TANH; \
242 #define INPUT_ARRAY(name, len) do { \
243 float *values = av_calloc((len), sizeof(float)); \
245 rnnoise_model_free(ret); \
246 return AVERROR(ENOMEM); \
249 for (int i = 0; i < (len); i++) { \
250 if (fscanf(f, "%d", &in) != 1) { \
251 rnnoise_model_free(ret); \
252 return AVERROR(EINVAL); \
258 #define INPUT_ARRAY3(name, len0, len1, len2) do { \
259 float *values = av_calloc(FFALIGN((len0), 4) * FFALIGN((len1), 4) * (len2), sizeof(float)); \
261 rnnoise_model_free(ret); \
262 return AVERROR(ENOMEM); \
265 for (int k = 0; k < (len0); k++) { \
266 for (int i = 0; i < (len2); i++) { \
267 for (int j = 0; j < (len1); j++) { \
268 if (fscanf(f, "%d", &in) != 1) { \
269 rnnoise_model_free(ret); \
270 return AVERROR(EINVAL); \
272 values[j * (len2) * FFALIGN((len0), 4) + i * FFALIGN((len0), 4) + k] = in; \
278 #define NEW_LINE() do { \
280 while ((c = fgetc(f)) != EOF) { \
286 #define INPUT_DENSE(name) do { \
287 INPUT_VAL(name->nb_inputs); \
288 INPUT_VAL(name->nb_neurons); \
289 ret->name ## _size = name->nb_neurons; \
290 INPUT_ACTIVATION(name->activation); \
292 INPUT_ARRAY(name->input_weights, name->nb_inputs * name->nb_neurons); \
294 INPUT_ARRAY(name->bias, name->nb_neurons); \
298 #define INPUT_GRU(name) do { \
299 INPUT_VAL(name->nb_inputs); \
300 INPUT_VAL(name->nb_neurons); \
301 ret->name ## _size = name->nb_neurons; \
302 INPUT_ACTIVATION(name->activation); \
304 INPUT_ARRAY3(name->input_weights, name->nb_inputs, name->nb_neurons, 3); \
306 INPUT_ARRAY3(name->recurrent_weights, name->nb_neurons, name->nb_neurons, 3); \
308 INPUT_ARRAY(name->bias, name->nb_neurons * 3); \
354 s->channels =
inlink->ch_layout.nb_channels;
361 for (
int i = 0;
i <
s->channels;
i++) {
374 for (
int i = 0;
i <
s->channels;
i++) {
392 static void biquad(
float *y,
float mem[2],
const float *x,
393 const float *
b,
const float *
a,
int N)
395 for (
int i = 0;
i <
N;
i++) {
400 mem[0] = mem[1] + (
b[0]*
xi -
a[0]*yi);
401 mem[1] = (
b[1]*
xi -
a[1]*yi);
406 #define RNN_MOVE(dst, src, n) (memmove((dst), (src), (n)*sizeof(*(dst)) + 0*((dst)-(src)) ))
407 #define RNN_CLEAR(dst, n) (memset((dst), 0, (n)*sizeof(*(dst))))
408 #define RNN_COPY(dst, src, n) (memcpy((dst), (src), (n)*sizeof(*(dst)) + 0*((dst)-(src)) ))
445 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
456 for (
int j = 0; j < band_size; j++) {
457 float tmp, frac = (
float)j / band_size;
461 sum[
i] += (1.f - frac) *
tmp;
462 sum[
i + 1] += frac *
tmp;
481 for (
int j = 0; j < band_size; j++) {
482 float tmp, frac = (
float)j / band_size;
486 sum[
i] += (1 - frac) *
tmp;
487 sum[
i + 1] += frac *
tmp;
514 const float mix =
s->mix;
515 const float imix = 1.f -
FFMAX(
mix, 0.
f);
527 static inline void xcorr_kernel(
const float *x,
const float *y,
float sum[4],
int len)
529 float y_0, y_1, y_2, y_3 = 0;
536 for (j = 0; j <
len - 3; j += 4) {
597 const float *y,
int N)
601 for (
int i = 0;
i <
N;
i++)
608 float *xcorr,
int len,
int max_pitch)
612 for (
i = 0;
i < max_pitch - 3;
i += 4) {
613 float sum[4] = { 0, 0, 0, 0};
618 xcorr[
i + 1] = sum[1];
619 xcorr[
i + 2] = sum[2];
620 xcorr[
i + 3] = sum[3];
623 for (;
i < max_pitch;
i++) {
643 for (
int i = 0;
i < n;
i++)
645 for (
int i = 0;
i < overlap;
i++) {
655 for (
int k = 0; k <= lag; k++) {
658 for (
int i = k + fastN;
i < n;
i++)
659 d += xptr[
i] * xptr[
i-k];
674 for (
int i = 0;
i < p;
i++) {
677 for (
int j = 0; j <
i; j++)
678 rr += (lpc[j] * ac[
i - j]);
683 for (
int j = 0; j < (
i + 1) >> 1; j++) {
687 lpc[j] = tmp1 + (
r*tmp2);
688 lpc[
i-1-j] = tmp2 + (
r*tmp1);
693 if (
error < .001
f * ac[0])
705 float num0, num1, num2, num3, num4;
706 float mem0, mem1, mem2, mem3, mem4;
719 for (
int i = 0;
i <
N;
i++) {
747 float lpc[4], mem[5]={0,0,0,0,0};
751 for (
int i = 1; i < len >> 1;
i++)
752 x_lp[
i] = .5
f * (.5
f * (x[0][(2*
i-1)]+x[0][(2*
i+1)])+x[0][2*
i]);
753 x_lp[0] = .5f * (.5f * (x[0][1])+x[0][0]);
755 for (
int i = 1; i < len >> 1;
i++)
756 x_lp[
i] += (.5
f * (.5
f * (x[1][(2*
i-1)]+x[1][(2*
i+1)])+x[1][2*
i]));
757 x_lp[0] += .5f * (.5f * (x[1][1])+x[1][0]);
765 for (
int i = 1;
i <= 4;
i++) {
767 ac[
i] -= ac[
i]*(.008f*
i)*(.008
f*
i);
771 for (
int i = 0;
i < 4;
i++) {
773 lpc[
i] = (lpc[
i] *
tmp);
776 lpc2[0] = lpc[0] + .8f;
777 lpc2[1] = lpc[1] + (
c1 * lpc[0]);
778 lpc2[2] = lpc[2] + (
c1 * lpc[1]);
779 lpc2[3] = lpc[3] + (
c1 * lpc[2]);
780 lpc2[4] = (
c1 * lpc[3]);
784 static inline void dual_inner_prod(
const float *x,
const float *y01,
const float *y02,
785 int N,
float *xy1,
float *xy2)
787 float xy01 = 0, xy02 = 0;
789 for (
int i = 0;
i <
N;
i++) {
790 xy01 += (x[
i] * y01[
i]);
791 xy02 += (x[
i] * y02[
i]);
800 return xy /
sqrtf(1.
f + xx * yy);
803 static const uint8_t
second_check[16] = {0, 0, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2};
805 int *T0_,
int prev_period,
float prev_gain)
812 float best_xy, best_yy;
817 minperiod0 = minperiod;
831 for (
i = 1;
i <= maxperiod;
i++) {
832 yy = yy+(x[-
i] * x[-
i])-(x[
N-
i] * x[
N-
i]);
833 yy_lookup[
i] =
FFMAX(0, yy);
840 for (k = 2; k <= 15; k++) {
860 xy = .5f * (xy + xy2);
861 yy = .5f * (yy_lookup[T1] + yy_lookup[T1b]);
863 if (
FFABS(T1-prev_period)<=1)
865 else if (
FFABS(T1-prev_period)<=2 && 5 * k * k < T0)
866 cont = prev_gain * .5f;
869 thresh =
FFMAX(.3
f, (.7
f * g0) - cont);
873 thresh =
FFMAX(.4
f, (.85
f * g0) - cont);
874 else if (T1<2*minperiod)
875 thresh =
FFMAX(.5
f, (.9
f * g0) - cont);
884 best_xy =
FFMAX(0, best_xy);
885 if (best_yy <= best_xy)
888 pg = best_xy/(best_yy + 1);
890 for (k = 0; k < 3; k++)
892 if ((xcorr[2]-xcorr[0]) > .7f * (xcorr[1]-xcorr[0]))
894 else if ((xcorr[0]-xcorr[2]) > (.7f * (xcorr[1] - xcorr[2])))
908 int max_pitch,
int *best_pitch)
921 for (
int j = 0; j <
len; j++)
924 for (
int i = 0;
i < max_pitch;
i++) {
933 num = xcorr16 * xcorr16;
934 if ((num * best_den[1]) > (best_num[1] * Syy)) {
935 if ((num * best_den[0]) > (best_num[0] * Syy)) {
936 best_num[1] = best_num[0];
937 best_den[1] = best_den[0];
938 best_pitch[1] = best_pitch[0];
955 int len,
int max_pitch,
int *pitch)
958 int best_pitch[2]={0,0};
968 for (
int j = 0; j < len >> 2; j++)
969 x_lp4[j] = x_lp[2*j];
970 for (
int j = 0; j < lag >> 2; j++)
980 for (
int i = 0; i < max_pitch >> 1;
i++) {
983 if (
FFABS(
i-2*best_pitch[0])>2 &&
FFABS(
i-2*best_pitch[1])>2)
986 xcorr[
i] =
FFMAX(-1, sum);
992 if (best_pitch[0] > 0 && best_pitch[0] < (max_pitch >> 1) - 1) {
995 a = xcorr[best_pitch[0] - 1];
996 b = xcorr[best_pitch[0]];
997 c = xcorr[best_pitch[0] + 1];
998 if (
c -
a > .7
f * (
b -
a))
1000 else if (
a -
c > .7
f * (
b-
c))
1008 *pitch = 2 * best_pitch[0] -
offset;
1022 float *Ex,
float *Ep,
float *Exp,
float *features,
const float *in)
1025 float *ceps_0, *ceps_1, *ceps_2;
1026 float spec_variability = 0;
1034 float follow, logMax;
1075 logMax =
FFMAX(logMax, Ly[
i]);
1076 follow =
FFMAX(follow-1.5, Ly[
i]);
1086 dct(
s, features, Ly);
1094 ceps_0[
i] = features[
i];
1098 features[
i] = ceps_0[
i] + ceps_1[
i] + ceps_2[
i];
1107 float mindist = 1e15f;
1108 for (
int j = 0; j <
CEPS_MEM; j++) {
1110 for (
int k = 0; k <
NB_BANDS; k++) {
1118 mindist =
FFMIN(mindist, dist);
1121 spec_variability += mindist;
1136 for (
int j = 0; j < band_size; j++) {
1137 float frac = (
float)j / band_size;
1145 const float *Exp,
const float *
g)
1154 if (Exp[
i]>
g[
i])
r[
i] = 1;
1161 X[
i].re += rf[
i]*
P[
i].re;
1162 X[
i].im += rf[
i]*
P[
i].im;
1166 norm[
i] =
sqrtf(Ex[
i] / (1e-8+newE[
i]));
1170 X[
i].re *= normf[
i];
1171 X[
i].im *= normf[
i];
1176 0.000000f, 0.039979f, 0.079830f, 0.119427f, 0.158649f,
1177 0.197375f, 0.235496f, 0.272905f, 0.309507f, 0.345214f,
1178 0.379949f, 0.413644f, 0.446244f, 0.477700f, 0.507977f,
1179 0.537050f, 0.564900f, 0.591519f, 0.616909f, 0.641077f,
1180 0.664037f, 0.685809f, 0.706419f, 0.725897f, 0.744277f,
1181 0.761594f, 0.777888f, 0.793199f, 0.807569f, 0.821040f,
1182 0.833655f, 0.845456f, 0.856485f, 0.866784f, 0.876393f,
1183 0.885352f, 0.893698f, 0.901468f, 0.908698f, 0.915420f,
1184 0.921669f, 0.927473f, 0.932862f, 0.937863f, 0.942503f,
1185 0.946806f, 0.950795f, 0.954492f, 0.957917f, 0.961090f,
1186 0.964028f, 0.966747f, 0.969265f, 0.971594f, 0.973749f,
1187 0.975743f, 0.977587f, 0.979293f, 0.980869f, 0.982327f,
1188 0.983675f, 0.984921f, 0.986072f, 0.987136f, 0.988119f,
1189 0.989027f, 0.989867f, 0.990642f, 0.991359f, 0.992020f,
1190 0.992631f, 0.993196f, 0.993718f, 0.994199f, 0.994644f,
1191 0.995055f, 0.995434f, 0.995784f, 0.996108f, 0.996407f,
1192 0.996682f, 0.996937f, 0.997172f, 0.997389f, 0.997590f,
1193 0.997775f, 0.997946f, 0.998104f, 0.998249f, 0.998384f,
1194 0.998508f, 0.998623f, 0.998728f, 0.998826f, 0.998916f,
1195 0.999000f, 0.999076f, 0.999147f, 0.999213f, 0.999273f,
1196 0.999329f, 0.999381f, 0.999428f, 0.999472f, 0.999513f,
1197 0.999550f, 0.999585f, 0.999617f, 0.999646f, 0.999673f,
1198 0.999699f, 0.999722f, 0.999743f, 0.999763f, 0.999781f,
1199 0.999798f, 0.999813f, 0.999828f, 0.999841f, 0.999853f,
1200 0.999865f, 0.999875f, 0.999885f, 0.999893f, 0.999902f,
1201 0.999909f, 0.999916f, 0.999923f, 0.999929f, 0.999934f,
1202 0.999939f, 0.999944f, 0.999948f, 0.999952f, 0.999956f,
1203 0.999959f, 0.999962f, 0.999965f, 0.999968f, 0.999970f,
1204 0.999973f, 0.999975f, 0.999977f, 0.999978f, 0.999980f,
1205 0.999982f, 0.999983f, 0.999984f, 0.999986f, 0.999987f,
1206 0.999988f, 0.999989f, 0.999990f, 0.999990f, 0.999991f,
1207 0.999992f, 0.999992f, 0.999993f, 0.999994f, 0.999994f,
1208 0.999994f, 0.999995f, 0.999995f, 0.999996f, 0.999996f,
1209 0.999996f, 0.999997f, 0.999997f, 0.999997f, 0.999997f,
1210 0.999997f, 0.999998f, 0.999998f, 0.999998f, 0.999998f,
1211 0.999998f, 0.999998f, 0.999999f, 0.999999f, 0.999999f,
1212 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f,
1213 0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f,
1214 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f,
1215 1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f,
1243 y = y + x*dy*(1 - y*x);
1256 for (
int i = 0;
i <
N;
i++) {
1258 float sum = layer->
bias[
i];
1260 for (
int j = 0; j <
M; j++)
1267 for (
int i = 0;
i <
N;
i++)
1270 for (
int i = 0;
i <
N;
i++)
1273 for (
int i = 0;
i <
N;
i++)
1289 const int stride = 3 * AN, istride = 3 * AM;
1291 for (
int i = 0;
i <
N;
i++) {
1293 float sum = gru->
bias[
i];
1300 for (
int i = 0;
i <
N;
i++) {
1302 float sum = gru->
bias[
N +
i];
1309 for (
int i = 0;
i <
N;
i++) {
1311 float sum = gru->
bias[2 *
N +
i];
1314 for (
int j = 0; j <
N; j++)
1331 #define INPUT_SIZE 42
1374 static const float a_hp[2] = {-1.99599, 0.99600};
1375 static const float b_hp[2] = {-2, 1};
1381 if (!silence && !disabled) {
1400 memcpy(history, in,
FRAME_SIZE *
sizeof(*history));
1415 const int start = (
out->ch_layout.nb_channels * jobnr) / nb_jobs;
1416 const int end = (
out->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
1418 for (
int ch = start; ch < end; ch++) {
1420 (
float *)
out->extended_data[ch],
1488 if (!*model ||
ret < 0)
1513 for (
int j = 0; j <
NB_BANDS; j++) {
1516 s->dct_table[j][
i] *=
sqrtf(.5);
1530 for (
int ch = 0; ch <
s->channels &&
s->st; ch++) {
1531 av_freep(&
s->st[ch].rnn[n].vad_gru_state);
1532 av_freep(&
s->st[ch].rnn[n].noise_gru_state);
1533 av_freep(&
s->st[ch].rnn[n].denoise_gru_state);
1538 char *res,
int res_len,
int flags)
1552 for (
int ch = 0; ch <
s->channels; ch++)
1557 for (
int ch = 0; ch <
s->channels; ch++)
1573 for (
int ch = 0; ch <
s->channels &&
s->st; ch++) {
1595 #define OFFSET(x) offsetof(AudioRNNContext, x)
1596 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
1609 .description =
NULL_IF_CONFIG_SMALL(
"Reduce noise from speech using Recurrent Neural Networks."),
1611 .priv_class = &arnndn_class,
static void error(const char *err)
static void compute_dense(const DenseLayer *layer, float *output, const float *input)
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
@ AV_SAMPLE_FMT_FLTP
float, planar
static void pitch_downsample(float *x[], float *x_lp, int len, int C)
static int mix(int c0, int c1)
float synthesis_mem[FRAME_SIZE]
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int activate(AVFilterContext *ctx)
static void dual_inner_prod(const float *x, const float *y01, const float *y02, int N, float *xy1, float *xy2)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_cold void uninit(AVFilterContext *ctx)
static void inverse_transform(DenoiseState *st, float *out, const AVComplexFloat *in)
This structure describes decoded (raw) audio or video data.
static const AVOption arnndn_options[]
#define FILTER_QUERY_FUNC(func)
static void frame_synthesis(AudioRNNContext *s, DenoiseState *st, float *out, const AVComplexFloat *y)
const char * name
Filter name.
int nb_channels
Number of channels in this layout.
static const float tansig_table[201]
A link between two filters.
static void find_best_pitch(float *xcorr, float *y, int len, int max_pitch, int *best_pitch)
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
#define RNN_CLEAR(dst, n)
static void compute_band_energy(float *bandE, const AVComplexFloat *X)
static void compute_rnn(AudioRNNContext *s, RNNState *rnn, float *gains, float *vad, const float *input)
static void free_model(AVFilterContext *ctx, int n)
float * denoise_gru_state
static int rnnoise_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static SDL_Window * window
static void rnnoise_model_free(RNNModel *model)
float cepstral_mem[CEPS_MEM][NB_BANDS]
static av_always_inline float scale(float x, float s)
A filter pad used for either input or output.
static void compute_band_corr(float *bandE, const AVComplexFloat *X, const AVComplexFloat *P)
float history[FRAME_SIZE]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void(* av_tx_fn)(AVTXContext *s, void *out, void *in, ptrdiff_t stride)
Function pointer to a function to perform the transform.
static void frame_analysis(AudioRNNContext *s, DenoiseState *st, AVComplexFloat *X, float *Ex, const float *in)
static __device__ float floor(float a)
static const AVFilterPad inputs[]
static float celt_inner_prod(const float *x, const float *y, int N)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
@ AV_TX_FLOAT_FFT
Standard complex to complex FFT with sample data type of AVComplexFloat, AVComplexDouble or AVComplex...
#define xi(width, name, var, range_min, range_max, subs,...)
static int rnnoise_model_from_file(FILE *f, RNNModel **rnn)
const AVFilter ff_af_arnndn
static int config_input(AVFilterLink *inlink)
#define FILTER_INPUTS(array)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Describe the class of an AVClass context structure.
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
#define LOCAL_ALIGNED_32(t, v,...)
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static float sigmoid_approx(float x)
const DenseLayer * vad_output
const float * recurrent_weights
static const AVFilterPad outputs[]
static __device__ float sqrtf(float a)
const DenseLayer * input_dense
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
const float * input_weights
static void biquad(float *y, float mem[2], const float *x, const float *b, const float *a, int N)
float pitch_buf[PITCH_BUF_SIZE]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define DECLARE_ALIGNED(n, t, v)
static int shift(int a, int b)
static int celt_autocorr(const float *x, float *ac, const float *window, int overlap, int lag, int n)
static void celt_lpc(float *lpc, const float *ac, int p)
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
#define RNN_MOVE(dst, src, n)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
FF_FILTER_FORWARD_WANTED(outlink, inlink)
const GRULayer * denoise_gru
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
#define ACTIVATION_SIGMOID
#define i(width, name, range_min, range_max)
#define RNN_COPY(dst, src, n)
uint8_t ** extended_data
pointers to the data planes/channels.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
AVSampleFormat
Audio sample formats.
Used for passing data between threads.
static void interp_band_gain(float *g, const float *bandE)
static void dct(AudioRNNContext *s, float *out, const float *in)
float dct_table[FFALIGN(NB_BANDS, 4)][FFALIGN(NB_BANDS, 4)]
const char * name
Pad name.
FILE * avpriv_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
void * av_calloc(size_t nmemb, size_t size)
static int open_model(AVFilterContext *ctx, RNNModel **model)
#define FFSWAP(type, a, b)
static int compute_frame_features(AudioRNNContext *s, DenoiseState *st, AVComplexFloat *X, AVComplexFloat *P, float *Ex, float *Ep, float *Exp, float *features, const float *in)
const float * input_weights
float window[WINDOW_SIZE]
static const uint8_t second_check[16]
static float remove_doubling(float *x, int maxperiod, int minperiod, int N, int *T0_, int prev_period, float prev_gain)
static float compute_pitch_gain(float xy, float xx, float yy)
AVFILTER_DEFINE_CLASS(arnndn)
static void xcorr_kernel(const float *x, const float *y, float sum[4], int len)
static void pitch_search(const float *x_lp, float *y, int len, int max_pitch, int *pitch)
static void pitch_filter(AVComplexFloat *X, const AVComplexFloat *P, const float *Ex, const float *Ep, const float *Exp, const float *g)
static void celt_pitch_xcorr(const float *x, const float *y, float *xcorr, int len, int max_pitch)
static float rnnoise_channel(AudioRNNContext *s, DenoiseState *st, float *out, const float *in, int disabled)
static void celt_fir5(const float *x, const float *num, float *y, int N, float *mem)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
float pitch_enh_buf[PITCH_BUF_SIZE]
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
static float tansig_approx(float x)
static int query_formats(AVFilterContext *ctx)
static void forward_transform(DenoiseState *st, AVComplexFloat *out, const float *in)
AVChannelLayout ch_layout
channel layout of current buffer (see libavutil/channel_layout.h)
FF_FILTER_FORWARD_STATUS(inlink, outlink)
static const int16_t alpha[]
#define FILTER_OUTPUTS(array)
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
const DenseLayer * denoise_output
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define ALLOC_LAYER(type, name)
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
static void compute_gru(AudioRNNContext *s, const GRULayer *gru, float *state, const float *input)
static const uint8_t eband5ms[]
#define INPUT_DENSE(name)
const GRULayer * noise_gru
static av_cold int init(AVFilterContext *ctx)
float analysis_mem[FRAME_SIZE]